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1. Introduction

Icosahedral carboranes C2B10H12 are of interest for a wide variety of applications, from
medicinal chemistry [1–8] to design of new materials [9–18]. Although the carborane cage
contains ten boron atoms and only two carbon atoms, the CH groups of carboranes exhibit
the properties of weak acids, which makes them accessible for functionalization using a
rich arsenal of organic chemistry. Therefore, most of the ways of modification of carboranes
involve substitution at carbon atoms [19]. The most studied substitution reactions at
boron atoms are halogenation reactions. It should be noted that to date, a large number of
various iodo derivatives of carboranes have been synthesized, differing in the position of
the substituents and their number [20–30]. The increased interest in iodine derivatives of
carborane is mainly caused by their use in various cross-coupling reactions [21–23,31–40],
as well as in study of intermolecular hydrogen and halogen bonding [41,42] and medicinal
chemistry [43]. Despite the fact that the bromination of carboranes was first described as
early as the mid-1960s [44], the chemistry of bromo derivatives of carboranes has been
studied to a much lesser extent compared to the iodo derivatives. Nevertheless, recently
there has been an increase in interest in bromo derivatives of carboranes due to their use
in cross-coupling reactions [45–48] and the study of intermolecular interactions with the
formation of hydrogen and halogen bonds [49].

In this contribution we describe the synthesis of 9,12-dibromo-ortho-carborane and its
characterization by NMR spectroscopy and single crystal X-ray diffraction.

2. Results and Discussion

Despite the fact that the bromination of ortho- and meta-carboranes was first described
back in the mid-1960s [44], neither the yield of bromination products nor their character-
ization (with the exception of X-ray diffraction data for crystals from the same synthe-
ses [50–53]) have been described until recently. For the sake of fairness, it is worth noting an
attempt to characterize the obtained bromo derivatives of ortho-carborane using 11B NMR
spectroscopy, however, due to the very limited instrumental capabilities of that time, at the
present it is rather of historical interest [54]. Synthesis and NMR spectra of 9-bromo- and
9,12-dibromo-meta-carboranes were recently reported by Spokoyny et al. [45]. The NMR
spectral data of 9-bromo-ortho-carborane, as well as its crystal and gas phase structures,
were recently reported by Hnyk et al. [49,55]. As for 9,12-dibromo-ortho-carborane, its
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preparation was also mentioned relatively recently [56]; however, only numerical charac-
teristics of the NMR spectra were reported without their assignment.

The main problem of the 9,12-dibromo-ortho-carborane synthesis is the purification of
the target product. It was demonstrated that bromination of ortho-carborane, regardless of
the Lewis acid and solvent used, gives, together with the desired 9-bromo-ortho-carborane,
approx. 10 mol.% of 8-bromo-ortho-carborane. At the second stage, this leads to the crude
product containing approx. 80% of 9,12-dibromo-ortho-carborane, together with significant
amount of the 8,9-dibromo and traces of the 8,10-dibromo derivatives [57]. Impurities
of 9-bromo- and 8,9,12-tribromo derivatives may also be present in the reaction mixture,
which greatly complicates the purification of the target product [58]. Unfortunately, all our
attempts to purify the target compound using chromatography methods failed. Therefore,
we purified 9,12-dibromo-ortho-carborane by fraction crystallization from chloroform that
produced a rather low (22%) yield of pure product (Scheme 1).
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with the integral intensity ratio of 2: 2: 4: 2 (See Supplementary Information). 

It should be noted that the structure of 9,12-dibromo-ortho-carborane was determined 
in 1966 [50] at room temperature. The quality of that experiment was evidently low and 
was mostly concentrated on the description of molecular geometry. Therefore, in the pre-
sent study, we redetermined its structure at low temperature (110 K) focusing on both 
molecular structure (Figure 1) and, especially, the crystal packing. 

 
Figure 1. General view of 9,12-Br2-ortho-C2B10H10 showing atomic numbering. Thermal ellipsoids are 
drawn at 50% probability level. 

Scheme 1. Synthesis of 9,12-Br2-ortho-C2B10H10.

The 1H NMR spectrum of 9,12-Br2-ortho-C2B10H10 in CDCl3 contains signals of the
CH groups at 3.72 ppm and the signals of BH groups in the region of 1.5–3.5 ppm. The
13C NMR spectrum contains signal of the carborane carbons at 46.8 ppm. The 11B NMR
spectrum consists of one singlet at 0.1 ppm and three doublets at−7.5,−14.4, and 16.9 ppm
with the integral intensity ratio of 2: 2: 4: 2 (See Supplementary Information).

It should be noted that the structure of 9,12-dibromo-ortho-carborane was determined
in 1966 [50] at room temperature. The quality of that experiment was evidently low and was
mostly concentrated on the description of molecular geometry. Therefore, in the present
study, we redetermined its structure at low temperature (110 K) focusing on both molecular
structure (Figure 1) and, especially, the crystal packing.
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Figure 1. General view of 9,12-Br2-ortho-C2B10H10 showing atomic numbering. Thermal ellipsoids
are drawn at 50% probability level.

The presence of two bromine atoms might imply a formation of the Br . . . Br halogen
bond in the crystal structure of 9,12-dibromo-ortho-carborane. At the same time, in our
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recent study [42] we showed that halogen substituent at the B9 and B12 positions of the
ortho-carborane cage can act as a good donor of the lone pair (LP), however, its acceptor
ability is low, and therefore, a formation of any strong halogen bond in the crystal is
hardly expected. Moreover, in recently studied 1,12-Br2-ortho-C2B10H10, the C-H . . . Br
interactions were found to be structure-forming while no halogen bonds were observed [49].
It means that it is difficult to predict a priori what type of intermolecular interactions will
be predominant in the crystal structure stabilization of dihalogen carboranes. The X-ray
study of 9,12-Br2-ortho-C2B10H10 has revealed that both Br . . . Br halogen bond of type II
and C-H . . . Br hydrogen bonds are formed in the crystal (Figure 2). The halogen bond is
rather weak and strongly distorted (the Br(1) . . . Br(2) distance is 3.796(2) Å, the B(9)-Br(1)
. . . Br(2) and B(12)-Br(2) . . . Br(1) angles are 92.5(3)◦ and 148.4◦, respectively); the Br(1)
atom acts as LP donor while the Br(2) atom is LP acceptor.
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Figure 2. Crystal packing fragment of 9,12-Br2-ortho-C2B10H10. Numbers at the green arrows
correspond to pair interaction energies.

Each molecule has two halogen-bonded neighbors and four C-H . . . Br bonded ones
which leads to a formation of layers parallel to the bc plane. In order to understand
which interactions play a predominant role in the crystal structure formation, we carried
out energetic analysis of the crystal packing by estimation of the dimeric interaction
energies [42,59–61]. Such dimers are formed by the central molecule and the molecule
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taken from the closest environment of the central molecule. Here, we considered only those
molecular pairs which are linked by the C-H . . . Br and Br . . . Br interactions because all the
other intermolecular interactions are of van der Waals type. Calculations were carried out
with the GAUSSIAN program [62] using PBE0 functional and triple-zeta basis set which
were found to be reliable for analysis of halogen and hydrogen bonds [63–65].

As it is seen in Figure 2, the C-H . . . Br interactions are much stronger than Br . . .
Br halogen bonds and can be viewed as structure-forming interactions in the crystal of
9,12-Br2-ortho-C2B10H10. The weakness of the observed halogen bond is also confirmed by
near equivalence of the B(9)-Br(1) (1.955(5) Å) and B(9)-Br(2) (1.963(5) Å) bond lengths. In
the case of a strong halogen bond, the latter must be significantly longer because the Br(2)
atom acts as LP acceptor.

3. Materials and Methods

All reactions were carried out under argon atmosphere. Dichloromethane was dried
using standard procedures [66]. The reaction progress was monitored by thin layer chro-
matography (Merck F254 silica gel on aluminum plates; n-hexane: chloroform 4: 1 (v/v))
and visualized using 0.5 % PdCl2 in 1% HCl in aq. MeOH (1:10). The NMR spectra
at 400 MHz (1H), 128 MHz (11B), and 100 MHz (13C) were recorded with Varian Inova
400 spectrometer. The residual signal of the NMR solvent relative to Me4Si was taken
as the internal reference for 1H and 13C NMR spectra. 11B NMR spectra were refer-
enced using BF3·Et2O as external standard. Mass spectra (MS) were measured using
Shimadzu LCMS-2020 instrument with DUIS ionization (ESI—Electrospray ionization and
APCI—Atmospheric pressure chemical ionization). The measurements were performed in
a negative ion mode with mass range from m/z 50 to m/z 2000. Isotope distribution was
calculated using Isotope Distribution Calculator and Mass Spec Plotter [67].

Anhydrous AlCl3 (0.80 g, 6.0 mmol) was added to solution of ortho-carborane (5.0 g,
34.7 mmol) in dichloromethane (200 mL) and stirred for 15 min. A solution of Br2 (1.78 mL,
5.55 g, 34.7 mmol) in dichloromethane (50 mL) was added dropwise and the reaction
mixture was stirred until it became colorless. Then, a solution of Br2 (1.78 mL, 5.55 g,
34.7 mmol) in dichloromethane (50 mL) was added dropwise and the reaction mixture
was heated under reflux for 16 h. The reaction mixture was cooled and treated with a
solution of Na2S2O3 (30.00 g) in water (100 mL). The organic phase was separated, the
aqueous fraction was extracted with dichloromethane (3 × 50 mL). The organic fractions
were combined, dried with anhydrous Na2SO4, filtered, and evaporated to dryness to give
9.75 g (93%) of crude product. Fraction crystallization from chloroform gave 2.30 g (22%
yield) of pure of 9,12-Br2-ortho-C2B10H10 as colorless crystals.

1H NMR (400 MHz, CDCl3), δ: 3.72 (2H, br.s, CHcarb), 3.5–1.5 (8H, br.m, BH). 11B NMR
(128 MHz, CDCl3), δ: 0.1 (2B, s, B(9,12)-Br), −7.5 (2B, d, B(8,10), J = 158 Hz), −14.4 (4B,
d, B(4,5,7,11), J = 171 Hz), −16.9 (2B, d, B(3,6), J = 183 Hz). 13C{1H} NMR (100 MHz,
CDCl3), δ: 46.8 (Ccarb). MS (DUIS), m/z: found: 301.0 (M–H)−; calculated for C2H9B10Br2
(M–H)− 301.0.

The single crystals of 9,12-Br2-ortho-C2B10H10 were grown by slow evaporation of
a solution of the title compound in chloroform at room temperature. Single crystal
X-ray diffraction experiment was carried out using SMART APEX2 CCD diffractome-
ter (λ(Mo-Kα) = 0.71073 Å, graphite monochromator, ω-scans) at 110 K. Collected data
were processed by the SAINT and SADABS programs incorporated into the APEX2 pro-
gram package [68]. The structure was solved by the direct methods and refined by the
full-matrix least-squares procedure against F2 in anisotropic approximation. The refinement
was carried out with the SHELXTL program [69]. The CCDC number 2132434 contains
the supplementary crystallographic data for this paper. These data can be obtained free of
charge via www.ccdc.cam.ac.uk/data_request/cif (accessed on 15 February 2022).

Crystallographic data for 9,12-Br2-ortho-C2B10H10: C2H10B10Br2 are orthorhombic,
space group Pna21: a = 12.8889(5) Å, b = 7.3377(3) Å, c = 11.6245(4) Å, V = 1099.39(7) Å3,
Z = 4, M = 302.02, dcryst = 1.825 g·cm−3. wR2 = 0.0622 calculated on F2

hkl for all 2784 independent

www.ccdc.cam.ac.uk/data_request/cif
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reflections with 2θ < 58.0◦, (GOF = 1.026, R = 0.02976 calculated on Fhkl for 2460 reflections
with I > 2σ(I)).

Supplementary Materials: 1H, 11B, 13C NMR and MS spectra of 9,12-Br2-ortho-C2B10H10.
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