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Abstract: Donor molecules of the D-π-A-π-D type structure are often used for applications in organic
photovoltaics. In this communication, bromination of 4,7-di(thiophen-2-yl)-[1,2,5]thiadiazolo[3,4-
d]pyridazine followed by Suzuki cross-coupling with carbazoleboronic acid gave 4,7-bis( 5-(9-hexyl-
9H-carbazol-3-yl)thiophen-2-yl)-[1,2,5]thiadiazolo[3,4-d]pyridazine. The structure of the newly syn-
thesized compounds was established by high resolution mass-spectrometry, 1H, 13C NMR, IR, and
UV spectroscopy and mass-spectrometry. A study of the luminescent properties of the dye showed
that it exhibits fluorescence in the near infrared region of the spectrum, which makes it a promising
compound for use as an active emitting layer in NIR OLED as well as for other possible applications
as an IR luminophore.
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1. Introduction

Organic π-conjugated molecules have attracted significant attention for the construc-
tion of various organic optoelectronic devices (OPVs), such as organic light emitting
diodes (OLEDs), organic field effect transistors (OFETs), organic solar cells (OSCs), and
others [1–3]. Of the numerous combinations of donor, acceptor, and π-spacer building
blocks, molecules with the D-π-A-π-D configuration are being intensively studied as donors
for OPVs due to their low-lying HOMOs and small band gap [4–6]. Most of these molecules
use benzo[c][1,2,5]thiadiazole as the electron-deficient building block [7–9]. D-π-A-π-D
type molecular donor dyes containing benzo[c][1,2,5]thiadiazole as an internal acceptor
(A), carbazole as a donor (D), and thiophene as a spacer (π) have been successfully em-
ployed for the creation of photovoltaic materials [10–12]. Recently, the synthesis of a new
strong electron-withdrawing building block [1,2,5]thiadiazolo[3,4-d]pyridazine [13] and
the selective conditions for its conversion to 4,7-hetaryl[1,2,5]thiadiazolo[3,4-d]pyridazines
in palladium-catalyzed cross-coupling reactions were published [14]. Herein, we report
the synthesis of 4,7-bis(5-(9-hexyl-9H-carbazol-3-yl)thiophen-2-yl)-[1,2,5]thiadiazolo[3,4-
d]pyridazine 1 by bromination of 4,7-di(thiophen-2-yl)-[1,2,5]thiadiazolo[3,4-d]pyridazine
2 followed by Suzuki cross-coupling with carbazole boronic acid.

2. Results and Discussion

The bromination of 4,7-di(thiophen-2-yl)-[1,2,5]thiadiazolo[3,4-d]pyridazine 2 with
several brominating agents was studied (Scheme 1, Table 1). A search for the optimal
conditions for the selective introduction of two bromine atoms was carried out by varying
the nature of the solvent, temperature, and the reaction time. It was shown that when using
N-bromosuccinimide (NBS) in CHCl3 at room temperature, the yield of the bis-bromo
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adduct 3 did not exceed 10% (Table 1, Entry 1). Raising the reaction temperature (60 ◦C) led
to the formation of polybrominated adducts while lowering the yield of dibromo derivative
3 (Table 1, Entry 2). The replacement of CHCl3 by DMF resulted in an insignificant increase
in the yield of compound 3 up to 25% (Table 1, Entry 3). The best yield 2 (45%) was
achieved when dioxane dibromide (2 equiv) in CHCl3 was used as a brominating agent
(Table 1, Entry 4). The structure of 4,7-bis(5-bromothiophen-2-yl)-[1,2,5]thiadiazolo[3,4-
d]pyridazine 3 was proven by high-resolution mass spectrometry, 1H, 13C NMR, IR, and
UV spectroscopy.
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Table 1. Reaction of 4,7-di(thiophen-2-yl)-[1,2,5]thiadiazolo[3,4-d]pyridazine 2 with brominating
agents.

Entry Brominating Agent Solvent Temperature, ◦C Time, h Yield of 3, %

1 NBS CHCl3 25 15 10
2 NBS CHCl3 60 6 8
3 NBS DMF 25 48 25
4 Br2·dioxane CHCl3 25 48 45

The synthesized compound 3 was investigated using the Suzuki cross-coupling re-
action with carbazole boronic acid 4 in order to obtain the target D-π-A-π-D dye. It was
shown that the complete conversion of dibromo derivative 3 occurred within 24 h in reflux-
ing toluene in the presence of a Pd(PPh3)4 catalyst with the formation of a high yield of
bis-coupling product 1 (Scheme 1).

The electronic absorption and fluorescence spectra of compound 1 were recorded. In
the UV spectra (see Figure S9 in Supplementary Materials), a wide spectral band (120 nm
FWHM) was observed in the green-red region of the spectrum as well as several less broad
bands in the UV range. The wavelength of the absorption maximum showed a blue-shift
from 585 nm for slightly polar CHCl3 to 567 nm for polar mediums such as THF and DMSO.
On the contrary, the wavelengths of the maxima in the UV part of the spectrum coincided
in the spectra for all solvents. These spectral features show the nature of π-π* transitions.
In the photoluminescence spectra, two spectral components were found to be well resolved
with maxima at wavelengths of 760–790 nm and at 840 nm, respectively (see Figure S10 in
Supplementary Materials). The wavelength of the maximum of the first band increased
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with increasing polarity, so this component can be attributed to the radiation of the state
with charge transfer. On the contrary, the emission maximum in the second band remained
unchanged in different solvents, which indicates that the nature of the long-wavelength
component is not related to charge transfer. We measured a photoluminescence quantum
yield of 10% in CHCl3 with the absolute method. This value is typical for the most organic
dyes with emissions in the NIR region of the spectrum [15]. Thus, it was shown that
D-π-A-π-D dye 1 based on 1,2,5-thiadiazolo[3,4-d]pyridazine core, containing carbazole as
a donor and thiophene as a π-spacer, exhibits fluorescence in the near infrared region of
the spectrum, which makes it a promising material for use as an active emitting layer in
NIR-OLEDs as well as for other possible applications as an IR luminophore.

The structure of 4,7-bis(5-(9-hexyl-9H-carbazol-3-yl)thiophen-2-yl)-[1,2,5]thiadiazolo
[3,4-d]pyridazine 1 was confirmed by elemental analysis, high-resolution mass spectrome-
try, 1H, 13C NMR, IR, and UV spectroscopy.

3. Materials and Methods

4,7-Di(thiophen-2-yl)-[1,2,5]thiadiazolo[3,4-d]pyridazine 2 [13] and (9-hexyl-9H-
carbazol-3-yl)boronic acid 4 [16] were prepared according to published methods. The
solvents and reagents were purchased from commercial sources and used as received.
The elemental analysis was performed on a 2400 Elemental Analyzer (Perkin ElmerInc.,
Waltham, MA, USA). The melting point was determined on a Kofler hot-stage apparatus
and was uncorrected. 1H and 13C NMR spectra were taken with a Bruker AM-300 machine
(Bruker AXS Handheld Inc., Kennewick, WA, USA) (at frequencies of 300 and 75 MHz) in
CDCl3 solution with TMS as the standard. J values are given in Hz. The IR spectrum was
measured with a Bruker “Alpha-T” instrument (Santa Barbara, CA, USA) in a KBr pellet.
The high-resolution MS spectrum was measured on a Bruker microTOF II instrument
(Bruker Daltonik Gmbh, Bremen, Germany) using electrospray ionization (ESI). Optical
absorption spectra were obtained at ambient temperature using a JASCO V-770 spectropho-
tometer in the range of 180–2500 nm. The experiments were carried out for the compound
in the solutions poured into 1-cm-pathlength quartz optical cells. The sample was dissolved
in different solvents, such as chloroform (CHCl3), tetrahydrofuran (THF), and dimethyl
sulfoxide (DMSO) (HPLC-grade super gradient, Panreac, Spain), with concentrations of
about 10−5 mol/L. Photoluminescence spectra were recorded at room temperature with a
Horiba-Jobin-Yvon Fluorolog-QM spectrofluorimeter equipped with a 75 W CW ArcTune
xenon lamp and a Hamamatsu R-FL-QM-R13456 photomultiplier that was sensitive in the
200–980 nm emission range. For the QY measurements, a K-covered integrating sphere
(GMP SA, Zürich, Switzerland) was mounted inside the spectrofluorimeter. The sample
was placed into the sphere in a quartz vial. All QY measurements were repeated at least
three times to achieve an experimental error below 15%.

Synthesis of 4,7-bis(5-bromothiophen-2-yl)-[1,2,5]thiadiazolo[3,4-d]pyridazine 3. (Sup-
plementary Materials).

Dioxane dibromide (163 mg, 0.66 mmol) was added to a solution of 4,7-di(thiophen-2-
yl)-[1,2,5]thiadiazolo[3,4-d]pyridazine 2 (100 mg, 0.33 mmol) in CHCl3 (4 mL). The resulting
mixture was degassed by argon in a sealed vial and then stirred at 25 ◦C for 48 h. On
completion, water (20 mL) was added to the reaction mixture and the organic layer was
extracted with CH2Cl2 (3 × 20 mL), dried with MgSO4, and then concentrated in vacuo.
The residue was purified by column chromatography on silica gel (Silica gel Merck 60,
eluent CH2Cl2—hexane, 1:1, v/v). Yield 68 mg (45%), red solid, Rf = 0.6 (CH2Cl2). Mp > 250
◦C. IR spectrum, ν, cm−1: 2961, 2925 and 2854 (all C-H), 1628 (C=N), 1533, 1434, 1262, 1091,
1025, 855, 799. 1H NMR (ppm): δ 8.44 (d, J = 4.3, 2H), 7.26 (d, J = 4.3, 2H). 13C NMR (ppm):
δ 146.6, 146.5, 138.4, 132.2, 130.8, 119.4. HRMS (ESI-TOF), m/z: calcd for C12H5

79Br2N4S3
[M + H]+, 458.8038, found, 458.8028.

Synthesis of 4,7-bis(5-(9-hexyl-9H-carbazol-3-yl)thiophen-2-yl)-[1,2,5]thiadiazolo[3,4-
d]pyridazine 1. (Supplementary Materials).
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In a 50 mL round-bottom flask, 4,7-bis(5-bromothiophen-2-yl)-[1,2,5]thiadiazolo[3,4-
d]pyridazine 3 (60 mg, 0.13 mmol) and carbazole boronic acid 4 (88 mg, 0.3 mmol) were
dissolved in toluene (15 mL), and a 2M solution of K2CO3 (2 mL) was added. The mixture
was degassed for 20 min with a stream of argon, and then Pd(PPh3)4 (28 mg, 20 mmol
%) was added. After refluxing for 24 h, the mixture was extracted with CH2Cl2; organic
solvent was removed under reduced pressure. The residue was purified by column chro-
matography on silica gel (Silica gel Merck 60, eluent CH2Cl2—hexane, 1:2, v/v). Yield 83
mg (80%), violet solid, Rf = 0.3 (CH2Cl2). Mp > 250 ◦C. IR spectrum, ν, cm–1: 2923 and 2852
(all C-H), 1622 (C=N), 1597, 1538, 1444, 1154, 798. 1H NMR (ppm): δ 8.16 (s, 2H), 8.06 (s,
2H), 7.91 (d, J = 7.4, 2H), 7.54 (d, J = 7.8, 2H), 7.31 (t, J = 7.5, 2H), 7.18–7.08 (m, 8H), 4.02
(t, J = 7.4, 4H), 1.71–1.68 (m, 4H), 1.25–1.19 (m, 12H), 0.77–0.75 (m, 6H). 13C NMR (ppm):
δ 151.3, 147.3, 146.9, 140.7, 140.3, 135.5, 133.7, 126.0, 124.7, 124.0, 123.1, 123.0, 122.6, 120.6,
119.2, 117.6, 109.0, 108.9, 43.1, 31.5, 29.7, 27.0, 22.6, 14.0. HRMS (ESI-TOF), m/z: calcd for
C48H45N6S3 [M + H]+, 801.2862, found, 801.2867. Anal. calcd. for C48H44N6S3 (800.2862):
C, 71.97; H, 5.54; N, 10.49. Found: C, 71.48; H, 5.45; N, 10.30%.

Supplementary Materials: The following are available online: copies of 1H, 13C NMR, IR, HMRS,
UV-Vis, and mass-spectra for compounds 3 and 1.
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