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Abstract: A series of small molecules containing polar aromatic substituents and alkynes have been
synthesized. One–pot preparations of polar aromatic molecules containing an alkynyl imine and
alkynyl amide are reported. A one-pot preparation of a catechol containing an alkynyl amine was
also attempted but in our hands it proved much better to synthesize this target molecule via a three
step synthesis which we also report here.
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1. Introduction

A series of small molecules containing polar aromatic substituents and propargyl
amines were synthesized so that they could potentially be incorporated into hydrogel
systems as an approach to developing a better hydrogen bonded and more rigid hydrogel
via a thiol-alkyne click reaction [1–6]. Propargyl amines are also an important class of
molecules in their own right, and are used as building blocks in heterocyclic chemistry
and pharmaceutical chemistry [7,8]. Three main structural aspects of the small molecules
to be synthesized were considered: (1) a polar functional group for enhanced hydrogen
bonding, (2) an alkyne functional group for attachment to thiol containing hydrogels via
the thiol-alkyne click reaction, and (3) ease of synthesis of the small molecule, i.e., where
possible, one-pot reactions from inexpensive, commercially available starting materials.

2. Results and Discussion

To satisfy the above criteria, we initially performed reactions between substituted
benzaldehydes (1) with propargyl amine (2) as shown in Scheme 1. Condensation of
propargyl amine (2) with the aldehydes (1) led to the imines (3–8) in good yield.
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Scheme 1. Preparation of propargyl imines from propargyl amine. 
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Scheme 1. Preparation of propargyl imines from propargyl amine.
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Likewise, the coupling of propargyl amine (2) with the benzoic acids (9) using EDC as
a coupling agent led to the amides (10, 11) also in good isolated yield (Scheme 2).
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Scheme 2. Preparation of propargyl amides from propargylamine.

Preparation of the amine (15) proved much more complicated. There is a reported
literature procedure for reductive amination of 3,4-dihydroxybenzaldehyde with propargyl
amine [9], but the reported yield is low (31%). The product is reported as a red solid, which
seems unlikely for a pure compound with just a benzene ring or alkyne as a chromophore
and it could be that this material also contains some charge transfer complexes produced
under these conditions. When we performed the literature reaction, we isolated mixtures
of amine 15 and what we think may possibly be the catecholboronate dimer. Rather than
spend a lot of time trying to rigorously identify this byproduct, we chose to investigate
an alternate, straightforward route for the preparation of compound 15 (Scheme 3. See
Supplementary Materials). Ultimately, to obtain pure amine (15), we found that we first
had to protect the catechol (1, R1 = R2 = OH) as previously reported acetonide (12) [10,11],
which was then subjected to reductive amination to produce (13) as shown in Scheme 3.
Acetonide (13) was deprotected to yield ammonium salt (14) which was then deprotonated
to yield the desired amine (15).
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Scheme 3. Optimized preparation of amine 15.

3. Experimental
General Methods

NMR spectra were obtained on a Bruker 400 MHz spectrometer and mass spectrom-
etry was performed on a Thermo LTQ Orbitrap XL. All reagents and materials were
obtained from the suppliers listed below. Fischer Scientific: sodium sulfate; Acros: 1,2-
Dichloroethane, 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide, propargylamine; Sigma
Aldrich: all aromatic aldehydes and acids; Cambridge Isotope Laboratories: Dimethyl
Sulfoxide-d6 + 0.05% v/v TMS. Compounds 3, 10 and 15 are also described in a patent [12].
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(E)-4-((Prop-2-yn-1-ylimino)methyl)benzene-1,2-diol (3). To a solution of 3,4-
dihydroxybenzlaldehyde (0.200 g, 1.45 mmol) in 5:1 DCE:THF (6 mL), propargylamine (2)
(111 µL, 1.74 mmol, 1.2 eq) was added dropwise. Fifteen minutes into the reaction, a grey
solid started to precipitate. The reaction mixture was stirred for 2 h at room temperature
under nitrogen. The resulting precipitate was filtered under vacuum, washed with 5:1
DCE:THF solution (3 × 5 mL), and dried under high vacuum. Compound 3 was isolated as
a tan solid (0.218 g, 1.24 mmol, 85%). 1H-NMR (400 MHz, DMSO-d6) δ: 9.14 (br s, 2H), 8.29
(s, 1H), 7.21 (s, 1H), 7.00 (d, J = 8.0 Hz, 1H), 6.78 (d, J = 8.0 Hz, 1H), 4.38 (dd, J = 2.5, 1.7 Hz,
2H), 3.37 (t, J = 2.5 Hz, 1H). 13C-NMR (101 MHz, DMSO-d6) δ: 162.17, 149.01, 146.02, 127.87,
121.82, 115.81, 114.20, 80.97, 77.36, 47.08. HRMS (EI) for C10H9NO2 176.0712 [M + H]+,
found 176.0713.

(E)-4-((prop-2-yn-1-ylimino)methyl)benzoic acid (4). To a solution of 4-carboxybenzadehyde
(0.200 g, 1.33 mmol) in 1,2-dichloroethane (10 mL), propargylamine (103 µL, 1.60 mmol,
1.2 eq) was added dropwise and the reaction was magnetically stirred under nitrogen
overnight at room temperature. The resulting precipitate was filtered, washed with DCE
(3 × 5 mL), and dried under high vacuum. Compound 4 was isolated as a light tan solid
(0.232 g, 1.23 mmol, 93%). 1H-NMR (400 Hz, DMSO-d6) δ: 8.62 (t, J = 1.9 Hz, 1H), 8.01 (m,
2H), 7.88 (m, 2H), 4.55 (m, 2H), 3.48 (t, J = 2.5 Hz, 1H). 13C-NMR (101 MHz, DMSO-d6) δ:
167.52, 161.87, 139.43, 133.93, 130.10, 128.50, 80.15, 78.19, 47.36. HRMS (EI) for C11H9NO2
188.0712 [M − H]+, found 188.0705.

(E)-2-fluoro-4-((prop-2-yn-1-ylimino)methyl)phenol (5). To a solution of 3-fluoro-4-
hydroxybenzadehyde (0.200 g, 1.43 mmol) in a 5:1 DCE:THF (6 mL), propargylamine
(110 µL, 1.46 mmol, 1.2 eq) was added dropwise and the reaction was magnetically stirred
under nitrogen overnight at room temperature. The reaction solvent was then dried with
sodium sulfate, filtered, and evaporated in vacuo and the obtained product was dried un-
der high vacuum. Compound 5 was isolated as a solid (0.228 g, 1.28 mmol, 90%). 1H-NMR
(400 MHz, DMSO-d6) δ: 10.39 (br s, 1H), 8.39 (s, 1H), 7.53 (d, J = 12.0, 1.9 Hz, 1H), 7.41 (d,
J = 8.4, 1.9 Hz, 1H), 7.02 (t, J= 8.6 Hz, 1H), 4.43 (s, 2H), 3.41 (t, J = 2.4 Hz, 1H).13C-NMR
(101 MHz, DMSO-d6) δ: 161.09, 151.6 (d, J = 243 Hz), 150.39, 148.31, 128.03, 125.93, 118.12,
115.23 (d, J = 19 Hz), 80.57, 77.73, 46.96. HRMS (EI) for C10H9FNO 178.0668 [M − H]+,
found 178.0670.

N-(4-((prop-2-yn-1-ylimino)methyl)phenyl)acetamide (6). To a solution of 4-acetamidobenzaldehyde
(0.200 g, 1.23 mmol) in 5:1 DCE:THF (6 mL), propargylamine (94 µL, 1.47 mmol, 1.2 eq)
was added dropwise and the reaction was magnetically stirred under nitrogen overnight at
room temperature. The reaction solvent was then dried with sodium sulfate, filtered then
evaporated in vacuo and the obtained product was dried under high vacuum. Compound
6 was isolated as a light yellow solid (0.215 g, 1.07 mmol, 87%). 1H-NMR (400 MHz,
DMSO-d6) δ: 10.16 (s, 1H), 8.45 (t, J = 1.8 Hz, 1H), 7.68 (m, 4H), 4.45 (br s, 2H), 3.41 (t,
J = 2.5 Hz, 1H), 2.08 (s, 3H). 13C-NMR (101 MHz, DMSO-d6) δ: 169.11, 161.80, 142.22, 130.81,
129.23, 119.14, 80.62, 77.78, 47.15, 24.58. HRMS (EI) for C12H13N2O 201.1028 [M − H]+,
found 201.1030.

Methyl (E)-4-((prop-2-yn-1-ylimino)methyl)benzoate (7). To a solution of methyl-4-formyl-
benzoate (0.200 g, 1.22 mmol) in 1,2-dichloroethane (6 mL), propargylamine (94 µL,
1.47 mmol, 1.2 eq) was added dropwise and the reaction was magnetically stirred un-
der nitrogen overnight at room temperature. The reaction solvent was then dried with
sodium sulfate, filtered, and evaporated in vacuo and the obtained product was dried
under high vacuum. Compound 7 was isolated as an off-white solid (0.219 g, 1.08 mmol,
89%). 1H-NMR (400 MHz, DMSO-d6) δ: 8.63 (s, 1H), 8.04 (d, J = 8.2 Hz, 2H), 7.92 (d,
J = 8.3 Hz, 2H), 4.56 (t, J = 2.2 Hz, 2H), 3.88 (s, 3H), 3.49 (t, J = 2.5 Hz, 1H). 13C-NMR
(101 MHz, DMSO-d6) δ: 166.26, 161.71, 140.04, 131.91, 130.01, 128.71, 80.08, 78.26, 52.78,
47.39. HRMS (EI) for C12H11NO2 202.0863 [M − H]+, found 202.0870.
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(E)-4-((prop-2-yn-1-ylimino)methyl)phenol (8). To a solution of 4-hydroxybenzadehyde (0.200 g,
1.64 mmol) in 1,2-dichloroethane (6 mL), propargylamine (126 µL, 1.97 mmol, 1.2 eq) was
added dropwise and the reaction was magnetically stirred under nitrogen overnight at
room temperature. The reaction solvent was then dried with sodium sulfate, filtered, and
evaporated in vacuo and the obtained product was dried under high vacuum. Compound
8 was isolated as a light red solid (0.232 g, 1.45 mmol, 88%). 1H-NMR (400 MHz, DMSO-d6)
δ: 9.85 (s, 1H), 8.39 (t, J = 1.7 Hz, 1H), 7.60 (d, J = 8.0 Hz, 2H), 6.83 (d, J = 8.0 Hz, 2H), 4.40 (t,
J = 2.5, 1.7 Hz, 2H), 3.38 (t, J = 2.5 Hz, 1H).13C-NMR (126 MHz, DMSO) δ: 161.90, 160.52,
130.27, 127.48, 115.96, 80.87, 77.50, 47.10. HRMS (EI) for C10H9NO 160.0672 [M − H]+,
found 159.9674.

3,4-Dihydroxy-N-(prop-2-yn-1-yl)benzamide (10). To a stirred solution of 3,4-dihydroxybenzoic
acid (8, R1 = R2 = OH) (0.200 g, 1.30 mmol, 1.0 eq) in acetonitrile (10 mL), propargylamine
(2) (165 µL, 2.55 mmol, 2.0 eq) was added dropwise, resulting in a white precipitate. Sub-
sequently, 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (0.240 g, 1.55 mmol, 1.2 eq)
was added slowly and the reaction mixture was refluxed overnight with magnetic stirring.
Following the removal of the reaction solvent in vacuo, the product was extracted with
ethyl acetate (3 × 20 mL) from water (10 mL). The combined organic layers were dried
over anhydrous Na2SO4 and the solvent was removed in vacuo. The crude product was
purified by column chromatography on silica gel (3:4 EtOAc/Hex) to obtain compound
10 as a tan-colored solid (0.209 g, 1.09 mmol, 69%): 1H-NMR (400 MHz, DMSO-d6) δ: 9.31
(br s, 2H), 8.56 (s, 1H), 7.29 (s, 1H), 7.20 (d, J = 8.3 Hz, 1H), 6.76 (d, J = 8.3 Hz, 1H), 3.99
(m, 2H), 3.06 (t, J = 2.5 Hz, 1H). 13C-NMR (400 MHz, DMSO-d6) δ: 166.25, 149.02, 145.32,
125.52, 119.51, 115.60, 115.33, 82.20, 72.94, 28.82. HRMS (ESI-TOF) for C10H9NO3 192.0661
[M + H]+, found 192.0663.

4-hydroxy-N-(prop-2-yn-1-yl)benzamide (11). This compound has been prepared previously
by an alternate procedure [13]. To a stirred solution of 4-hydroxybenzoic acid (8, R1 = OH,
R2 = H) (0.200 g, 1.45 mmol, 1.0 eq) in acetonitrile (10 mL), propargylamine (111 µL,
1.74 mmol, 1.2 eq) was added dropwise, resulting in a white precipitate. Subsequently,
1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (0.270 g, 1.74 mmol, 1.2 eq) was added
slowly and the reaction mixture was refluxed overnight with magnetic stirring. Following
the removal of the reaction solvent in vacuo, the product was extracted with ethyl acetate
(3 × 20 mL) from water (10 mL). The combined organic layers were dried over anhydrous
Na2SO4 and the solvent was removed in vacuo. The crude product was purified by column
chromatography on silica gel (1:1 EtOAc/Hex) to obtain compound 11 as a tan-colored
solid (0.185 g, 1.06 mmol, 73%) 1H-NMR (400 MHz, DMSO-d6) δ: 10.00 (s, 1H), 8.64 (t,
J = 5.5 Hz, 1H), 7.72 (d, J = 8.0 Hz, 2H), 6.80 (d, J = 8.0, 2H), 4.01 (dd, J = 5.6, 2.5 Hz, 2H),
3.08 (t, J = 2.5 Hz, 1H). 13C-NMR (101 MHz, DMSO-d6) δ: 166.05, 160.75, 129.67, 124.96,
115.29, 82.13, 73.05, 28.80.

2,2-Dimethylbenzo[d][1,3]dioxole-5-carbaldehyde (12). A mixture of 3,4-dihydroxybenzaldehyde
(1) (0.276 g, 2 mmol) and P2O5 (0.141 g, 1 mmol) was stirred in toluene (dry) (100 mL).
Acetone (0.74 mL, 10 mmol) was added and the mixture stirred at 75 ◦C for 3 h. Four
portions of P2O5 (4 × 0.100 g) were added every 30 min during heating. The reaction was
quenched with 25% NaOH (aq) (25 mL) and the toluene solvent removed under vacuum
after separation. The crude solid obtained was purified by column chromatography
(DCM:Hexane, 2:1) to obtain a light brown solid (12) (0.300 g, 1.6 mmol, 80%) identical by
NMR comparison to previously reported material [10,11]: 1H-NMR (400 MHz, DMSO-d6)
δ 9.79 (s, 1H), 7.51 (dd, J = 8.0, 1.6 Hz, 1H), 7.26 (d, J = 1.6 Hz, 1H), 7.06 (d, J = 8.0 Hz, 1H),
1.69 (s, 6H).

N-((2,2-Dimethylbenzo[d][1,3]dioxol-5-yl)methyl)prop-2-yn-1-amine (13). Compound 12 (0.250 g,
1.4 mmol) was dissolved in methanol (dry) (25 mL) and propargylamine (3) (0.13 mL,
2.0 mmol) was added dropwise. The solution was allowed to stir for 1 h and sodium
borohydride (3 × 0.100 g, 8.0 mmol) was added in portions over 30 min. The reaction
was stirred overnight under nitrogen atmosphere and quenched with brine (15 mL). The
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aqueous was extracted using ethyl acetate (25 mL) and solvent dried (Na2SO4), and
evaporated in vacuo to obtain a viscous liquid (13) (0.197 g, 0.91 mmol, 65%): 1H-NMR
(400 MHz, DMSO-d6) δ 6.78 (dd, J = 1.4, 0.7 Hz, 1H), 6.72 (dd, J = 2.9, 1.0 Hz, 2H), 3.62
(s, 2H), 3.24 (d, J = 2.4 Hz, 2H), 3.06 (t, J = 2.4 Hz, 1H), 1.62 (s, 6H). 13C-NMR (101 MHz,
DMSO-d6) δ: δ 147.31, 146.09, 133.86, 121.01, 118.01, 108.70, 108.02, 83.33, 74.13, 51.57, 36.90,
26.00. HRMS (ESI-TOF) for C13H16NO2 218.1181 [M + H]+, found 218.1171.

N-(3,4-Dihydroxybenzyl)prop-2-yn-1-ammonium chloride (14). Compound 13 (0.180 g, 0.82 mmol)
was dissolved in anhydrous methanol (20 mL) and purged with dry HCl for 5 min. The
solution was refluxed overnight. The solvents were evaporated and the solid triturated
with diethyl ether (3 × 5 mL) to obtain blue-black solid (14) (0.165 g, 0.77 mmol, 94%):
1H-NMR (400 MHz, DMSO-d6) δ 9.67 (s, 2H), 7.08–6.66 (m, 3H), 3.96 (brs, 2H), 3.78 (brs,
2H), 3.73 (brs, 1H), 3.17 (brs, 1H). 13C-NMR (101 MHz, DMSO-d6) δ: 146.68, 145.76, 122.25,
121.87, 118.11, 116.12, 80.06, 75.46, 49.32, 35.20. HRMS (ESI-TOF) for C10H12NO2 178.0868
[M + H]+, found 178.0862.

4-((Prop-2-yn-1-ylamino)methyl)benzene-1,2-diol (15). Compound 14 (0.150 g, 0.7 mmol) was
dissolved in methanol (anhydrous) (20 mL) and sodium methoxide (0.040 g, 0.74 mmol)
was added. The mixture was stirred for 2 h at room temperature and quenched with DI
water 1 mL). The mixture was then filtered through celite and the solvent was removed in
vacuo to yield a brown solid (15) (0.105 g, 0.593 mmol, 85%): 1H-NMR (400 MHz, DMSO-d6)
δ 6.71 (d, J = 2.1 Hz, 1H), 6.65 (d, J = 7.9 Hz, 1H), 6.52 (dd, J = 8.0, 2.1 Hz, 1H), 3.54 (s,
2H), 3.22 (d, J = 2.5 Hz, 2H), 3.05 (t, J = 2.4 Hz, 1H). 13C-NMR (101 MHz, DMSO-d6) δ:
145.03, 144.06, 130.74, 118.84, 115.78, 115.32, 82.97, 73.55, 50.93, 36.35. HRMS (ESI-TOF) for
C10H12NO2 178.0868 [M + H]+, found 178.0868.

4. Conclusions

We successfully prepared a number of new polar aromatic substituted terminal alkynes
from propargyl amine and we hope scientists working with thiolated hydrogels will incor-
porate them into their hydrogels and that they will also be used in pharmaceutical chemistry,
with the anticipation that those modified molecules will have interesting new properties.
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