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Abstract: We describe the synthesis of planar-chiral diferrocene compounds 4, 7 and 12, intended
as key precursors for a new family of asymmetric catalyst ligands with less complex structures
than their popular equivalents. In contrast to conventional 1,2-disubstituted ferrocenes containing
center-chiral and planar-chiral elements, these compounds are purely planar-chiral due to the absence
of α-substiuted ethyl groups. The title compounds 4, 7 and 12 were obtained from known precursors
in 87%, 59% and 60% yields, respectively.
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1. Introduction

Disubstituted ferrocenyl compounds have been used as powerful asymmetry-inducing units in
organic synthesis; if one cyclopentadienyl ring is substituted with two different functional groups,
the resulting compound displays planar chirality [1,2]. Ferrocene-based ligands have been used
successfully in asymmetric catalysis [3–7]. Their range of applications is impressive, and beyond
academic research, ligands like Xyliphos (Scheme 1) have been employed in industrial-scale asymmetric
hydrogenations [8].
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and pincer ligands recently developed by Zirakzadeh et al. (v–viii).

The majority of their syntheses are based on 1-N,N-dimethylamino-ethylferrocene, well known as
Ugi’s amine. Its popularity is based on simple large-scale preparation of both enantiomerically pure forms
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and perfect stereocontrol of ortho-metallation/substitution, enabling the diastereoselective synthesis of
planar-chiral disubstituted ferrocenyl compounds [9]. In a subsequent reaction, the dimethylamino group
at the α-carbon of the ethyl side chain can be displaced by other nucleophiles stereo-retentively [10].
This is shown in Scheme 2.

Molbank 2020, 2020, x FOR PEER REVIEW 2 of 9 

pure forms and perfect stereocontrol of ortho-metallation/substitution, enabling the 
diastereoselective synthesis of planar-chiral disubstituted ferrocenyl compounds [9]. In a subsequent 
reaction, the dimethylamino group at the α-carbon of the ethyl side chain can be displaced by other 
nucleophiles stereo-retentively [10]. This is shown in Scheme 2. 

 
Scheme 2. Stereochemical properties of Ugi’s amine: diastereoselective lithiation followed by reaction 
with electrophile E [9] and stereo-retentive SN1 reaction with nucleophile Nu at the α-carbon of the 
alkyl sidechain [10]. 

In many cases, the asymmetric induction may be even improved further by combining two of 
these asymmetric ferrocene units in one molecule. For instance, the P,P,P-diferrocene ligand Pigiphos 
[11] (Scheme 1) has been employed in asymmetric acetalization [12], hydroamination [13–16], 
hydrophosphination [17], carbonyl reduction [18,19], 1,3-dipolar cycloaddition [20], olefin 
cyclopropanation [21] and Nazarov cyclization [22]. Stanphos (Scheme 1) is the cyclized version of 
Pigiphos [23] and has been used as a P,P-ligand in asymmetric hydroalkoxylations [24] and the α-
hydroxylation of 1,3-ketoesters [25]. Zirakzadeh et al. developed ferrocene-based PNP-pincer ligands 
for Fe(II)-catalyzed asymmetric hydrogenation [26]. Their diferrocene compounds are linked by a 
secondary amine, imine [27] or two secondary imines [28] (Scheme 1). 

We attempted to access similar compounds containing oxygen, nitrogen or sulfur at the ethyl 
side chain. However, we noticed that when replacing phosphorous (R2PPh) with sulfur (R2S) or 
nitrogen (R2NPh), eliminations yielding vinylferrocenes as decay products become a serious side 
reaction [29], thereby limiting the practical value of such compounds. In this article, we present two 
possible synthetic workarounds: 

Designing diferrocenyl compounds with methyl instead of ethyl chains, effectively removing 
the possibility of elimination. As we cannot use the convenient diastereoselective ortho-lithiation nor 
the stereo-retentive SN1 reaction of Ugi’s amine, Xiao et al. have developed a diastereoselective ortho-
lithiation protocol of the chiral methylferrocene equivalent with a homochiral O-methylephedrine 
auxiliary attached to the amino group [30]. This approach will yield compounds 4 and 7. 

Instead of the α-substituted ethyl group, we changed to a β-substituted one in order to disfavor 
elimination processes. To date, there are barely any examples of said type of ferrocene compounds 
in the literature. With such structures, we get rid of stereocenters at the ethylene side chains, 
simplifying the stereochemistry to pure planar chirality. This approach would yield compounds like 
12. 

2. Results 

2.1. N-bridged Diferrocenyl Compound 4 

Our synthetic route towards precursors for compounds resembling Pigiphos [11] is illustrated 
in Scheme 3. First, the ferrocenyl-O-methylephedrine derivative 1 was diastereoselectively lithiated 
and converted to bromide 2 using a modified procedure with C2Br2Cl4 instead of C2Br2F4 [30]. For 
removal of the auxiliary ammonium iodide, salt 3 was prepared under standard conditions [30]. 

Scheme 2. Stereochemical properties of Ugi’s amine: diastereoselective lithiation followed by reaction
with electrophile E [9] and stereo-retentive SN1 reaction with nucleophile Nu at the α-carbon of the
alkyl sidechain [10].

In many cases, the asymmetric induction may be even improved further by combining two
of these asymmetric ferrocene units in one molecule. For instance, the P,P,P-diferrocene ligand
Pigiphos [11] (Scheme 1) has been employed in asymmetric acetalization [12], hydroamination [13–16],
hydrophosphination [17], carbonyl reduction [18,19], 1,3-dipolar cycloaddition [20], olefin
cyclopropanation [21] and Nazarov cyclization [22]. Stanphos (Scheme 1) is the cyclized version
of Pigiphos [23] and has been used as a P,P-ligand in asymmetric hydroalkoxylations [24] and the
α-hydroxylation of 1,3-ketoesters [25]. Zirakzadeh et al. developed ferrocene-based PNP-pincer
ligands for Fe(II)-catalyzed asymmetric hydrogenation [26]. Their diferrocene compounds are linked
by a secondary amine, imine [27] or two secondary imines [28] (Scheme 1).

We attempted to access similar compounds containing oxygen, nitrogen or sulfur at the ethyl
side chain. However, we noticed that when replacing phosphorous (R2PPh) with sulfur (R2S) or
nitrogen (R2NPh), eliminations yielding vinylferrocenes as decay products become a serious side
reaction [29], thereby limiting the practical value of such compounds. In this article, we present two
possible synthetic workarounds:

Designing diferrocenyl compounds with methyl instead of ethyl chains, effectively removing
the possibility of elimination. As we cannot use the convenient diastereoselective ortho-lithiation
nor the stereo-retentive SN1 reaction of Ugi’s amine, Xiao et al. have developed a diastereoselective
ortho-lithiation protocol of the chiral methylferrocene equivalent with a homochiral O-methylephedrine
auxiliary attached to the amino group [30]. This approach will yield compounds 4 and 7.

Instead of the α-substituted ethyl group, we changed to a β-substituted one in order to disfavor
elimination processes. To date, there are barely any examples of said type of ferrocene compounds in
the literature. With such structures, we get rid of stereocenters at the ethylene side chains, simplifying
the stereochemistry to pure planar chirality. This approach would yield compounds like 12.

2. Results

2.1. N-bridged Diferrocenyl Compound 4

Our synthetic route towards precursors for compounds resembling Pigiphos [11] is illustrated in
Scheme 3. First, the ferrocenyl-O-methylephedrine derivative 1 was diastereoselectively lithiated and
converted to bromide 2 using a modified procedure with C2Br2Cl4 instead of C2Br2F4 [30]. For removal
of the auxiliary ammonium iodide, salt 3 was prepared under standard conditions [30].
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Scheme 3. Synthesis of diferrocenes 4 and 7.

The activated leaving group enabled the coupling of two homochiral ferrocene units of
configuration Rp with bidentate nucleophiles to yield purely planar-chiral diferrocenyl compounds.
We used 0.5 equiv of benzyl amine as a nucleophile to obtain diferrocene amine 4 from 3 following
a modified procedure [30], but were not able to obtain the desired compound, instead diferrocenyl
amine 4 was obtained in 65% yield in DMF under microwave irradiation (supporting information
document, Figures S1–S3).

Encouraged by the outcome, we optimized the yield by performing this transformation in two
steps. First, ammonium salt 3 was treated with a large excess of benzyl amine, yielding 90% of
monoferrocenyl amine 5 (supporting information document, Figures S4–S7). Subsequently, 5 was
coupled with one equiv. of 3 to give 4 in 87% yield over two steps.

2.2. P-bridged Diferrocenyl Compound 7

Similar to diferrocene 8, as published by Hayashi et al. [24,31,32], we planned to couple two
auxiliary-substituted ferrocene molecules 1 via Cl2PPh to obtain a phosphorous-linked diferrocene.
However, our preliminary experiments failed, possibly due to the steric repulsion of the large ephedrine
auxiliary. Instead, we present an efficient workaround to obtain a similar diferrocene precursor.

To overcome the problem of steric hindrance in 1 we replaced the bulky auxiliary prior to coupling
with a smaller substituent. The sterically less demanding and purely planar-chiral amine 6 was
obtained from ammonium salt 3 and dimethylamine in an autoclave according to reference [30].
We then followed an optimized ortho-lithiation protocol [30] to couple 6 with 0.5 equiv of Cl2PPh and
obtained a compound identified as the desired homochiral phosphorous-linked diferrocene (Rp,Rp)-7
in 59% yield (supporting information document, Figures S8–S11) and some dehalogenated product
of 6.

Compound 7 strongly resembles Hayashi’s diamine diferrocene compound 8 [24,31,32], but the
stereochemical complexity is reduced from configuration (S,S,Rp,Rp) to (Rp,Rp), since it is entirely
planar-chiral. We thus propose compound 7 as a new key precursor for less complicated equivalents of
ferrocene-based ligands, such as Gipiphos [33] and Stanphos [23–25], with the additional advantage of
hindered elimination at the alkyl chains.
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2.3. 1,2-Substituted Diferrocenyl Phosphinsulfide 12

In order to synthesize further purely planar-chiral diferrocenyl phosphines (Scheme 4), divinyl
substituted diferrocenylphosphine 9 was chosen as a key intermediate, easily accessible from diamine
(R,R,Sp,Sp)-8 [34] (Scheme 4). To introduce substituents at terminal carbon atoms, hydroboration of the
double bond is well established, leading predominantly to anti-Markownikow products.
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Since we noticed in a pre-experiment that treatment of 9 with BH3*THF followed by
oxidative work-up yielded an inseparable mixture of P-borane complexes with primary and
secondary OH groups, we changed to 9-borabicyclo(3.3.1)nonane (9-BBN) to improve the
regioselectivity. Treatment with H2O2/OH− afforded the desired diol isolated as phosphine
oxide(Sp,Sp)-10 (supporting information document, Figures S12–S15), but in moderate yield (25%)
and difficult to purify chromatographically due to its high polarity. In contrast, with P-sulfide
11 (supportung information document, Figures S16 and S17) the hydroboration step proceeded more
efficiently giving diol (Sp,Sp)-12 in 60% yield (supporting information document, Figures S18–S21).
Both new 1,2-substituted diferrocenyl phosphines contained some residual eluent moisture which
could not be removed in high vacuum. Drying by heating was not possible since we observed
product decomposition.

We have thus produced new homochiral compounds 10 and 12 with the unusual 1,2-substitution
pattern rarely published for ethylferrocenes. In contrast to Hayashi’s diferrocenyl precursor 8 with
(R,R,Sp,Sp), these only include two planar chiral moieties with (Sp,Sp) configuration, thereby reducing
the stereochemical complexity.

3. Materials and Methods

3.1. General

Routine NMR spectra were recorded on a 400 MHz Bruker AVIII 400 spectrometer operating at
400.27 MHz (1H), 100.66 MHz (13C) and 162.04 MHz (31P) with an autosampler. 1H-NMR spectra
and 13C{1H}-NMR spectra used for substance characterization were recorded on a Bruker AVIII
700 spectrometer (Bruker Biospin, Billerica, MA, USA) at 700.40 MHz (1H) and 176.13 MHz (13C).
13C{1H}-NMR spectra were recorded in J-modulated mode. NMR chemical shifts are referenced to
non-deuterated CHCl3 residual shifts: at 7.26 ppm for 1H-NMR, at 77.00 ppm for CDCl3 for 13C-NMR
and at 0.00 ppm for 85% H3PO4 for 31P-NMR. HR-MS were recorded by a Bruker Maxis ESI oa-RTOF
mass spectrometer equipped with a quadrupole analyzer ion guide. Melting points were measured on
a Reichelt Thermovar Kofler apparatus, uncorrected.
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Absolute THF was dried by distillation from sodium benzophenonketyl under Ar. Et2O and
n-pentane were dried by distillation over LiAlH4. Reaction progress was monitored by TLC, SiO2 sheets
with F254 fluorescent indicator. Heating by microwave irradiation was performed in a START-1500 oven
(EMLS microwave laboratory systems, Leutkirch, Germany). Preparative column chromatography was
carried out using a Biotage Isolera One automated flash chromatography instrument with self-packed
columns (Macherey-Nagel silica gel 60M, particle size 40–63 µm). All the other chemicals were
analytical grade and used without further purification.

Published procedures were followed to obtain 3 [30], 6 [30], 8 [24] and 9 [34].

3.2. Synthesis

3.2.1. N-(2Rp-Bromoferrocenylmethyl)-N-methyl-1-methoxy-1-phenylprop-2-ylamine 2

Ferrocenyl compound 1 (synthesized according to reference [30]) (3.396 g, 9.00 mmol) was
dissolved in 90 mL of dry n-pentane under Ar. The solution was cooled to −78 ◦C. To the suspension
6.4 mL of tert-BuLi (1.7 M, 10.9 mmol, 1.2 eq) was added dropwise and the reaction mixture was stirred
for 1.5 h at −78 ◦C, then for 2.5 h at −30 ◦C. The reaction mixture was cooled to −78 ◦C, and 4.40 g
of 1,2-dibromotetrachloroethane (13.50 mmol, 1.5 eq) dissolved in 13.5 mL of dry THF was added
dropwise. The mixture was stirred at −78 ◦C for 20 min and allowed to warm up to RT overnight.
To the reaction mixture, 90 mL of saturated aqueous NaHCO3 solution was added and the organic
layer was separated. The aqueous layer was repeatedly extracted with Et2O (2 × 100 mL, 1 × 50 mL).
The combined organic fractions were washed with water and brine and dried over MgSO4. The solvent
was removed under reduced pressure and the residue was purified by column chromatography
(SiO2; 17% (Et2O + 1.5% Et3N) in heptane) yielding 3.513 g of 2 (86%) as a dark orange oil. NMR
spectra are in agreement with reference [30].

3.2.2. N,N-Bis(2Rp-bromoferrocenylmethyl)benzylamine 4

Route 1: Ammonium iodide salt 3 [30] (100 mg, 0.17 mmol) was suspended in 8 mL of benzene
and 2 mL of DMF in a glass tube. To the suspension, 9 µL BnNH2 (0.08 mmol, 0.5 eq) was added and
the suspension was stirred under microwave irradiation at 110 ◦C for 10 min. The reaction mixture
was cooled to RT, volatiles were removed under reduced pressure and 25 mL of Et2O was added.
The organic mixture was washed with water (2 × 30 mL) and brine (1 × 30 mL), and dried over MgSO4.
The solvent was removed under reduced pressure and the crude product was purified via column
chromatography (SiO2; 5–15% (Et2O + 1.5% Et3N) in heptane) yielding 35.7 mg of amine 4 (65%) as an
orange glassy solid.

Route 2: Amine 5 (250 mg, 0.65 mmol) was dissolved in 8 mL of benzene and 2 mL of DMF in
a glass tube. To the suspension, 389 mg of ammonium iodide salt 3 (0.65 mmol, 1.00 eq) was added
and the mixture was stirred under microwave irradiation at 110 ◦C for 15 min. The reaction mixture
was cooled to RT, volatiles were removed under reduced pressure and 35 mL of Et2O was added.
The organic layer was washed with water (2 × 40 mL) and brine (1 × 40 mL), and dried over MgSO4.
The solvent was removed under reduced pressure and the crude product was purified by column
chromatography (SiO2, 5–15% (Et2O + 1.5% Et3N) in heptane) yielding 417 mg of amine 4 (97%).

1H-NMR (700 MHz, CDCl3) δ = 7.35 (m, 2H); 7.30 (m, 2H); 7.22 (m, 1H); 4.40 (m, 2H); 4.22 (m, 2H);
4.06 (m, 2H); 4.04 (s, 10H); 3.60 (d, J = 14.2 Hz, 1H); 3.57 (s, 4H); 3.47 (d, J = 14.1 Hz, 1H) ppm. 13C-NMR
(700 MHz, CDCl3) δ = 140.16 (Cq); 128.64 (CH); 128.06 (CH); 126.68 (CH); 83.66 (Cq); 80.45 (Cq);
71.12 (CH); 69.95 (CH); 68.35 (CH); 66.03 (CH); 56.71 (CH2); 51.74 (CH2) ppm. HR-MS: m/z calculated
for C29H27Br2Fe2N; [M]+ 658.9209, found: 658.9226.

3.2.3. N-(2Rp-Bromoferrocenylmethyl)benzylamine 5

Ammonium iodide salt 3 (100 mg, 0.17 mmol) was suspended in 8 mL of benzene and 1 mL
of DMF in a glass tube, and 182 µL of BnNH2 (1.67 mmol, 10 eq) was added. The suspension was
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stirred under microwave irradiation at 110 ◦C for 15 min. The reaction mixture was cooled to RT,
volatiles were removed under reduced pressure and 25 mL of Et2O was added. The organic layer
was washed with water (2 × 30 mL) and brine (1 × 30 mL), and dried over MgSO4. The solvent was
removed under reduced pressure and the crude product was purified by column chromatography (SiO2;
10–30% (Et2O + 1.5% Et3N) in heptane) yielding 58 mg of amine 5 (90%) as a yellow oil. 1H-NMR
(700 MHz, CDCl3) δ = 7.36–7.32 (m, 4H); 7.28–7.24 (m, 1H); 4.42 (m, 1H); 4.21 (m, 1H); 4.14 (s, 5H);
4.09 (pt, J = 2.5 Hz, 1H); 3.84 (d, J = 13.3 Hz, 1H); 3.79 (d, J = 13.4 Hz, 1H); 3.78 (d, J = 13.3 Hz, 1H);
3.55 (d, J = 13.4 Hz, 1H) ppm. 13C-NMR (700 MHz, CDCl3) δ = 140.24 (Cq); 128.38 (CH); 128.09 (CH);
126.91 (CH); 84.90 (Cq); 79.80 (Cq); 70.98 (Cq); 70.11 (CH); 67.32 (CH); 65.98 (CH); 53.06 (CH2);
46.94 (CH2) ppm. HR-MS: m/z calculated for C18H18BrFeN; [M + H]+ 384.0050, found: 384.0042.

3.2.4. 1,1”-(Phenylphosphinidene)bis[(2Rp)-2-[(dimethylamino)-methyl]]ferrocene 7

Amine 6 [30] (1.042 g, 3.236 mmol) was dissolved in 3 mL of dry Et2O under Ar.
The yellow-to-orange solution was cooled to −40 ◦C and 2 mL of n-BuLi (1.6 M; 3.2 mmol, 1.0 eq)
was added dropwise to the reaction mixture. The solution was stirred at this temperature for
2 h, and then cooled to −78 ◦C. To the solution, 220 µL of Cl2PPh (1.62 mmol, 0.50 eq) was
added. The suspension was stirred for another 20 min at this temperature and allowed to warm
to RT overnight. The reaction mixture was quenched with 5 mL of aqueous saturated NaHCO3

solution. Residues were dissolved by adding some DCM and the aqueous layer was extracted
with DCM (2 × 10 mL). The combined organic fractions were washed with water (3 × 35 mL)
and brine (3 × 35 mL), and dried over MgSO4. The solvent was removed under reduced pressure
and the residue was purified by column chromatography (SiO2, 65–100% (Et2O + 1.5% Et3N) in
heptane) yielding 561 mg diaminophosphine 7 (59%) as a brown oil. 1H-NMR (600 MHz, CDCl3)
δ = 7.65–7.61 (m, 2H); 7.31–7.26 (m, 3H); 4.47 (m, 1H); 4.41 (m, 1H); 4.33 (pt, J = 2.4 Hz, 1H); 4.29
(m, 1H); 4.19 (pt, J = 2.4 Hz, 1H); 4.12 (m, 1H); 4.06 (s, 5H); 3.97 (dd, J = 13.2, 2.2 Hz, 1H); 3.67 (s, 5H);
3.47 (d, J = 13.2 Hz, 1H); 3.30 (d, J = 13.3 Hz, 1H); 3.19 (dd, J = 13.2, 1.7 Hz, 1H); 2.36 (s, 6H); 1.76
(s, 6H) ppm. 13C-NMR (600 MHz, CDCl3) δ = 140.57 (d, JCP = 6.5 Hz, Cq); 134.38 (d, JCP = 23.0 Hz,
CH); 128.48 (d, JCP = 0.9 Hz, CH); 127.51 (d, JCP = 8.6 Hz, CH); 91.18 (d, JCP = 31.5 Hz, Cq); 88.46
(d, JCP = 23.0 Hz, Cq); 80.17 (d, JCP = 5.9 Hz, Cq); 75.92 (d, JCP = 12.9 Hz, Cq); 72.50 (d, JCP = 5.4 Hz,
CH); 71.71 (d, JCP = 5.3 Hz, CH); 71.64 (d, JCP = 3.4 Hz, CH); 70.31 (d, JCP = 3.5 Hz, CH); 69.92 (CH);
69.60 (CH); 69.41 (CH); 67.99 (CH); 58.63 (d, JCP = 11.2 Hz, CH2); 57.73 (d, JCP = 8.4 Hz, CH2); 46.02
(CH3); 44.74 (CH3) ppm. 31P-NMR δ = −44.15 (s) ppm. HRMS: m/z calculated for C32H37Fe2N2P;
[M + H]+ 593.1471, found: 593.1457.

3.2.5. 1,1”-(Phenylphosphinideneoxide)di[(2Sp)-2-(-1-hydroxy-2-ethyl)]ferrocene 10

1,1”-(Phenylphosphinideneoxide)di[(2Sp)-2-(-1-hydroxy-2-ethyl)]ferrocene 10 [35]: Divinylphosphine
9 (56 mg, 0.11 mmol) was dissolved in 1 mL of absolute THF under Ar. The orange solution was cooled in
an ice bath and 4 mL of 9-BBN solution (0.5 M in THF, 2 mmol, 19 eq) was added dropwise. The solution
was stirred under Ar at RT for 24 h; then 0.7 mL of aqueous 3 M KOAc and 6 mL of aqueous H2O2

(30%, 59 mmol, 554 eq) were added in that order, and the solution was stirred for another 24 h. The solution
was extracted with DCM (2 × 5 mL). The combined organic fractions were washed with water (15 mL) and
brine (15 mL), and dried over MgSO4. The solvent was removed under reduced pressure and the product
was purified by column chromatography (Al2O3, 50–100% EtOAc in heptane, 0–20% MeOH in EtOAc)
yielding 16 mg of dihydroxyphosphineoxide 10 (25%). 1H-NMR (600 MHz, CDCl3) δ = 7.77-7.73 (m, 2H);
7.53-7.44 (m, 3H); 4.55 (m, 1H); 4.45 (m, 1H); 4.36 (m, 1H); 4.31 (q, J = 2.3 Hz, 1H); 4.30–4.26 (m, 2H); 4.28
(s, 5H); 4.11 (q, J = 7.2 Hz, 1H); 4.09 (m, 1H); 4.00 (m, 1H); 3.94 (s, 5H); 3.39–3.24 (m, 3H); 3.05–2.92 (m, 2H);
2.57–2.43 (m, 2H) ppm. 13C-NMR δ = 135.89 (d, JCP = 108.9 Hz, Cq); 131.28 (d, JCP = 2.7 Hz, CH); 130.82
(d, JCP = 9.6 Hz, CH); 128.05 (d, JCP = 12.0 Hz, CH); 91.69 (d, JCP = 10.8 Hz, Cq); 88.18 (d, JCP = 11.8 Hz,
Cq); 76.09 (d, JCP = 115.6 Hz, Cq); 73.29 (d, JCP = 15.0 Hz, CH); 72.36 (d, JCP = 10.1 Hz, CH); 72.09 (d, JCP
= 10.2 Hz, CH); 71.25 (d, JCP = 118.1 Hz, Cq); 71.24 (d, JCP = 15.7 Hz, CH); 70.20 (CH); 70.11 (CH); 69.91
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(d, JCP = 11.0 Hz, CH); 68.98 (d, JCP = 11.2 Hz, CH); 64.01 (CH2); 62.54 (CH2); 31.73 (CH2); 31.10 (CH2)
ppm. 31P-NMR δ = 32.70 (s) ppm. HR-MS: m/z calculated for C30H31Fe2O3P; [M + Na]+ 605.0602, found:
605.0592; [M + K]+ 621.0341, found: 621.0327.

3.2.6. 1,1“-(Phenylphosphinidenesulfide)di[(2Sp)-2-vinyl]ferrocene 11

1,1“-(Phenylphosphinidenesulfide)di[(2Sp)-2-vinyl]ferrocene 11 [36]: Divinylphosphine 9
(240 mg, 0.45 mmol) and sulfur (92 mg, 2.87 mmol, 6.34 eq) were dissolved in 3.6 mL of toluene
under Ar. The solution was stirred and heated under reflux for 4 h, and then cooled to RT. The solvent
was removed under reduced pressure and the residue was purified by column chromatography
(SiO2; 0–10% EtOAc in heptane), yielding 255 mg of divinylphosphinesulfide 11 (quantitative) as
orange crystals. M.p.: 191–192 ◦C (decomposition). 1H-NMR (600 MHz, CDCl3) δ = 8.11–8.04 (m, 1H);
7.73–7.67 (m, 2H); 7.47–7.37 (m, 3H); 6.95–6.88 (m, 1H); 5.52–5.46 (m, 1H); 5.24–5.17 (m, 1H); 5.21 (m,
1H); 4.86–4.82 (m, 2H); 4.71 (m, 1H); 4.36 (s, 5H); 4.28 (m, 1H); 4.26 (m, 1H); 4.23 (s, 5H); 3.72 (m, 1H);
3.51 (m, 1H) ppm. 13C-NMR δ = 134.63 (d, JCP = 87.8 Hz, Cq); 134.37 (CH); 132.97 (CH); 132.18 (d, JCP
= 10.6 Hz, CH); 130.92 (d, JCP = 2.9 Hz, CH); 127.58 (d, JCP = 12.3 Hz, CH); 112.13 (CH2); 111.61 (CH2);
88.19 (d, JCP = 11.6 Hz, Cq); 86.45 (d, JCP = 11.5 Hz, Cq); 79.27 (Cq); 78.63 (Cq); 75.62 (d, JCP = 11.8 Hz,
CH); 74.48 (d, JCP = 12.7 Hz, CH); 71.40 (CH); 71.10 (CH); 69.72 (d, JCP = 10.4 Hz, CH); 68.66 (d, JCP =

10.5 Hz, CH); 68.02 (d, JCP = 9.0 Hz, CH); 67.70 (d, JCP = 9.1 Hz, CH) ppm. 31P-NMR (400 MHz, CDCl3)
δ = 40.54 (s) ppm. HR-MS: m/z calculated for C30H27Fe2PS; [M]+ 562.0270, found: 562.0270.

3.2.7. 1,1“-(Phenylphosphinidenesulfide)di[(2Sp)-2-(-1-hydroxy-2-ethyl)]ferrocene 12

Divinylphosphinesulfide 11 (530 mg, 0.94 mmol) was dissolved in 10 mL of absolute THF under
Ar. The orange solution was cooled in an ice bath and 16 mL of 9-BBN solution (0.5 M in THF, 8 mmol,
8.5 eq) was added dropwise. The solution was stirred under Ar at RT for 24 h, and then cooled in an
ice bath; 7 mL of aqueous 3 M KOAc and 5 mL of aqueous H2O2 (30%, 49 mmol, 52 eq) were added in
that order and the solution was stirred at RT for another 24 h. The solution was extracted with DCM
(2 × 12 mL). The combined organic fractions were washed with water (50 mL) and brine (50 mL) and
dried over MgSO4. The solvent was removed under reduced pressure and the product was purified by
column chromatography (SiO2, 0–50% EtOAc in heptane) yielding 337 mg of dihydroxide 12 (60%)
as an orange oil. Residual eluent moisture (heptane) could not be removed in high vacuum. Solvent
removal by heating was not possible due to decomposition of the product (visible by formation of a
black solid). 1H-NMR (700 MHz, CDCl3) δ = 7.79 (dd, J = 13.0, 7.6 Hz, 2H); 7.49 (pt, J = 7.5 Hz, 1H);
7.44 (pt, J = 7.9 Hz, 2H); 4.53 (s, 1H); 4.42 (s, 1H); 4.35 (s, 5H); 4.22 (s, 1H); 4.20 (s, 1H); 4.12 (s, 5H); 4.09
(m, 2H); 3.93 (s, 1H); 3.70 (s, 1H); 3.66 (dt, J = 15.3, 6.5 Hz, 1H); 3.28 (m, 1H); 3.14 (m, 1H); 3.13 (m, 1H);
2.70–2.64 (m, 1H); 2.53–2.48 (m, 1H) ppm. 13C-NMR δ = 134.90 (d, JCP = 87.1 Hz, Cq); 132.13 (d, JCP =

10.4 Hz, CH); 131.11 (d, JCP = 2.8 Hz, CH); 127.69 (d, JCP = 12.2 Hz, CH); 90.48 (d, JCP = 13.0 Hz, Cq);
87.45 (d, JCP = 12.7 Hz, Cq); 80.25 (d, JCP = 95.7 Hz, Cq); 74.13 (d, JCP = 12.8 Hz, CH); 74.04 (d, JCP =

95.6 Hz, Cq); 72.99 (d, JCP = 12.9 Hz, CH); 72.26 (d, JCP = 9.4 Hz, CH); 71.97 (d, JCP = 9.8 Hz, CH); 70.70
(CH); 70.44 (CH); 68.82 (d, JCP = 10.2 Hz, CH); 67.67 (d, JCP = 10.6 Hz, CH); 63.26 (CH2); 62.07 (CH2);
31.19 (CH2); 30.78 (CH2) ppm. 31P-NMR δ = 40.32 (s) ppm. HR-MS: m/z calculated for C30H31Fe2O2PS;
[M]+ 598.0481, found: 598.0479.

Supplementary Materials: Figure S1: 1H-NMR spectrum of compound 4. Figure S2: 13C-NMR spectrum of
compound 4. Figure S3: HR-MS spectrum of compound 4. Figure S4: 1H-NMR spectrum of compound 5.
Figure S5: 13C-NMR spectrum of compound 5. Figure S6: HR-MS of compound 5. Figure S7: HR-MS of compound
5 (detailed). Figure S8: 1H-NMR spectrum of compound 7. Figure S9: 13C-NMR spectrum of compound 7.
Figure S10: 31P-NMR spectrum of compound 7. Figure S11: HR-MS of compound 7. Figure S12: 1H-NMR
spectrum of compound 10. Figure S13: 13C-NMR spectrum of compound 10. Figure S14: 31P-NMR spectrum of
compound 10. Figure S15: HR-MS of compound 10. Figure S16: 1H-NMR spectrum of compound 11. Figure S17:
13C-NMR spectrum of compound 11. Figure S18: 1H-NMR spectrum of compound 12. Figure S19: 13C-NMR
spectrum of compound 12. Figure S20 31P-NMR spectrum of compound 12. Figure S21: HR-MS of compound 12.
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