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Abstract: The title compound 5′(Z)-benzylidene-tetrahydrofurano[3,2-b]lup-20(29)-en-28-oate was
synthesized with high chemo-, regio-, and stereoselectivity by 5-exo-dig cycloisomerization of methyl
2α-phenylpropynyl-3-oxolup-20(29)-en-28-oate with use of KN(SiMe3)2-DME. The novel betulinic
acid derivative was fully characterized by conventional analytical methods and all proton and carbon
signals have been completely assigned by 2D-NMR experiments.
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1. Introduction

The available plant metabolite, that is betulinic acid and its semi-synthetic derivatives, represent
an important class of biologically active substances, which are in high demand in medicinal chemistry
and pharmacological studies [1–4]. In the synthesis of numerous derivatives of betulinic acid, directed
at enhancing its biological potential, particular emphasis is focused on the approaches aimed at
constructing of various types of heterocyclic fragments at triterpenoid core [5]. The ketone carbonyl
at C-3 of betulinic acid was utilized in syntheses of various fused heterocycles at the 2,3-position of
the lupane skeleton including isoxazole, pyrazine, benzopyrazine, pyridine, indole, and pyrazole
rings [5–9]. These triterpenoid derivatives modified with heterocyclic rings attached to the A-ring
of the triterpene have shown antitumor, anti-inflammatory and leishmanicidal activities. In this
group of heterocyclic ring-substituted triterpenoids, betulinic acid analogues containing furan or
tetrahydrofuran rings are little-known compounds. At the same time, polysubstituted furans,
tetrahydrofurans and their precursors, 2-alkylidenetetrahydrofurans, are present in numerous natural
products or used as important synthetic building blocks in the synthesis of promising biologically
active substances [10–13]. Recently, we developed an efficient method for the synthesis of 2-propargyl
3-oxo-triterpene acid derivatives [14]. The resulting triterpene compounds containing a 4-pentyn-1-one
structural unit in ring A have been successfully used in the anionic 5-exo-dig cycloisomerization
induced by a strong base, KN(SiMe3)2-DME [15]. The heterocyclization of these compounds also
was performed in the presence of Au(I)+ phosphine complexes [16]. In the continuation of our
studies, this article describes the preparation of new [3,2-b] tetrahydrofuran-fused lupane triterpenoid
6—That is, 5′(Z)-benzylidene-tetrahydrofurano [3,2-b]lup-20(29)-en-28-oate, by employing the 5-exo
dig heterocyclization of accessible 2-phenylpropynyl derivative of betulinic acid.
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2. Results

In the synthesis of the target triterpenoid 6, C-2 propargyl derivative of betulinic acid 5 was used
as the starting compound, which was obtained in several stages from betulin by the method previously
developed by our research group [14] (Scheme 1). The key stage of the scheme was α alkylation with
propargyl bromide of potassium enoxytriethylborate generated from methylbetulonate 2 under the
action of KN(SiMe3)2-Et3B. Stereoselective reduction of the keto group in the propynyl derivative of
betulonic acid 3 using NaBH4 modified with CeCl3, produced methylbetulinate 4 in good yield [14]
(Scheme 1).
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Scheme 1. Preparation of C-2 propargylbetulinic acid 4.

The starting compound 4 was transformed into triterpenoid 5 by Sonogashira cross-coupling
in the presence of PdCl2(PPh3)2, CuI and Et3N (Scheme 2). Triterpenoid 5 heterocyclization was
carried out under the action of KN(SiMe3)2 in DME. The reaction proceeded at room temperature
and in a short period of time yielded a single product, that is target triterpenoid 6, with a yield of
82% (1H- and 13C-NMR spectra). It is interesting to note that only 5-exo dig cyclization occurred and
stereoisomerically pure compound (Z-5) was found. We did not detect pyran derivatives derived from
6-endo cyclization and stereoisomer (E-5) even in the trace amounts. Exocyclic enol ethers are known
to easily undergo hydrolysis [16,17]. The triterpenoid 6 obtained by us showed protolytic stability
during long-term storage (12 months) in an inert atmosphere at a temperature of ±5 ◦C. However,
it was easily hydrolyzed to give phenylaceton-3β-hydroxylup-20(29)-en-28-oate 7 in chloroform-d
within 6 h, producing a mixture of compounds 6 and 7 in 60:40 ratio (1H- and 13C-NMR). During
the purification of triterpenoid 6 by the method of column chromatography on SiO2, an analytically
pure sample of the compound was isolated in 32% yield along with its hydrolysis product, that is
triterpenoid 7 in 51% yield.
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Scheme 2. Synthesis of [3,2-b]tetrahydrofuran-fused betulinic acid.

The structure of the resulting compound was defined using one-dimensional (1H, 13C) and
two-dimensional (COSY, NOESY, HSQC, HMBC) NMR spectroscopy.

The 13C-NMR spectrum of compound 6, exhibited no signals for the acetylene group and the
3-OH carbon atom, indicating that these functional groups in the initial compound 5 were involved
in the intramolecular cyclization. Along with the characteristic signal of the quaternary carbon atom
C-20 (150.6 ppm), a new signal of the quaternary carbon atom (DEPT, HSQC) was registered in the
region of 151.3 ppm, which is related to the carbon atom C-5′. The signals of carbon atoms C-6′ and
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C-3 resonated in the range of 97.7 and 96.7 ppm. In the 1H-NMR spectrum, along with the proton
signals at C-29, a new singlet signal of the vinylidene proton H-6′ was present in the region of 5.27
ppm. Methylene protons H-4′ resonated in the region of 2.66 and 2.41 ppm. The obtained spectral data
allowed us to conclude that the structure of compound 6 contains a trisubstituted double bond and a
tetrahydrofuran ring. The stereochemistry of Z-5 triterpenoid was defined applying two-dimensional
NMR correlation spectra. In the 1H-NOESY spectrum of compound Z-5, there were cross-peaks
between the signals of protons H-4′, H-6′ and H-2.

3. Materials and Methods

The starting compounds and reagents were purchased from standard commercial suppliers and
used without any further purification. Betulonic acid was obtained from betulin according to known
procedures [18]. IR spectra were obtained with use of a Vertex 70v spectrometer (Bruker, Karlsruhe,
Germany) (solutions in CHCl3). 1H- and 13C-NMR spectra were recorded on a Bruker Avance-500
instrument (500.13 (1H) and 125.78 MHz (13C)) or on a Bruker Avance-400 instrument (400.13 (1H) and
100.62 MHz (13C)) in CDCl3 with Me4Si as the internal standard. Mass spectra of new compounds were
recorded on an LCMS-2010 EV (Shimadzu, Kyoto, Japan) spectrometer of the UfIC RAS Center for
Collective Use “Chemistry”. Elemental analysis was carried out on a 1106 analyzer (Carlo Erba, Milan,
Italy). TLC was carried out on Sorbfil plates (Sorbpolimer, Krasnodar, Russia) in hexane–EtOAc (from
10:1 to 2:1) or in CHCl3-MeOH (20:1); spots were visualized with anisaldehyde. Silica gel L (KSKG
grade, 50–160 µm) was employed for column chromatography. Starting triterpenoid 4 was prepared as
previously reported [15]. NMR spectra of all new compounds are in Supplementary Materials.

3.1. 2a-Phenylpropynyl-3β-hydroxylup-20(29)-en-28-oate (5)
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3.2. 5′(Z)-Benzylidene-tetrahydrofuran[3,2-b]lup-20(29)-en-28-oate (6) 

A mixture of triterpenoid 4 (102 mg, 0.2 mmol), iodobenzene (0.019 mL, 0.17 mmol) and Et3N
(0.23 mL, 1.64 mmol) were dissolved in DMF (3.0 mL). Then CuI (3.8 mg, 0.02 mmol) and PdCl2(PPh3)2

(5.6 mg, 0.01 mmol) were added to the mixture simultaneously and the resulting mixture was stirred at
room temperature for 1.5 h under an argon atmosphere. The completion of reaction was monitored by
TLC analysis. The reaction was quenched by addition of water and extracted with CHCl3 (3 × 10 mL).
The combined organic extracts were dried with MgSO4 and concentrated under reduced pressure.
The residue was purified by column chromatography on SiO2 with hexane/EtOAc (15:1) as an eluent
to afford pure product 5 as a white powder (99 mg, 0.17 mmol, 85%). Rf: 0.15 (10:1 hexan:EtOAc). IR
(CHCl3): 3467 (OH), 1726 (C=O) cm−1. m.p. 122–125 ◦C. 1H-NMR (δ, ppm, CDCl3, 400 MHz): 7.43
(2H, m, arom), 7.30 (3H, m arom), 4.75, 4.61 (2H, both br s, H-29), 3.69 (3H, s, COOMe), 3.05 (1H, d,
J = 10.4 Hz, H-3), 3.03 (1H, m, H-19), 2.65 (1H, dd, J = 16.8, 4.0 Hz, Ha-1′), 2.50 (1H, dd, J = 16.8, 6.4 Hz,
Hb-1′), 2.29–0.86 (22H, m, CH, CH2 in pentacyclic sceleton and 2H, Ha-1, Hb-1), 1.7 (3H, s, H-30), 1.02,
0.99, 0.95, 0.90, 0.82 (3H each, all s, H-23–H-27), 0.77 (1H, d, J = 9.2 Hz, H-5).13C-NMR (δ, ppm, CDCl3,
100 MHz): 176.8 (C-28), 150.5 (C-20), 131.7, 128.2, 127.6, 124.0 (arom), 109.6 (C-29), 88.7 (C-2′), 82.2
(C-3′), 81.8 (C-3), 56.6 (C-5), 55.5 (C-17), 51.3 (COOMe), 50.5 (C-9), 49.5 (C-18), 47 (C-19), 45.2 (C-1), 42.5
(C-14), 40.7 (C-8), 39.2 (C-10), 38.3 (C-13), 37.5 (C-4), 36.9 (C-22), 35.5 (C-2), 34.3 (C-7), 32.2 (C-16), 30.6
(C-21), 29.7 (C-15), 28.4 (C-24), 25.5 (C-12), 23.5 (C-1′), 20.9 (C-11), 19.4 (C-30), 18.3 (C-6), 16.9 (C-26),
16.3 (C-23), 15.9 (C-25), 14.8 (C-27). Anal. Calcd for C40H56O3: C, 82.14; H, 9.65. Found: C, 81.99; H,
9.67. MS (APCI): m/z [M + H]+, calcd for C40H56O3: 585.43; found: 585.5.
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4. Conclusions

Thus, we have presented an economical and chemoselective scheme for production of
new 2-alkylidenetetrahydrofuran-fused pentacyclic triterpenoid using a base promoted 5-exo-dig
cycloisomerization of 2-alkynyl derivative of betulinic acid.
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