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Abstract: (3-Ammonio-2,2-dimethylpropyl)carbamate dihydrate was synthesised. The title compound
was characterised by single crystal X-ray diffraction and IR-/Raman-spectroscopy. It has been
demonstrated that amixture of dilute acetic acid and 2,2-dimethyl-1,3-diaminopropane is able to
capture CO2 spontaneously from the atmosphere. An intramolecular hydrogen bond stabilises the
conformation of the ylide-type title molecule. Intermolecular hydrogen bonds between all moieties
connect them to a strand-type chain structure.
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1. Introduction

Carbamates are organic compounds which are derived from carbamic acid: H2NCOOH. All of
the hydrogen atoms in carbamic acid can be replaced by substituents to give a vast number of
possible compounds. Surprisingly enough, the mechanism of formation of carbamic acid by the
simple reaction of aqueous ammonia and CO2 gas is still under investigation [1–3]. Furthermore,
the kinetics of the formation and the breakdown of aryl-/alkyl-carbamates have been studied for
decades (Scheme 1) [4]. Since then, numerous carbamates with various alkyl [5,6] and cyclic alkyl [7]
groups have been synthesised.
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Scheme 1. Possible functional groups for compounds known from the literature for carbamates 
(upper part); reactions scheme for the title compound (lower part). 

Scheme 1. Possible functional groups for compounds known from the literature for carbamates (upper
part); reactions scheme for the title compound (lower part).

Some carbamates are utilised as potent insecticides [8,9] and herbicides [10–12]. Another
important application is in progress: decreasing the amount of CO2 in the environment with amines

Molbank 2018, 2018, M1015; doi:10.3390/M1015 www.mdpi.com/journal/molbank

http://www.mdpi.com/journal/molbank
http://www.mdpi.com
http://dx.doi.org/10.3390/M1015
http://www.mdpi.com/journal/molbank
http://www.mdpi.com/1422-8599/2018/3/M1015?type=check_update&version=2


Molbank 2018, 2018, M1015 2 of 8

will help to reduce climate change [11–17]. Among other methods, this can be achieved by using
amine sorbents for microalgae cultivation [18], amine-functionalised ionic liquid production [19,20],
and porous material production [21,22].

There are different methods to synthesise carbamates: through the reaction of sterically hindered
primary amines H2NR (R = alkyl, aryl) with CO2 [23,24], or through the reaction of CO2 with
secondary amines [25]. For these syntheses, solutions of carbon dioxide [26], as well as the absorption
from the air [27], can be used. Recently, a metal organic framework (MOF: Mg2(dobpdc), (dobpdc =
4,4′-Dioxido-biphenyl-3,3′-dicarboxylate)), which was modified by 2,2-dimethyl-1,3-diaminopropane,
was used to absorb CO2 [28].

2. Results and Discussion

The reaction of 2,2-dimethyl-1,3-diaminopropane (dmpn) withacetic acid results in the formation
of the title carbamate by CO2 uptake. The CO2 uptake from the atmosphere, presumably via first
dissolving in solvent water, was a surprise to us. Both the timescale (many hours) and scale (>1 g)
of reaction completion convince us that further absorption from the air beyond any CO2 already
dissolved in the reagent solutions has occurred.

2.1. Analysis of the X-ray Crystal Structure

The asymmetric unit comprises one carbamate molecule and two water molecules. The
molecular geometric parameters are all within the expected ranges (Table 1) [29,30]. The organic
title molecule is found in the expected ylidic form and forms one intramolecular hydrogen bond
(Figure 1). Hence, the conformation of the backbone of the title compound is fixed. Considering
the hydrogen-bonding graph set nomenclature [31,32], a S1

1(8) graph set descriptor can be given for
the ring (H21–N2–C3–C2–C1–N1–C6–O2). Such a hydrogen bond supported cyclic arrangement has
been reported for the analogous 2-amino-2-methyl-1-propanol carbamate (AMPC) [33]. The analogy
between the title compound and AMPC is a pure hydrogen bond acceptor (–CO2

−) on one side of
the molecule and a hydrogen bond donor (–NH3

+ vs. –OH) on the other side. The intramolecular
N ··· O distance in the title structure is very similar to that derived from the structure of AMPC. As
mentioned before, 2,2-dimethyl-1,3-diaminopropane has already been used to capture CO2 in a MOF
environment [28]. The deposited crystal structure (CSD reference code ACEWOX) of this compound
suggests that the formed carbamate is extended with the NH2 group coordinated to the Zn atom of
the metal organic framework. Unfortunately, there is considerable disorder of this molecule in the
crystal [28]. Thus, it may be worth re-investigation.

Table 1. Selected geometric parameters of the title compound (bond lengths [Å]; angles [◦]).

Atoms Bond Lengths [Å] Atoms Angles [◦]

O1–C6 1.2782(9) C1–N1–C6 123.43(7)

O2–C6 1.2639(10) C1–C2–C3 111.74(6)

C1–C2 1.5358(11) N1–C1–C2 115.43(7)

C2–C3 1.5290(11) C2–C3–N2 114.74(7)

N1–C1 1.4466(10) C1–C2–C3–N2 −52.87(9)

N1–C6 1.3609(10) C6–N1–C1–C2 103.29(9)

N2–C3 1.4901(11) N1–C1–C2–C4 −179.04(7)
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Figure 1. Displacement ellipsoid plot of the asymmetric unit of the title structure 
(3-ammonio-2,2-dimethylpropyl)carbamate dihydrate. Ellipsoids are shown at the 50% probability 
level. Dashed blue lines represent hydrogen bonds (cf. Table 2). 

Table 2. Geometric parameters of classical hydrogen bonds in the title structure. 

Atoms D–H [Å] H ··· A [Å] D ··· A [Å] D–H ··· A [°] 
N1–H11 ··· O4 ′ 0.867(13) 2.198(13) 3.0455(11) 165.8(11) 
N2–H21 ··· O2 0.912(13) 1.887(14) 2.7747(10) 163.9(12) 

N2–H22 ··· O1 ′′ 0.915(13) 1.870(14) 2.7830(10) 175.0(12) 
N2–H23 ··· O3 ′′′ 0.893(13) 2.001(13) 2.8861(11) 171.0(12) 
O3–H31 ··· O1 0.838(16) 1.963(16) 2.7934(10) 170.5(14) 
O3–H32 ··· O4 ′ 0.835(18) 2.058(18) 2.8764(11) 166.5(16) 
O4–H41 ··· O2 0.850(17) 2.010(17) 2.8583(10) 175.3(15) 

O4–H42 ··· O1 ′′′′ 0.798(17) 2.243(18) 3.0037(11) 159.4(16) 
′ = 1 + x,y,z; ′′ = 1 − x,1 − y,1 − z; ′′′ = −1 + x,−1 + y,−1 + z; ′′′′ = 1 − x,1 − y,2 − z. 

The analysis of intermolecular interactions show that adjacent moieties form a polymeric strand 
by hydrogen bonds between water molecules and carbamate molecules. This results in a 𝐶ଷଷ(8) 
graph set description for the chain along the strand (Figure 2). Furthermore, two adjacent 
carbamates form a ring with 𝑅ସସ(12) graph set descriptor (ring A). These dimers are linked by 
water molecules and form another ring with  𝑅଺ସ(12) graph set descriptor (ring B). 

 

Figure 1. Displacement ellipsoid plot of the asymmetric unit of the title structure (3-ammonio-2,
2-dimethylpropyl)carbamate dihydrate. Ellipsoids are shown at the 50% probability level. Dashed blue
lines represent hydrogen bonds (cf. Table 2).

Table 2. Geometric parameters of classical hydrogen bonds in the title structure.

Atoms D–H [(̊A)] H ··· A [(̊A)] D ··· A [(̊A)] D–H ··· A [◦]

N1–H11 ··· O4 ′ 0.867(13) 2.198(13) 3.0455(11) 165.8(11)

N2–H21 ··· O2 0.912(13) 1.887(14) 2.7747(10) 163.9(12)

N2–H22 ··· O1 ′ ′ 0.915(13) 1.870(14) 2.7830(10) 175.0(12)

N2–H23 ··· O3 ′ ′ ′ 0.893(13) 2.001(13) 2.8861(11) 171.0(12)

O3–H31 ··· O1 0.838(16) 1.963(16) 2.7934(10) 170.5(14)

O3–H32 ··· O4 ′ 0.835(18) 2.058(18) 2.8764(11) 166.5(16)

O4–H41 ··· O2 0.850(17) 2.010(17) 2.8583(10) 175.3(15)

O4–H42 ··· O1 ′ ′ ′ ′ 0.798(17) 2.243(18) 3.0037(11) 159.4(16)
′ = 1 + x,y,z; ′ ′ = 1 − x,1 − y,1 − z; ′ ′ ′ = −1 + x,−1 + y,−1 + z; ′ ′ ′ ′ = 1 − x,1 − y,2 − z.

The analysis of intermolecular interactions show that adjacent moieties form a polymeric strand
by hydrogen bonds between water molecules and carbamate molecules. This results in a C3

3(8) graph
set description for the chain along the strand (Figure 2). Furthermore, two adjacent carbamates form a
ring with R4

4(12) graph set descriptor (ring A). These dimers are linked by water molecules and form
another ring with R4

6(12) graph set descriptor (ring B).
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Figure 2. Hydrogen bonds in the title structure. Basic ring motifs along the propagation direction
are given as ring A (R4

4(12) graph set descriptor) and B (R4
6(12)). The asymmetric unit is labeled and

shown with ellipsoids (50%). The intramolecular hydrogen bond N2 ··· O2 leads to a ring with the
S1

1(8) graph set descriptor (ring C).

2.2. Spectroscopy

The IR and Raman spectra show all expected and characteristic bands and signals, respectively.
The comparison of the IR and Raman spectra of the product with those of the pure diamine shows that
the bands and signals are more numerous and sharper for (3-ammonio-2,2-dimethylpropyl)carbamate
dihydrate (Figure 3: green line). This fact is in excellent accord with our expectations as the
2,2-dimethyl-1,3-diaminopropane was measured at room temperature as a liquid, which may contain
several conformers leading to broad bands. On the other hand, the title compound, measured as a
crystalline sample, contains the conformer characterised by X-ray methods only (Figure 3). As shown
in Figure 1 there is an intramolecular hydrogen bond. The sterical fixation of the backbone of the
organic title compound molecule leads to shifts in accord with expectations.
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In detail, the spectra show the signals of the CH-valence modes at around 3370 cm−1,
CH-deformation-modes at around 1450 cm−1, and CN-valence vibrations at around 750 cm−1.
In the product spectra, the NH-valence-vibration which was noted at 3326 cm−1 disappears.
Therefore, the characteristic bands for the N–CO2

−-vibration are at around 670 cm−1, 1110 cm−1, and
1500 cm−1 [34,35].

On further analysis of the spectra, structurally related CH2-groups show a variety of vibration
modes. The following signals were found in amino acids [36], which have a similar structure to
the title compound. Firstly, there are two signals of the wagging vibrations at 1378 and 1356 cm−1.
At 1296 cm−1, the signal of the torsion-mode appears. The CH2 rocking mode causes a strong signal
at 752 cm−1.

3. Materials and Methods

3.1. General Information

IR Perkin Elmer FTIR-spectra with a LiTaO3-detector [37,38]. Raman spectrometer (Bruker
MultiRAM FT-Raman-spectrometer) with a Nd:YAG Laser und max. output of 500 mW [39].

3.2. Synthesis of (3-Ammonio-2,2dimethylpropyl)carbamate Dihydrate

Dilute acetic acid (20 drops = 1 g) is added dropwise to 1 g 2,2-dimethyl-1,3-diaminopropane.
A colorless solution is obtained. The solution (in an unsealed petri dish) was left in a fume hood
overnight. The title compound (3-ammonio-2,2-dimethylpropyl)carbamate dihydrate crystallised as
colourless crystals. A small amount of liquid is observed besides the solid title compound. The raw
product was pressed between two pieces of filter paper and dried in air for one day (Yield: 1.42 g = 80%).

3.3. Spectra

A sample of 2,2-dimethyl-1,3-diaminopropane was analysed as a liquid sample at room
temperature. (3-Ammonio-2,2-dimethylpropyl)carbamate dihydrate was measured as a solid
crystalline sample.

3.4. X-ray Diffraction Studies

The single crystal diffraction data were collected by using a Bruker APEX2 Duo diffractometer.
The cell determination and the data collection strategy followed the standard procedures of the APEX2
software (Tmin/Tmax = 0.9046/0.9282) [40]. Structure solution [41] and structure refinement [42,43]
were done with programs from the SHELX family. All figures and the analysis were done with
Diamond software [44]. All coordinates of the hydrogen atoms in the water molecules, the hydrogen
atom at the nitrogen atom, and the hydrogen atoms of the methylene groups are refined freely.
Their individual Uiso parameters were refined too. The hydrogen atoms of the methyl groups
were included in the structural model, using a riding model (AFIX 138 [42]). The crystal data
for C6H18N2O4 (M = 182.22 g/mol): triclinic, space group P1, a = 7.1045(4) Å, b = 8.9553(5) Å,
c = 8.9752(6) Å, α = 118.307(2) ◦, β = 01.443(2) ◦, γ = 100.500(2) ◦, V = 466.80(5) Å3, Z = 2, T = 293 K,
λ(MoKα) = 0.71073 Å, 16221 reflections measured, 3374 unique reflections (Rint = 0.023), 3119 observed
reflection (I > 2σ(I)); Rgt(F) = 0.035, Rref(F2; all data) = 0.076.

Powder diffraction on a representative part of the bulk material showed that the obtained solid is
phase pure crystalline title compound (cf. the Supplementary Materials).

3.5. Elemental Analysis

Elemental analysis calculated for C6H18N2O4: C 39.55, H 9.96, N 15.37; found: C 39.43, H 9.77,
N 15.18.
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4. Conclusions

2,2-Dimethylpropane-1,3-diamine, a α,ω-diamine, has already shown its potential of capturing
CO2 as functional part of a MOF material. We succeeded in the quick and effective absorption of CO2

from the atmosphere via dissolution in the reaction medium. The resulting carbamate is very stable
as a solid and capable of holding the CO2 tightly until a temperature of around 130 ◦C. Above this
temperature, the title compound decomposes. These results may be very valuable for future studies
on the stability and mechanism of chemical carbon dioxide absorption in the context of recycling
carbon dioxide. This contribution forms part of our longstanding interest in salts of diamines in
general [45–47] and those of dmpn salts in detail [48].

Supplementary Materials: The following are available online, CCDC 1844554 contains the supplementary
crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic
Data Centre.
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