

Short Note

[$(\eta^5$ -pentamethylcyclopentadienyl)(3-fluoro-N-methyl benzylamine- κ^1 ,N)dichlorido]iridium(III)

Deliang Kong[®], Lihua Guo[®], Shumiao Zhang, Xicheng Liu and Zhe Liu *[®]

Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China;

18853718077@163.com (D.K.); guolihua@qfnu.edu.cn (L.G.); zkz_mao@163.com (S.Z.); chemlxc@163.com (X.L.) * Correspondence: liuzheqd@163.com; Tel.: +86-0537-4455228

Received: 17 May 2018; Accepted: 1 June 2018; Published: 5 June 2018

Abstract: A half-sandwich iridium(III) complex containing 3-fluoro-*N*-methylbenzylamine ligands has been obtained by reaction of one equivalent of $[(\eta^5-Cp^*)IrCl_2]_2$ (Cp* = pentamethylcyclopentadienyl) with two equivalent of 3-fluoro-*N*-methylbenzylamine in very good yield. The structure of this complex was confirmed by X-ray crystallography, ¹H-NMR, ¹³C-NMR spectroscopy, and elemental analysis.

Keywords: half-sandwich; iridium; 3-fluoro-N-methylbenzylamine; X-ray crystallography

1. Introduction

Organometallic half-sandwich iridium (Ir) complexes containing amines or imine ligands have received considerable attention in the field of catalytic chemistry [1–5] and medicinal chemistry [6–9], as these ligands can be readily modified with appropriate substituents. Most of these iridium complexes comprise cyclopentadienyl ligand, amine or imine chelating ligand, and a monodentate halide ligand. However, the Ir complexes bearing *N*-monodentate ligands are much less developed [10,11]. In the field of biology, the *N*-monodentate complexes exhibit a variety of properties that are different from those of the bidentate compounds. For example, the *N*-monodentate complexes can undergo double hydrolysis [12]. In this contribution, Ir complex containing secondary amine 3-fluoro-*N*-methylbenzylamine as *N*-monodentate ligand was prepared and characterized.

2. Results and Discussion

The title complex was synthesized according to the modified procedure of the reported literature [4]. As shown in Scheme 1, treating 3-fluoro-*N*-methylbenzylamine with 7.5 equiv of sodium acetate in dichloromethane at room temperature for 4 h, then adding $[(\eta^5-\text{Cp}^*)\text{IrCl}_2]_2$ (0.5 equiv) to the mixture at room temperature for 8 h resulted in the form of the title complex in high yield, up to 85.1%, without other side products. The addition of sodium acetate did not result in the C-H activation of aromatic ring. In addition, we found that the same product would be obtained in absence of sodium acetate. The product was characterized by ¹H-NMR spectroscopy (see Supplementary Materials, Figure S1), ¹³C-NMR spectroscopy (see Supplementary Materials, Figure S2), elemental analysis, and X-ray crystallography (see Supplementary Materials, Table S1).

In CDCl₃, the characteristic peak in the ¹H-NMR for product is at ca. δ 3.93 ppm, corresponding to the NH group. The benzylic CH₂ displays two signals, i.e., a doublet peak (δ 4.91 ppm) and a doublet of doublets (dd) peak (δ 3.48 ppm). As shown in Scheme 2, H_b-H_c is coupled to form doublet peak (J_{Hb-Hc} = 12.8 Hz). However, H_b-H_a and H_b-H_c are separately coupled to form doublet of doublets peak (J_{Hb-Hc} = 12.8 Hz; J_{Ha-Hc} = 11.9 Hz).

single crystals suitable for X-ray diffraction. The molecular structure of the product is shown in Figure 1. It is clear that only nitrogen atoms and iridium link, forming the title complex, and no C,N-chelating iridium complex was obtained. The title complex adopts piano-stool configuration, with Cp* acting as the seat and 3-fluoro-*N*-methylbenzylamine ligand and chloride groups as the legs. The crystal packing of the title complex is orthorhombic. The distance between iridium to the centroid of bound η^{5} -cyclopentadienyl ligand is 1.7852 Å. The bond length of Ir-N1 is 2.164(6) Å. The angle of C1-N1-Ir1 and C2-N1-Ir1 are 116.8(7)° and 113.0(7)°, respectively. The Cp* group and the F atom attached to C_5 showed disorder. Only one form remains with Figure 1. It had been reported that a prerequisite for the occurrence of the cyclometallation reaction of the palladium complexes was that the nitrogen had to be trisubstituted by alkyl or aryl groups (tertiary amines) [13,14]. The rational explanation for this was that the steric bulk of the substituents would weaken the N-Pd bond to such an extent that the electrophilicity of Pd(II) would remain high enough to induce the substitution of a proton [13,14]. The formation of chelated iridium complexes through C-H activation displays a process similar to the above-mentioned palladium complexes. The cyclometallation reaction of iridium(III) complexes can occur when tertiary amines was employed [15]. As a result, it seems that the production of monoligated complexes in this system is ascribed to the small size of secondary amines compared to tertiary amines.

Scheme 1. Synthesis of $[(\eta^5-Cp^*)Ir(C_6H_4FCH_2NHCH_3)Cl_2]$.

Scheme 2. The mode of H-H coupling for the benzylic CH₂ group.

Figure 1. X-crystal structure of $[(\eta^5-Cp^*)Ir(C_6H_4FCH_2NHCH_3)Cl_2]$ hydrogen atoms, except C-H, which have been omitted for clarity. Displacement ellipsoids are shown at the 50% probability level. (Ir1: orange; N1: blue; H1: light blue; F1: yellow; Cl1 and Cl2: green; C: gray). H atoms attached to carbon are omitted, as are the minor components of the Cp* and 3-fluorophenyl ring disorders.

3. Materials and Methods

3.1. General Methods and Physical Measurements

All other reagents were purchased from commercial sources and used without purification. ¹H-NMR spectra were captured in 5 mm NMR tubes at 298 K on Bruker DPX 500 (¹H = 500.13 MHz) spectrometers (Bruker, Karlsruhe, Germany) using TMS as an internal standard and CDCl₃ as solvent. ¹³C-NMR spectra were referenced to the residual solvent (CHCl₃, 77.16 ppm) for chloroform-d₁. Elemental analysis was performed by the Analytical Center of the University of Science and Technology of China. X-ray diffraction data were collected at 298(2) K on a Bruker Smart CCD area detector (Bruker, Karlsruhe, Germany) with graphite-monochromated MoK α radiation (λ = 0.71073 Å). The structures were solved by direct methods, and further refinement with full-matrix least-squares on F² was obtained with the SHELXL program package [16,17], using SHELXS (TREF) with additional light atoms found by Fourier methods.

3.2. Synthesis of $[(\eta^5 - Cp^*)Ir(C_6H_4FCH_2NHCH_3)Cl_2]$

The Ir(III) dimer $[(\eta^5-Cp^*)IrCl_2]_2$ was prepared according to reported methods [18]. Complexes $[(\eta^5-Cp^*)Ir(C_6H_4FCH_2NHCH_3)Cl_2]$ were synthesized according to the modified procedure in this work. Under a nitrogen atmosphere, a mixture solution of 3-fluoro-*N*-methylbenzylamine (0.12 mmol, 16.7 mg), NaOAc (0.9 mmol, 122.5 mg), and CH₂Cl₂ (20 mL) was stirred at temperature for 4 h, after which $[(\eta^5-Cp^*)IrCl_2]_2$ (0.06 mmol, 47.8 mg) was added and stirred 8 h. Filter and CH₂Cl₂ were removed under reduced pressure and recrystallized from dichloromethane/diethyl ether. Yield: 54.8 g 85.1%. ¹H-NMR (500.13 MHz, CDCl₃) δ 7.34 (dd, *J* = 13.8, 7.8 Hz, 1H), 7.16 (d, *J* = 7.5 Hz, 1H), 7.05 (dd, *J* = 21.9, 8.8 Hz, 2H), 4.93 (d, *J*_{Hb-Hc} = 12.8 Hz, 1H), 3.93 (s, 1H), 3.48 (dd, *J*_{Hb-Hc} = 12.8 Hz; *J*_{Ha-Hc} = 11.9 Hz, 1H), 2.74 (d, *J* = 6.1 Hz, 3H), 1.71 (s, 15H). ¹³C-NMR (125.8 MHz, CDCl₃) δ 162.81 (d, *J*¹_{C-F} = 247.8 Hz), 116.52 (d, *J*²_{C-F} = 21.1 Hz), 84.90 (s), 60.00 (s), 39.35 (s), 9.26 (s). Anal. Calcd. for C₁₈H₂₆Cl₂FIrN: C, 40.15; H, 4.87; N, 2.60; Found: C, 40.17; H, 4.85; N, 2.62.

Single crystal X-ray diffraction for $C_{18}H_{25}Cl_2FIrN$ ($M_r = 537.49$): Orthorhombic, space group P2(1)2(1)2(1), a = 9.0825(18) Å, b = 12.552(3) Å, c = 17.516(4) Å, $\alpha = 90^{\circ}$, $\beta = 90^{\circ}$, $\gamma = 90^{\circ}$, V = 1996.9(7) Å³, Z = 4, T = 293(2) K, $\mu(MoK\alpha) = 6.961$ mm⁻¹, Dcalc = 0.001788 g/cm³, 11,650 reflections measured ($-11 \le h \le 8$, $-15 \le k \le 14$, $-21 \le 1 \le 21$), 3899 unique (Rint = 0.0602), which were used in all calculations. The final R1 was 0.0419(I > 2\sigma(I)) and ω R2 was 0.1028 (all data). The Cp* ring and

the 3-fluorophenyl ring showed disorder over two positions. The site occupancies were refined to 0.696(17):0.304(17) for the Cp* ring and 0.80(2):0.20(2) for the 3-fluorophenyl ring. CCDC 1842677 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html.

Supplementary Materials: The following are available online. Figure S1: ¹H-NMR spectrum of $[(\eta^5-Cp^*)Ir(C_6H_4FCH_2NHCH_3)Cl_2]$ in CDCl₃, Figure S2: ¹³C-NMR spectrum of $[(\eta^5-Cp^*)Ir(C_6H_4FCH_2NHCH_3)Cl_2]$ in CDCl₃, Table S1: Crystal data and structure refinement for $[(\eta^5-Cp^*)Ir(C_6H_4FCH_2NHCH_3)Cl_2]$. CCDC 1842677 also contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Author Contributions: Z.L. conceived and designed the experiments; D.K. performed the experiments; D.K., L.G., S.Z., X.L. and Z.L. analyzed the data; D.K. and Z.L. wrote the paper.

Funding: This research was funded by [the National Natural Science Foundation of China] grant number [21671118] and Taishan Scholars Program.

Acknowledgments: We thank the National Natural Science Foundation of China (Grant No. 21671118) and the Taishan Scholars Program for support.

Conflicts of Interest: The authors declare no conflict of interest.

References

- Jerphagnon, T.; Gayet, A.J.A.; Berthiol, F.; Ritleng, V.; Mršić, N.; Meetsma, A.; Pfeffer, M.; Minnaard, A.J.; Feringa, B.L.; de Vries, J.G. Fast racemisation of chiral amines and alcohols by using cationic half-sandwich ruthena and iridacycle catalysts. *Chem.-Eur. J.* 2009, *15*, 12780–12790. [CrossRef] [PubMed]
- 2. Arita, S.; Koike, T.; Kayaki, Y.; Ikariya, T. Aerobic oxidation of alcohols with bifunctional transition-metal catalysts bearing C-N chelate ligands. *Chem. Asian J.* **2008**, *3*, 1479–1485. [CrossRef] [PubMed]
- Barloy, L.; Issenhuth, J.T.; Weaver, M.G.; Pannetier, N.; Sirlin, C.; Pfeffer, M. Reaction of Chiral Secondary Amines with [(η⁵-C₅Me₅)MCl₂]₂ (M = Rh(III), Ir(III)): Cyclometalation with or without Dehydrogenation. *Organometallics* 2011, 30, 1168–1174. [CrossRef]
- Sortais, J.B.; Pannetier, N.; Holuigue, A.; Barloy, L.; Sirlin, C.; Pfeffer, M.; Kyritsakas, N. Cyclometalation of Primary Benzyl Amines by Ruthenium(II), Rhodium(III), and Iridium(III) Complexes. *Organometallics* 2007, 26, 1856–1867. [CrossRef]
- Haak, R.M.; Berthiol, F.; Jerphagnon, T.; Gayet, A.J.A.; Tarabiono, C.; Postema, C.P.; Ritleng, V.; Pfeffer, M.; Janssen, D.B.; Minnaard, A.J.; et al. Dynamic Kinetic Resolution of Racemic β-Haloalcohols: Direct Access to Enantioenriched Epoxides. *J. Am. Chem. Soc.* 2008, *130*, 13508–13509. [CrossRef] [PubMed]
- Zhang, H.; Guo, L.; Tian, Z.; Tian, M.; Zhang, S.; Xu, Z.; Gong, P.; Zheng, X.; Zhao, J.; Liu, Z. Significant Effects of Counteranions on the Anticancer Activity of Iridium(III) Complexes. *Chem. Commun.* 2018, 54, 4421–4424. [CrossRef] [PubMed]
- 7. He, X.D.; Tian, M.; Liu, X.C.; Tang, Y.; Shao, C.F.; Gong, P.W.; Liu, J.F.; Zhang, S.M.; Guo, L.H.; Liu, Z. Triphenylamine-appended half-sandwich Iridium(III) complexes and their biological applications. *Chem.-Asian J.* **2018**. [CrossRef] [PubMed]
- Tian, M.; Li, J.J.; Zhang, S.M.; Guo, L.H.; He, X.D.; Kong, D.L.; Zhang, H.R.; Liu, Z. Half-sandwich Ruthenium(II) Complexes Containing N^AN-chelated Imino-pyridyl Ligands That Are Selectively Toxic to Cancer Cells. *Chem. Commun.* 2017, *53*, 12810–12813. [CrossRef] [PubMed]
- Li, J.J.; Guo, L.H.; Tian, Z.Z.; Tian, M.; Zhang, S.M.; Xu, K.; Qian, Y.C.; Liu, Z. Novel half-sandwich Iridium(III) imino-pyridyl complexes showing remarkable in vitro anticancer activity. *Dalton Trans.* 2017, 46, 15520–15534. [CrossRef] [PubMed]
- Liu, Z.; Romero-Canelón, I.; Qamar, B.; Hearn, J.M.; Habtemariam, A.; Barry, N.P.; Pizarro, A.M.; Clarkson, G.J.; Sadler, P.J. The Potent Oxidant Anticancer Activity of Organoiridium Catalysts. *Angew. Chem. Int. Ed.* 2014, 53, 3941–3946. [CrossRef] [PubMed]
- Liu, Z.; Romero-Canelón, I.; Habtemariam, A.; Clarkson, G.J.; Sadler, P.J. Potent Half-Sandwich Iridium(III) Anticancer Complexes Containing C^N-Chelated and Pyridine Ligands. *Organometallics* 2014, 33, 5324–5333. [CrossRef] [PubMed]

- 12. Soledad, B.L.; Abraha, H.; Clarkson, G.J.; Sadler, P.J. Organometallic *cis*-Dichlorido Ruthenium(II) Ammine Complexes. *Eur. J. Inorg. Chem.* **2011**, 2011, 3257–3264.
- 13. Cope, A.C.; Siekman, R.W. Formation of Covalent Bonds from Platinum or Palladium to Carbon by Direct Substitution. *J. Am. Chem. Soc.* **1965**, *87*, 3272–3273. [CrossRef]
- 14. Cope, A.C.; Friedrich, E.C. Electrophilic aromattic substitution reactions by platinum(II) and palladium(II) chlorides on *N*,*N*-dimethylbenzylamines. *J. Am. Chem. Soc.* **1968**, *90*, 909–913. [CrossRef]
- 15. Han, Y.F.; Jin, G.X. Cyclometalated [Cp*M(C^X)] (M = Ir, Rh; X = N, C, O, P) complexes. *Chem. Soc. Rev.* **2014**, 43, 2799–2823. [CrossRef] [PubMed]
- 16. Sheldrick, G.M. Crystal structure refinement with SHELXL. *Acta Crystallogr. C* 2015, *71*, 3–8. [CrossRef] [PubMed]
- 17. Mcardle, P. Oscail, a program package for small-molecule single-crystal crystallography with crystal morphology prediction and molecular modelling. *J. Appl. Crystallogr.* **2017**, *50*, 320–326. [CrossRef]
- 18. Wang, C.L.; Liu, J.F.; Tian, Z.Z.; Tian, M.; Tian, L.J.; Zhao, W.; Liu, Z. Half-sandwich iridium *N*-heterocyclic carbene anticancer complexes. *Dalton Trans.* **2017**, *46*, 6870–6883. [CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).