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Abstract: A new member of the 2-acetylpyridine family has been prepared and characterized.
Its synthesis is a two-step process starting from a pyridyl-alcohol in which the ketone moiety is
protected as a cyclic acetal. Alkylation of the alcohol followed by hydrolysis of the acetal afforded the
title compound in 52% overall yield.
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1. Introduction

2-Acetylpyridine derivatives are interesting synthetic intermediates. For example, such compounds
have been used as starting materials in the preparation of potential anti-cancer agents [1–3],
of complexes with anti-microbial properties [4,5], of pyridinyl-pyrimidines [6], of catalysts [7–9],
materials for water treatment [10] or molecules possessing magnetic properties [11] just to name a few.

Furthermore, 2-acetylpyridine have been widely used in Kröhnke’s synthesis [12,13] of
terpyridines [14–16], which are increasingly used in many applications [17]. As a consequence,
the development of new 2-acetylpyridine derivatives is of great interest in view of the broad range of
possible applications for these molecules.

This paper described the preparation of 1-{4-[(hexyloxy)methyl]pyridin-2-yl}ethanone, which is
one member of this 2-acetylpyridine family.

2. Results and Discussion

The synthesis of 1-{4-[(hexyloxy)methyl]pyridin-2-yl}ethanone (3) is a two-step process, starting
from alcohol derivative (1), which can be obtained either from methyl or ethyl 2-acetylisonicotinate [18–20]
according to a procedure described in the literature [21] (Scheme 1).
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Intermediate 4-[(hexyloxy)methyl]-2-(2-methyl-1,3-dioxolan-2-yl)pyridine (2) (Figure 1) [22] 

was obtained by O-alkylation of 1 with iodohexane. Infrared (IR) spectra of 2 indicate the 

Scheme 1. Synthetic route to 1-{4-[(hexyloxy)methyl]pyridin-2-yl}ethanone.

Intermediate 4-[(hexyloxy)methyl]-2-(2-methyl-1,3-dioxolan-2-yl)pyridine (2) (Figure 1) [22] was
obtained by O-alkylation of 1 with iodohexane. Infrared (IR) spectra of 2 indicate the disappearance of
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the O–H valence vibration band at 3607 cm−1, while new C–H vibrations bands from the hexyl chain
arise between 2959 and 2861 cm−1, and account for ether formation.
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Figure 1. Structure and atom numbering of Intermediate Compound 2. 

Deprotection of the ketone function was carried out in an acidic aqueous solution under reflux. 

Compound 3 was obtained with an overall yield of 52% over the aforementioned two steps. 

Regarding the IR spectra, a new valence vibration band at 1697 cm−1, corresponding to the ketone 

group (C=O vibration), was observed. With regard to 1H-NMR spectra, an intense magnetic 

deshielding was detected with respect to protons of the methyl ketone group in 3 (H16, δ = 2.73 ppm) 

compared with the same protons on Compound 2 (H16, δ = 1.66 ppm). The 13C-NMR spectrum 

confirms the presence of a new peak at 200.0 ppm, which can be attributed to the carbon of the 

ketone function. 

3. Materials and Methods 

All reagents were purchased from commercial suppliers and used as received. Flash 

chromatography was carried out on a Combiflash Rf+ Lumen (Teledyne ISCO, Lincoln, NE, USA) 

using 80 g silica column from Macherey-Nagel. 1H and 13C-NMR spectra were recorded on a Bruker 

AC 400 (Bruker, Wissembourg, France) at 400 and 100 MHz, respectively, using CDCl3 as a solvent. 

IR spectra were recorded as dichloromethane solutions (C = 0.055 mol·L−1) on an IR Affinity 

spectrometer (Shimadzu, Kyoto, Japan). Elemental analyses were performed at Service d’Analyses 

Elementaires, UMR 7565 CNRS, Vandoeuvre-les-Nancy, France. 
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was dissolved in 20 mL of DMF. The mixture was cooled at 0 °C, NaH (60%) (7.78 mmol, 1.1 equiv) 

was added, and the mixture was stirred for 30 min. Iodohexane was added (1.15 mL, 7.78 mmol, 1.1 

equiv), and the mixture was stirred at room temperature for 24 h. One hundred fifty milliliters of 

water was added, and the aqueous layer was extracted with ethyl acetate (3 × 50 mL). The combined 

organic layers were washed with water (2 × 40 mL), brine (40 mL), dried over Na2SO4, and filtered, 

and the solvent was evaporated. Purification by flash chromatography (eluent: hexane/ethyl acetate: 

75/25) yielded 2 as a colorless oil (1.34 g, 68%).  

Compound 2 (4.16 g, 14.9 mmol, 1 equiv) was added with aqueous HCl (2M, 30 mL). The 

mixture was stirred at reflux for 4 h. After cooling occurred, a saturated solution of Na2CO3 (30 mL) 

was added, and the aqueous layer was extracted with dichloromethane (3 × 40 mL). The combined 

organic layers were washed with brine (40 mL), dried over Na2SO4, and filtered, and the solvent was 

evaporated. Purification by flash chromatography (eluent: hexane/ethyl acetate: 90/10 to 70/30) 

yielded 3 as a colorless oil (2.65 g, 76%). 1H-NMR (CDCl3, 400 MHz), δ (ppm) = 8.65 (d, 1H6, J = 4.9 

Figure 1. Structure and atom numbering of Intermediate Compound 2.

Deprotection of the ketone function was carried out in an acidic aqueous solution under reflux.
Compound 3 was obtained with an overall yield of 52% over the aforementioned two steps. Regarding
the IR spectra, a new valence vibration band at 1697 cm−1, corresponding to the ketone group (C=O
vibration), was observed. With regard to 1H-NMR spectra, an intense magnetic deshielding was
detected with respect to protons of the methyl ketone group in 3 (H16, δ = 2.73 ppm) compared with
the same protons on Compound 2 (H16, δ = 1.66 ppm). The 13C-NMR spectrum confirms the presence
of a new peak at 200.0 ppm, which can be attributed to the carbon of the ketone function.

3. Materials and Methods

All reagents were purchased from commercial suppliers and used as received. Flash chromatography
was carried out on a Combiflash Rf+ Lumen (Teledyne ISCO, Lincoln, NE, USA) using 80 g silica
column from Macherey-Nagel. 1H and 13C-NMR spectra were recorded on a Bruker AC 400 (Bruker,
Wissembourg, France) at 400 and 100 MHz, respectively, using CDCl3 as a solvent. IR spectra were
recorded as dichloromethane solutions (C = 0.055 mol·L−1) on an IR Affinity spectrometer (Shimadzu,
Kyoto, Japan). Elemental analyses were performed at Service d’Analyses Elementaires, UMR 7565
CNRS, Vandoeuvre-les-Nancy, France.
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4-(hydroxymethyl)-2-(2-methyl-1,3-dioxolan-2-yl)pyridine (1) [21] (1.38 g, 7.07 mmol, 1 equiv) was
dissolved in 20 mL of DMF. The mixture was cooled at 0 ◦C, NaH (60%) (7.78 mmol, 1.1 equiv) was
added, and the mixture was stirred for 30 min. Iodohexane was added (1.15 mL, 7.78 mmol, 1.1 equiv),
and the mixture was stirred at room temperature for 24 h. One hundred fifty milliliters of water was
added, and the aqueous layer was extracted with ethyl acetate (3 × 50 mL). The combined organic
layers were washed with water (2 × 40 mL), brine (40 mL), dried over Na2SO4, and filtered, and the
solvent was evaporated. Purification by flash chromatography (eluent: hexane/ethyl acetate: 75/25)
yielded 2 as a colorless oil (1.34 g, 68%).

Compound 2 (4.16 g, 14.9 mmol, 1 equiv) was added with aqueous HCl (2M, 30 mL). The mixture
was stirred at reflux for 4 h. After cooling occurred, a saturated solution of Na2CO3 (30 mL) was added,
and the aqueous layer was extracted with dichloromethane (3 × 40 mL). The combined organic layers
were washed with brine (40 mL), dried over Na2SO4, and filtered, and the solvent was evaporated.
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Purification by flash chromatography (eluent: hexane/ethyl acetate: 90/10 to 70/30) yielded 3 as
a colorless oil (2.65 g, 76%). 1H-NMR (CDCl3, 400 MHz), δ (ppm) = 8.65 (d, 1H6, J = 4.9 Hz), 7.98
(s, 1H3), 7.49 (d, 1H5, J = 4.9 Hz), 4.57 (s, 2H7), 3.52 (t, 2H9, J = 6.6 Hz), 2.73 (s, 3H16), 1.65 (quint,
2H10, J = 7.0 Hz), 1.31–1.04 (m, 6H11–13), 0.89 (t, 3H14, J = 6.6 Hz). 13C-NMR (CDCl3, 100 MHz), δ
(ppm) = 200.0, 153.5; 149.5; 149.0; 125.1; 119.8; 71.4; 70.9; 31.6; 29.6; 25.9; 25.8; 22.6; 14.0. IR 3052, 3007,
2961, 2932, 2861, 1697, 1603 cm−1. Elemental analysis for C14H21NO2: C, 71.46; H, 8.99; N, 5.95. Found
C, 71.46; H, 8.99; N, 5.89.

Supplementary Materials: The following are available online: 1H-NMR, 13C-NMR, IR spectra, elemental analyses
reports and FIDs for Compounds (2) and (3).
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