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Abstract: Colorectal cancer (CRC) is the second leading cause of cancer deaths globally. While
ethnic differences in driver gene mutations have been documented, the South American population
remains understudied at the genomic level, despite facing a rising burden of CRC. We analyzed
tumors of 40 Chilean CRC patients (Chp) using next-generation sequencing and compared them
to data from mainly Caucasian cohorts (TCGA and MSK-IMPACT). We identified 388 mutations
in 96 out of 135 genes, with TP53 (45%), KRAS (30%), PIK3CA (22.5%), ATM (20%), and POLE
(20%) being the most frequently mutated. TSC2 mutations were associated with right colon cancer
(44.44% in RCRC vs. 6.45% in LCRC, p-value = 0.016), and overall frequency was higher compared
to TCGA (p-value = 1.847 × 10−5) and MSK-IMPACT cohorts (p-value = 3.062 × 10−2). Limited
sample size restricts definitive conclusions, but our data suggest potential differences in driver
mutations for Chilean patients, being that the RTK-RAS oncogenic pathway is less affected and
the PI3K pathway is more altered in Chp compared to TCGA (45% vs. 25.56%, respectively). The
prevalence of actionable pathways and driver mutations can guide therapeutic choices, but can also
impact treatment effectiveness. Thus, these findings warrant further investigation in larger Chilean
cohorts to confirm these initial observations. Understanding population-specific driver mutations
can guide the development of precision medicine programs for CRC patients.

Keywords: Colorectal cancer; TSC2; LATAM; NGS; precision medicine

1. Introduction

Colorectal cancer (CRC) is the third most common type of cancer in incidence and
the second in mortality worldwide, with incidence rates rising among South American
countries over the last few years [1]. Among the risk factors are lifestyle behaviors such as
diet, physical activity, obesity, alcohol consumption, and tobacco use [2].

CRC originates from the epithelial cells of the colon and rectum through a progressive
and sequential accumulation of genetic alterations that primarily transform a normal
epithelium into an adenoma and finally into a carcinoma [3]. The mechanisms leading to
the production of these genetic alterations can be divided into three different pathways:
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chromosomal instability (CIN), microsatellite instability (MSI), and CpG island methylator
phenotype (CIMP) [4].

CRC can develop throughout the colon and rectum, being more frequent in the
distal or left colon, which is comprised of the colon from the splenic flexure up to the
rectum. In contrast, the right or proximal colon is the segment including the caecum,
ascending colon, and transverse colon. Right colon cancer (RCRC) is more associated
with mucinous histology, BRAF mutation, and the MSI pathway, whereas in left colon
cancer (LCRC), amplification of EGFR and ERBB2, TP53 mutation, and CIN pathway are
more common [5–8].

Although the mutational landscape in CRC is well known, differences in the frequency
of mutations related to ethnicity have been reported; a higher frequency of mutations in
PIK3CA, MAP2K1, and NF1 have been seen in tumor samples from patients of African
American ethnicity compared to Caucasians [9]. Conversely, a higher frequency of muta-
tions in BRAF has been reported in tumor samples of patients of Caucasian ethnicity when
compared with samples from Asian and African American subjects [10] and between the
Western and Chinese populations [11].

Anti-EGFR targeted therapy has become the primary treatment option for patients
with advanced disease. The presence of mutations in downstream effectors KRAS, NRAS,
and BRAF are proven to confer resistance to the treatments with anti-EGFR agents [12–14].
Nevertheless, an important proportion of patients have poor or no response to this therapy
despite having no detectable mutations in these genes [15,16]. Over the last years, mutations
in other genes, such as PIK3CA and PTEN, have been proposed to predict response to
anti-EGFR therapy [16–20]. However, these associations remain to be further investigated.

Thus, differences in the tumor mutational landscape between populations may trans-
late into a distinct population-specific prevalence of driver mutations and actionable
pathways and, after that, in a particular therapy program.

Numerous studies have been conducted to get a deeper insight into mutations and
target therapy association in CRC. However, the Latin American population is often
underrepresented in them. This entails, among other things, a need for knowledge about
the real benefit this population might get from current and new targeted therapies, or
which one better fits this population’s requirements.

This pilot study offers a unique contribution to colorectal cancer research by analyzing
cohort of 40 Chilean patients. The admixed genomes of modern Chileans reflect ancestral
contributions primarily from Europe and Native America, with a minor African influ-
ence. The Native American component originates from two major indigenous groups: the
Mapuche from southern Chile, and the Aymara and Quechua populations of the north.
Among European influences, Chileans exhibit greater genetic similarity to Spaniards and
Italians compared to British or CEU (Utah Residents with Northern and Western European
Ancestry) populations.

Given the limited data available on Latin American populations in colorectal cancer
research, we focused on a Chilean cohort to gain further insights into the potential for
population-specific genomic characteristics.

Comparisons with established cohorts like MSK-IMPACT and TCGA suggest potential
differences in mutation frequencies, particularly in the PI3K pathway, where the Chilean
cohort appears to have a higher frequency. While the limited sample size restricts definitive
conclusions, these initial observations highlight the importance of including more diverse
populations in colorectal cancer research. Understanding population-specific variations in
driver mutations can inform the development of personalized therapeutic strategies for a
wider range of patients.

2. Results
2.1. Clinical and General Characteristics of the Patients

In this study, 40 primary tumors were assessed. In total, 23 of them were from males,
and 17 were from females. The median age at the diagnosis was 65.5 (ranging from 25 to
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86) years. The histological diagnoses were tubular adenocarcinoma in 45% (18/40) of
the cases, adenocarcinoma not otherwise specified (NOS) in 32.5% (13/40), 5% (2/40)
papillary tubular adenocarcinomas, 2.5% (1/40) poorly differentiated with signet-cells
carcinoma, 2.5% (1/40) adenocarcinoma with mixed mucinous and tubular subtypes, one
mucinous adenocarcinoma (2.5%, 1/40), and 10% (4/40) not specified. CRC was mainly
found in the left colon (LCRC), with thirty-one tumors, whereas nine were in the right
colon (RCRC) (p-value = 1.508 × 10−6). Patients with LCRC were predominantly males
(twenty males vs. eleven females), whereas patients with RCRC were predominantly
females (six females vs. three males), but without a statistically significant difference.
In addition, we explored the difference in CRC diagnosis based on the self-reported
ethnicity of patients; however, we found no difference in the occurrence of LCRC and
RCRC depending on ethnicity (Table 1).

Table 1. General characteristics of the patients and their tumors.

Characteristic RCRC LCRC TOTAL p-Value
(LCRC vs. RCRC) *

Cases 9 31 40 0.000001508
Gender Males 3 20 23 0.1338

Females 6 11 17 0.1338
Mean age at

diagnosis
71.22

(range 51–86) years
61.35

(range 25–82) years
63.58

(range 25–86) years 0.06236

Stage I 0 2 2 1
II 4 12 16 1
III 4 13 17 1
IV 1 4 5 1

Histological
diagnosis

Tubular
adenocarcinoma 3 15 18 0.4761

Adenocarcinoma, NOS 3 10 13 N/A
Papillary-tubular
adenocarcinoma 1 1 2 0.4038

Poorly differentiated
with signet-cells

carcinoma
0 1 1 1

Mucinous
adenocarcinoma 1 0 1 0.225

Adenocarcinoma
mixed tubular and

mucinous
0 1 1 1

Not specified 1 3 4 N/A

Ethnicity Chilean 2 9 11 1
Mapuche 2 3 5 0.2677
European 0 1 1 1

Not specified 6 17 23 N/A

* Statistically significant differences are highlighted in bold. Fisher’s exact test.

2.2. General Landscape

We detected 388 somatic non-synonymous single-nucleotide variants (SNV) and Indels
in 96 out of 135 genes. The most frequent type of mutations were missense mutations
(79.12%), followed by nonsense mutations (14.69%). The most frequently mutated genes
were TP53 (45%), KRAS (30%), PIK3CA (22.5%), ATM (20%), and POLE (20%) (Figure 1).
The median for the number of somatic variants was 3, the lower quartile (25%) was 1,
whereas the higher quartile (75%) was 5.75 (ranging from 0 to 81). One patient had
no detectable somatic variants (male, tumor of rectum, age at diagnosis 79 years), and
there were three hypermutated tumors with 64, 73, and 81 somatic variants. These three
individuals were all males, 66, 42, and 52 years old at diagnosis: the first two with left colon
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cancer and the last with right colon cancer. Unfortunately, no information about MSI status
was available for these tumors.
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One female patient was very young at diagnosis (25 years, left colon cancer), with
MSI high, assessed using IHC (loss of expression of MLH1 and PMS2) and PCR. This
patient had no family history of cancer, BRAF mutations, MLH1, PMS2, MSH2, or MSH6
mutations, but, interestingly, had mutations in POLE (c.2091delC) and BAP1 (c.G160A).

2.3. Mutational Status of Actionable Genes in CRC
2.3.1. KRAS, NRAS, and BRAF

Determination of the mutation status of KRAS, NRAS, and BRAF is the primary
recommendation for patients being considered for anti-EGFR therapy in two major guide-
lines [21,22]. Fourteen KRAS mutations were detected in 30% (12/40) of the samples and
were concentrated in exon 2, codons 12 and 13 (11 mutations), with two patients having
two mutations. The remaining mutations were in exon 2, codon 23, and two in exon 3,
codons 59 and 92. On the other hand, only one sample (2.5%) had a mutation NRAS in
exon 3, codon 60 (Figure 1 and Supplementary Table S1).

Finally, 12.5% (5/40) of the patients had mutations detected in BRAF. These were con-
centrated in exon 15, three corresponding to V600E hotspot mutation, while the remaining
two were in exon 11 (codon 469) and exon 15 (codon 584).

2.3.2. MLH1, PMS2, MSH2, and MSH6

Mutations in the genes coding for the mismatch repair proteins have been related to
mismatch repair deficiency (dMMR) [23], which is a condition that needs to be evaluated
for patients being considered for checkpoint inhibitor therapies [24]. Seven patients had
mutations in PMS2, MSH2, and/or MSH6, and no mutations were found in MLH1. The
patients (six males and one female) had an average age at diagnosis of 60.57 (±11.96,
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ranging from 42 to 75). Among the men, there was only one RCRC, whereas the only
woman had also a RCRC. Five mutations in five patients were seen in PMS2, four missense
mutations, and one frameshift insertion. Six mutations in MSH2 were found in four samples.
three of them in exon 11, and one in exons 4, 10, and 15. Two were non-previously reported
mutations (c.G680T and c.A2495G). Finally, five mutations were found in 7.5% (3/40) of the
patients in MSH6. Unfortunately, MSI/MSS statuses were not available for these patients
(Figure 1 and Supplementary Table S1).

2.4. Mutational Status of Emerging Predictive and Actionable Genes
2.4.1. PIK3CA

Although there is no current clinical recommendation for PIK3CA testing in CRC
samples, mutations in this gene could confer resistance to anti-EGFR therapies and, on
the other side, represent an opportunity for therapy [25,26]. Ten mutations were found
in 22.5% of the patients (9/40); most of them were in exon 10 (four mutations), followed
by exon 2 (three mutations). Two mutations were found in exon 21 and one was found
in exon 5. One of the mutations in exon 2 was a novel in-frame deletion (c.335_337del).
Other mutated genes in the PI3K-AKT-mTOR pathway were TSC1 (two mutations in two
samples, 5%), TSC2 (six mutations in six samples, 15%, Figure 1), and PTEN (six mutations
in four samples, 10%). Notably, one patient had three mutations in PTEN, including a
non-previously reported mutation in exon 1 (c.G21T). The remainder were all in exons 5
and 8 (three and two, respectively). Finally, four mutations in four samples (10%) were
detected in MTOR (Supplementary Table S1).

2.4.2. TP53

Mutations in TP53 have been related to reduced sensitivity to anti-EGFR therapy [27].
Mutations in this gene were found in 45% (18/40) of the patients. Most of them were mis-
sense mutations followed by frameshift and nonsense mutations (14, 2, and 2, respectively).
Eight were in exon 1, two were in exon 2, three were in exon 3, four were in exon 4, and
one was in exon 6.

2.5. Left Versus Right-Sided CRC

Out of the 40 samples sequenced, 31 corresponded to LCRC samples and 9 to RCRC.
The mean age at diagnosis for LCRC was 61.35 (range 25–82) years and for RCRC was
71.22 (range 51–86) years, without a statistically significant difference (Wilcoxon test,
p-value = 0.062). Several genes were found to tend to be mutated in one location or the
other. TP53 was found to be mutated predominantly in LCRC, whereas KRAS, BRAF,
and PIK3CA were found to be mainly in RCRC. The only mutation detected in NRAS was
found in an LCRC sample. Additionally, diverse genes related to DNA damage repair
mechanisms tended to be more frequently mutated in RCRC than in LCRC (BRCA1,
BRCA2, MSH6, PMS2, and POLE). However, the only gene with a significant difference
was TSC2 (44.44% in RCRC vs. 6.45% in LCRC, p-value = 0.016) (Figures 2 and 3).
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2.6. Comparison of Mutation Frequencies in Independent Cohorts

To determine differences or similarities among our cohort (Chilean patients, Chp) and
other populations, colorectal cancer data from TCGA and MSK-IMPACT databases was
obtained through cBioportal. The OncoKB database for colorectal cancer was consulted
for the selection of genes with clinical implications, and mutation frequencies on selected
genes were compared among the three cohorts. Despite the limited sample size, significant
differences were found for NRAS, (p = 3.563 × 10−2), PIK3CA (p = 2.153 × 10−2), PTEN
(0.04155), PMS2 (p = 8.651 × 10−5), TP53 (p = 1.698 × 10−6), and TSC2 (p = 1.463 × 10−4).
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All the remaining comparisons did not indicate statistically significant differences when
compared all the three groups at once (Supplementary Table S2). Afterward, pairwise
comparisons were made to determine if the difference for every gene was between TCGA
vs. Chp or MSK-IMPACT vs. Chp. Significant differences, both for TCGA vs. Chp
for TSC2 (p = 1.847 × 10−5) and PMS2 (p = 1.532 × 10−2), and MSK-IMPACT vs. Chp
for TSC2 (p = 3.062 × 10−2) and for PMS2 (p = 1.125 × 10−4), were found (Figure 4).
NRAS, PIK3CA, and TP53 were significant when comparing MSK-IMPACT vs. TCGA
(p-values = 2.64 × 10−2, 7.87 × 10−3 and 5.74 × 10−7, respectively), but not when compar-
ing to Chp (p-values = 0.85, 0.62, and 0.15 for MSK-IMPACT vs. Chp, and p-values = 0.28,
0.64, and 0.73 for TCGA vs. Chp, respectively). PIK3R1 and PTEN showed a higher fre-
quency of mutations in Chp compared to TCGA (15% vs. 5.38%, p-value = 0.06 and 15% vs.
4.93%, p-value = 0.042) (Figure 4).
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between both groups compared to Chp cohort are indicated (* p < 0.05, chi-square test).

2.7. Left Versus Right Sided CRC in MSK-IMPACT and TCGA Cohorts

LCRC and RCRC were compared independently in both the MSK-IMPACT and the
TCGA cohorts. Except for TP53, all the remaining statistically significant differences were
related to genes more frequently mutated in RCRC when compared to LCRC in both
cohorts. Common to both cohorts were the differences found in BRAF, PIK3CA, and TP53,
whereas statistically significant differences were found in ARID1A, BRCA2, CDK12, FGFR3,
KRAS, MTOR, NF1, NTRK1, NTRK3, MSH2, MSH6, POLE, PTEN, RB1, TSC1, and TSC2
only in the MSK-IMPACT cohort, although with a tendency for agreement with the TCGA
cohort, with exception of TSC2, which has no mutated cases in the RCRC cases (Table 2).
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Table 2. Comparison between LCRC and RCRC in MSK-IMPACT and TCGA, with p-values deter-
mined using a chi-square test. Statistically significant p-values (adjusted for false discovery rate) are
highlighted in bold.

MSK-IMPACT TCGA

Gene LCRC
(n = 311)

RCRC
(n = 199) p-Value adj p-Value LCRC

(n = 142)
RCRC

(n = 78) p-Value adj p-Value

ARID1A 11.58% (36) 24.12% (48) 3.140 × 10−4 1.13 × 10−3 6.34% (9) 16.67% (13) 2.725 × 10−2 1.18 × 10−1

BRAF 8.36% (26) 23.62% (47) 3.015 × 10−6 3.92 × 10−5 2.82% (4) 23.08% (18) 5.191 × 10−6 1.35 × 10−4

BRCA1 4.5% (14) 6.03% (12) 5.76 × 10−1 5.99 × 10−1 2.11% (3) 385% (3) 7.471 × 10−1 9.42 × 10−1

BRCA2 6.75% (21) 22.11% (44) 7.924 × 10−7 2.06 × 10−5 8.45% (12) 12.82% (10) 4.245 × 10−1 8.49 × 10−1

CDK12 2.89% (9) 7.04% (14) 4.774 × 10−2 6.53 × 10−2 2.82% (4) 6.41% (5) 3.516 × 10−1 7.62 × 10−1

CDKN2A 1.93% (6) 4.02% (8) 2.577 × 10−1 2.91 × 10−1 0% (0) 1.28% (1) 7.606 × 10−1 9.42 × 10−1

FGFR1 1.93% (6) 4.52% (9) 1.550 × 10−1 1.83 × 10−1 2.11% (3) 1.28% (1) 1 × 100 1 × 10−0

FGFR2 2.25% (7) 5.03% (10) 1.471 × 10−1 1.82 × 10−1 3.52% (5) 1.28% (1) 5.873 × 10−1 9.42 × 10−1

FGFR3 1.29% (4) 6.53% (13) 3.009 × 10−3 6.52 × 10−3 0% (0) 2.56% (2) 2.402 × 10−1 5.68 × 10−1

KRAS 41.16% (128) 57.79% (115) 3.470 × 10−4 1.13 × 10−3 41.55% (59) 46.15% (36) 6.049 × 10−1 9.42 × 10−1

MLH1 1.93% (6) 5.53% (11) 5.053 × 10−2 6.57 × 10−2 2.82% (4) 5.13% (4) 6.173 × 10−1 9.42 × 10−1

MSH2 2.57% (8) 8.04% (16) 8.538 × 10−3 1.59 × 10−2 3.52% (5) 2.56% (2) 1 × 100 1 × 10−0

MSH6 3.54% (11) 11.06% (22) 1.462 × 10−3 3.8 × 10−3 4.23% (6) 11.54% (9) 7.523 × 10−2 2.79 × 10−1

MTOR 3.54% (11) 14.07% (28) 2.722 × 10−5 1.42 × 10−4 5.63% (8) 11.54% (9) 1.919 × 10−1 5.68 × 10−1

NF1 4.18% (13) 13.07% (26) 4.442 × 10−4 1.28 × 10−3 4.23% (6) 6.41% (5) 6.98 × 10−1 9.42 × 10−1

NRAS 4.18% (13) 5.03% (10) 8.182 × 10−1 8.18 × 10−1 9.15% (13) 8.97% (7) 1 × 100 1 × 10−0

NTRK1 2.57% (8) 8.54% (17) 4.569 × 10−3 9.14 × 10−3 2.11% (3) 3.85% (3) 7.471 × 10−1 9.42 × 10−1

NTRK3 2.25% (7) 6.53% (13) 2.808 × 10−2 4.06 × 10−2 2.11% (3) 11.54% (9) 8.419 × 10−3 5.47 × 10−2

PIK3CA 19.61% (61) 38.19% (76) 6.347 × 10−6 5.16 × 10−5 11.27% (16) 30.77% (24) 6.618 × 10−4 5.74 × 10−3

PMS2 0.96% (3) 2.51% (5) 3.139 × 10−1 3.4 × 10−1 1.41% (2) 5.13% (4) 2.349 × 10−1 5.68 × 10−1

POLE 6.75% (21) 14.07% (28) 9.839 × 10−3 1.71 × 10−2 5.63% (8) 16.67% (13) 1.534 × 10−2 7.98 × 10−2

PTEN 7.07% (22) 16.08% (32) 2.091 × 10−3 4.94 × 10−3 4.93% (7) 5.13% (4) 1 × 100 1 × 10−0

RB1 3.54% (11) 8.54% (17) 2.631 × 10−2 4.96 × 10−2 2.11% (3) 6.41% (5) 2.104 × 10−1 5.68 × 10−1

TP53 81.03% (252) 62.81% (125) 7.944 × 10−6 5.16 × 10−5 65.49% (93) 35.9% (28) 4.515 × 10−5 5.87 × 10−4

TSC1 1.93% (6) 6.03% (12) 2.765 × 10−2 4.06 × 10−2 1.41% (2) 2.56% (2) 9.312 × 10−1 1 × 10−0

TSC2 1.93% (6) 10.55% (21) 5.35 × 10−5 2.32 × 10−4 1.41% (2) 0% (0) 7.562 × 10−1 9.42 × 10−1

2.8. Pathway Analyses

To determine if there were any other differences not being detected by comparing
individual genes, a general comparison based on mutated genes of the RTK-RAS and
PI3K pathways among cohorts was made using the OncogenicPathways tool from the
Maftools package. A significantly higher fraction of samples with altered PI3K pathway
was found in the Chp and the MSK-IMPACT cohorts when compared to TCGA (45%,
38.52%, and 25.56%, respectively, p-values = 0.02 for Chp vs. TCGA, and 0.000921 for
MSK-IMPACT vs. TCGA). Overall, there was not a significant difference as a group in
the RTK-RAS pathway. However, a statistically significant difference was found between
Chp and MSK-IMPACT in a pairwise comparison (57.5% vs. 74.12%, p-value = 0.03622),
whereas for Chp vs. TCGA, the p-value was not low enough, but a tendency was observed
(57.5% vs. 72.65%, respectively, p-value = 0.08) (Figure 5).

A gene-to-gene comparison was made to further investigate the difference between
TCGA and Chp cohorts regarding the PI3K pathway. Significant differences were found in
the frequencies of mutations in TSC2 (p = 1.85 × 10−5) and PTEN (p = 0.042). Moreover,
there is a general tendency for the Chp cohort to have a higher proportion of mutations
in genes of this pathway, having a higher frequency in 10 out of the 12 genes analyzed
(Figure 6). Additionally, although there was not a significant difference in the pairwise com-
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parison between Chp and MSK-IMPACT, a gene-to-gene comparison showed a significant
difference in TSC2 mutation frequency (p = 3.062 × 10−2, Figure 4).
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2.9. General Characteristics of the PI3K Pathway Altered Samples

Among the 18 samples with at least one of the PI3K pathway genes mutated, there
was no significant difference between LCRC and RCRC (12/31 LCRC and 6/9 RCRC,
p-value = 0.2534, Fisher’s exact test). Also, there was no difference between mutated and
non-mutated samples either in LCRC or RCRC (p-values = 0.1269 and 0.3469, respectively,
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Fisher’s exact test). Men and women were affected equally (10/23 and 8/17, respectively,
p-value = 1, Fisher’s exact test). The mean age at diagnosis was 65 years (range 25–86). Half
of the samples have coexistent mutations in KRAS, NRAS, or BRAF (Figure 7).
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3. Discussion

Somatic mutations and their frequencies in CRC have been assessed in many studies,
and population-associated differences have been described. Indeed, some of the most
frequently mutated genes in CRC have a wide range of variation in the mutation frequency
according to ethnicity. For example, studies in patients of African and European ancestry
have reported a higher prevalence of KRAS (60% vs. 50%) and PIK3CA (20% vs. 17%)
mutations in African patients. Also, African patients have a lower prevalence of BRAF V600
mutations (2.0% vs. 6.0%) [28], and a Chinese cohort of 652 subjects showed frequencies of
23.7%, 25.8%, and 9.81% for KRAS, TP53, and PIK3CA [29]. Even further, dos Santos et al.
found differences among the Brazilian population according to their ancestry; individuals
with the highest proportion of African ascendancy had more frequent NF1 and BRAF
mutations, whereas those with the highest proportion of Native American ancestry had
fewer TP53 and PIK3CA mutations when compared to those of intermediate and the lowest
proportion of Native American ancestry [30].

Knowing the frequency of specific mutations with diagnostic, therapeutic, and prog-
nostic value is important to establish proper public health policies, for example, regarding
treatment strategies and access.

3.1. Frequency of CRC Mutations in LATAM Cohorts

Unfortunately, detailed descriptions of mutation frequencies in the Latin American
population are limited [31]. A study of 30 CRC Colombian patients reported frequencies
of 13.3% in KRAS and 6.6% TP53 mutations [32]. In a Chilean CRC cohort of 106 patients,
mutation frequencies of 26%, 12%, and 18% for KRAS, BRAF, and PI3KCA, respectively,
were reported [8]. In both studies, mutation frequencies for KRAS, BRAF, PIK3CA, and
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TP53 were lower compared to the results obtained in this work. This difference can be
explained by the methodology, since authors used qPCR and Sanger sequencing in these
studies, limiting the analysis to specific codons or small regions. In fact, using NGS in a
Brazilian cohort of 91 patients, dos Santos et al., found mutation frequencies similar to our
results in TP53 (56%), BRAF (8.8%), FBXW7 (11%), and PIK3CA (15.4%) [30]. Nevertheless,
they also found a higher incidence of KRAS mutations (52.7% vs. 30% in Chp) and a lower
incidence of ATM mutations (6% vs. 20% in Chp). On the other hand, Takenaka et al. found
different mutation frequencies in advanced rectal cancer from Brazilian and Argentinian
patients in TP53 (78.1% vs. 11%, respectively), KRAS (40.9% vs. 6%) and FBXW7 (17.5%
vs. 6%). It is important to mention that both dos Santos et al. and Takenaka et al. found
APC as the most mutated gene in their cohorts [30,33]. Unfortunately, we do not know the
mutation frequency in our cohort, since this gene was not analyzed.

3.2. Comparison of CRC Mutations with TCGA and MSK-IMPACT Cohorts

We also find differences in mutation frequencies when comparing Chp with other well-
characterized cohorts, TCGA and MSK. Although information about the ethnicity of the
patients in these cohorts was not completely available, they are mainly Caucasian [34,35].
The most notable finding was the higher frequency of TSC2 and PMS2 mutations in the
Chilean cohort, compared to TCGA and MSK. TSC2 mutations were also frequent in a
Chinese cohort, and were associated with bad prognosis [36].

The six TSC2 mutations found in six samples (1 per sample) were manually curated
to discard any potential technical artifact (Figure 3). Five mutations were predicted dele-
terious using at least five prediction tools. These mutations have a COSMIC ID, with
one entry in “large intestine”, and were classified as “somatic” according to a pipeline
previously described [37]. Nevertheless, all six variants were looked for in large population
germline variant databases ExAc and GnomAD (overall and population specific); ABraOM
(Brazilian genomic variants); BIPMed (Brazilian Initiative on Precision Medicine); and in
a local Chilean database. In all databases, these variants had a VAF mostly 0 or <0.0001.
Nevertheless, one of these mutations with COSMIC ID was found with a VAF > 0.5 in the
tumor, and thus a germline origin cannot be discarded in this case.

Regarding PMS2 mutations, five mutations were found in five patients (one per
sample), with VAF ranging from 0.05 to 0.48. Three mutations were found in LCRC and
two in RCRC. Two of the mutations found in LCRC were classified as “novel”, c.T619C and
c.460dupT.

3.3. Left vs. Right CRC

Regarding laterality, we observed previously described differences between LCRC
and RCRC: LCRC was more frequent than RCRC; KRAS, BRAF, and PIK3CA were more
frequently mutated in RCRC [6,38,39]; and TP53 mutations were predominantly found in
LCRC. These differences were also observed in the TCGA and MSK-IMPACT cohorts [39,40].
Given the small sample size (especially for RCRC), these differences were not significant in
Chp. Nevertheless, a significant difference in the frequency of TSC2 mutations was found
between RCRC and LCRC, being higher in RCRC. As far as we know, this finding has not
been reported before.

Although the MSK-IMPACT cohort has more significant differences between mutated
genes on both sides, compared to TCGA, there is a tendency to agree between them.
However, some differences could also be seen; for example, FGFR1, FGFR2, and MSH2
were mainly mutated in RCRC in MSK-IMPACT, whereas the opposite was seen in TCGA.
TSC2 was more frequently mutated in RCRC in the MSK-IMPACT cohort, whereas in TCGA
samples, only two mutations were found in LCRC and no mutations in RCRC.

TSC1/TSC2 genes are part of the PI3K/AKT/mTOR pathway, which are the main
negative regulators of mTOR activation. In the normal activation of the PI3K pathway, Akt
phosphorylates TSC1/TSC2, allowing the activation of mTOR through the GTP-binding
protein Rheb [41,42]. Mutations in TSC1/TSC2 can lead to mTOR overactivation, promoting
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tumor growth [43]. The role of somatic mutations in TSC2 is not described in CRC, but a
study has shown that it could be associated with a worse prognosis when performing a
combined prognostic model of mutations in five genes [36]. TSC2 mutations or other PI3K
components are supposed to sensitize tumors to mTOR inhibitors such as everolimus or
sirolimus, which have been proposed as possible targeted therapies in other non-colorectal
solid cancers [44–47]. Moreover, TSC2 mutations may eventually affect EGFR-TKI response,
since PI3K-AKT-mTOR pathway activation has been described as an important resistance
mechanism in patients treated with EGFR TKIs (see below).

3.4. Comparison between Oncogenic Pathways

Hyperactivation of the PI3K/AKT/mTOR pathway may be an opportunity for treat-
ment with mTOR inhibitor therapy, which has been suggested to have a beneficial effect
when not associated with KRAS mutations [48]. Previous studies have found greater acti-
vation of this PI3K pathway in populations of African ancestry compared to populations of
European ancestry [28]. On the other hand, a similar frequency of activation of the PI3K
pathway was found in a Brazilian cohort to those we observed in TCGA (23.1% and 25.56%,
respectively) [30]. Here, we found greater activation of the PI3K pathway compared to
the TCGA cohort (45% in Chp vs. 25.56%). This is caused not only by the significant
increase in TSC2 mutations, but also PIK3R1 and PTEN, which showed a higher frequency
of mutations in Chp compared to TCGA (15% vs. 5.38%, p-value = 0.06 and 15% vs. 4.93%,
p-value = 0.042).

As mentioned above, in addition to response to mTOR inhibitors, the oncogenic
activation of the PI3K/AKT/mTOR pathway members have been involved in the resistance
to EGFR/BRAF inhibitors. For instance, a PIK3R1 mutation emerged in a patient with a
BRAF V600E mutation after dual treatment with cetuximab and vemurafenib, suggesting a
possible role in acquired resistance to this therapy [20], whilst PIK3CA and PTEN mutations
became detectable in circulating tumor DNA from metastatic CRC patients after treatment
with panitumumab [49]. Colon cancer cell lines showed increased resistance to cetuximab
when PTEN expression is lost or PIK3CA is mutated, and an even higher degree of resistance
when any of these alterations is concurrently present with RAS/BRAF mutations [50].
Additionally, PTEN loss of expression has been associated with resistance to cetuximab in
metastatic CRC [51,52]. Thus, it is plausible to expect that PTEN loss-of-function variants
might influence the performance of a patient to anti-EGFR therapy.

We also observed a slightly higher, but not significant, mutation frequency in PIK3CA
(17.94% TCGA vs. 25% Chp, p-value = 0.4069). Mutations in this gene have been previously
associated with resistance to first-line chemotherapy, poor prognosis [17], and resistance
to EGFR-targeted therapy [52]. However, this latter point could be controversial, as the
predictive value of PIK3CA mutations might be restricted to those affecting exon 20 [18].

Genetic background likely explains some of the previously observed differences be-
tween Latin Americans, and specifically between Chileans and international cohorts. In
Chile, the average individual possesses roughly 48% Native American ancestry with less
than 3% African ancestry, significantly lower than populations like Brazilians and Colom-
bians [34]. Furthermore, Chilean European ancestry (around 50%) shows greater similar-
ity to Spaniards and Italians, who are also underrepresented in cohorts like TCGA and
MSK [35,53]. While this study only captured self-reported ethnicity data from 17 patients,
most identified as “Chilean” (admixed), and all originated from a region with a pre-
dominantly admixed population, reflecting the average genetic makeup of Chile. Future
studies with larger sample sizes and combined genetic ancestry and self-reported ethnicity
data would provide a more comprehensive picture and enable subgroup analysis based
on ethnicity.

A population’s specific genetic composition, interacting with its geographical and/or
cultural environment, may influence the activation of certain carcinogenic pathways, lead-
ing to variations in tumor mutational profiles. For instance, some genetic loci exhibit highly
divergent allele frequencies across diverse geographic regions or ancestries. One such locus
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in Chileans displays significant allele frequency differentiation within the Low-density
lipoprotein Receptor Related Protein 1B (LRP1B) gene, previously linked to obesity, a
known CRC risk factor [54,55]. LRP1B functions as a tumor suppressor, regulating the
extracellular environment to limit cancer cell invasion [56]. Notably, recent research also
suggests LRP1B regulates the PI3K/AKT pathway in Hepatocellular Carcinoma (HCC) [57].
Therefore, polymorphisms in this gene, combined with high-fat diets, could potentially
explain the rising obesity and CRC rates in Chile, along with the higher prevalence of PI3K
pathway mutations described in this work.

4. Materials and Methods
4.1. Samples and Sequencing

Formalin-fixed paraffin-embedded (FFPE) tumor samples were obtained from forty
Chilean CRC patients (Chp) treated at the University Hospital and collected through the
“Biobanco de Tejidos de la Universidad de Chile, BTUCH”. DNA was isolated using
RecoverAll™ Total Nucleic Acid Isolation Kit (ThermoFisher, Waltham, MA, USA). In total,
20ng of DNA were used to library preparation using the Oncomine™ Comprehensive Assay
V3 (Thermo Fisher Scientific) following product instructions. Sequencing was performed
in an Ion S5™ Sytem using Ion 550 kit-CHEF (Thermo Fisher Scientific).

4.2. Bioinformatic Analysis, Variant Calling and Classification

The preprocessing and data processing were carried out using the Oncomine Com-
prehensive Assay v3 (OCA) v5.18 DNA workflow, using default parameters and the hg19
genome reference. For alignment and variant calling, stringent parameters were defined.
Single Nucleotide Variants (SNV) required a minimum allele frequency of 5%, while Indels
required 7%. The minimum coverage for a variant to be considered was set at 10× for SNV
and Indels. Additionally, the minimum coverage for the variant location was set at 50×.

Variant annotation was performed using ANNOVAR [58] including RefGene, Gno-
mAD v2.1.1, ESP6500, ExAC v0.3, 1000 Genomes phase 3, CADD v1.3, dbSNP v150,
COSMIC v94, CLINVAR 2021, ICGC28, ABraOM, and Snp138NonFlaged. To enhance
the filtering of germline variants in tumor samples, large and local population germline
variant databases were interrogated: ExAc and GnomAD (overall and population specific);
BIPMed (Brazilian Initiative on Precision Medicine); and a Chilean database composed
by variants imputed from genotyping 2 arrays with 1313 and 2249 samples from Chilean
individuals [59,60], and whole exome sequencing (WES) data from 87 individuals [61].

4.3. Public Databases

Mutation data of CRC samples were extracted from The Cancer Atlas Genome firehose
legacy and Memorial Sloan Kettering Clinical Sequencing cohorts [56] (hereafter TCGA and
MSK-IMPACT, respectively) through cBioportal (https://www.cbioportal.org, accessed
on 25 march 2022). Only somatic protein-affecting variants found in primary tumors were
analyzed in both datasets. The sample size for the TCGA and MSK-IMPACT cohorts were
223 and 514, respectively.

4.4. Gene Selection

The OncoKB database (https://www.oncokb.org, accessed on 7 July 2022) was con-
sulted to select genes for further comparisons between different cohort data sets. To do that,
filtering based on colorectal cancer was done, choosing all the genes affected by alterations
other than those resulting from large structural alterations (amplifications, translocations,
etc.) and including those valid both for colorectal cancer and for “all solid tumors”, dis-
regarding the level of evidence. These genes were: BRAF, KRAS, NRAS, NTRK1, NTRK3,
ARID1A, CDK12, CDKN2A, FGFR1, FGFR2, FGFR3, MTOR, NF1, and PTEN. Although spe-
cific alterations were associated with drugs in some cases, here we compared all mutations
affecting those genes in all cohorts.

https://www.cbioportal.org
https://www.oncokb.org
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Other genes classically related to CRC or with potential interest were also considered.
Those genes were: BRCA1, BRCA2, MLH1, MSH2, MSH6, PMS2, POLE, RB1, TP53, TSC1,
and TSC2.

4.5. Pathways Analyses

Pathways analyses were made using the OncogenicPathways tool from the Maftool
package, separately considering the RTK-RAS and PI3K pathways. Given that MSK-
IMPACT, TCGA, and Chp cohorts were sequenced using different approaches, only muta-
tions in shared gene regions were performed.

4.6. Statistical Data Analysis

Differences in age at diagnosis between right and left CRC were done using the
Wilcoxon test. Fisher’s exact test was used to compare mutation frequencies within the
Chp cohort (either when comparing RCRC and LCRC, men and women, etc.). The Chi-
square test was performed for comparing mutation frequencies among all three cohorts.
p-values were adjusted according to the Benjamini–Hochberg’s method [62], and pairwise
Chi-square test with Yates’ continuity correction was used for post hoc comparison in case
of a significant p-value (<0.05). All statistical and data analyses were done using R 4.1.1
software. Grouped bar plots, oncoplots, and pathway plots were generated using ggplot2
and MafTools packages in R 4.1.1 software.

5. Conclusions

In this preliminary work, we found differences in TSC2 and PMS2 mutation frequency
and PI3K oncogenic pathway activation in a cohort of 40 CRC from Chilean patients
compared to other cohorts. These differences could be related to ethnicity and genetic
background. However, given that the small size of this study does not allow further
stratification of patients and tumors, intrinsic disease-related factors could also contribute
to differences [53,54].

Nevertheless, these findings may have a high impact on clinical decisions at individual
and public health levels. For instance, our study group showed lower frequency of muta-
tions in the TRK/RAS pathway than international cohorts, suggesting that Chilean patients
may benefit from anti-EGFR therapies. However, on the other side, the most frequently
mutated genes/pathways are associated with resistance to these medications.

Further exploration in larger follow-up studies with a significantly larger sample size
and complete demographic and genetic information are needed to validate these results
and to definitively assess TSC2 mutation frequency, its association with tumor location,
and the influence of genetic background and other factors on the oncogenic process.

These findings highlight the urgent need of tumor characterization of all under-
represented populations and increase diversity in late-stage clinical trials.
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