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Abstract: Brevibacillus sp. JNUCC 41, characterized as a plant-growth-promoting rhizobacterium
(PGPR), actively participates in lipid metabolism and biocontrol based on gene analysis. This study
aimed to investigate the crucial secondary metabolites in biological metabolism; fermentation, ex-
traction, and isolation were performed, revealing that methyl indole-3-acetate showed the best
hyaluronidase (HAase) inhibitory activity (IC50: 343.9 µM). Molecular docking results further re-
vealed that the compound forms hydrogen bonds with the residues Tyr-75 and Tyr-247 of HAase (bind-
ing energy: −6.4 kcal/mol). Molecular dynamics (MD) simulations demonstrated that the compound
predominantly binds to HAase via hydrogen bonding (MM-PBSA binding energy: −24.9 kcal/mol)
and exhibits good stability. The residues Tyr-247 and Tyr-202, pivotal for binding in docking, were
also confirmed via MD simulations. This study suggests that methyl indole-3-acetate holds potential
applications in anti-inflammatory and anti-aging treatments.

Keywords: Brevibacillus; isolation; genome annotation; hyaluronidase inhibitory activity; molecular
docking; molecular dynamics simulation

1. Introduction

Brevibacillus belongs to the family Paenibacillaceae. The genus Brevibacillus was orig-
inally proposed on the basis of the description of 10 species, including the type strain
Brevibacillus brevis [1]. The genus Brevibacillus comprises Gram-positive or Gram-variable,
oval, endospore-forming, rod-shaped bacteria with diverse ecological habitats, including
antibiotic raw products, soil, sediment, microbiological agents, hot springs, and compost,
as well as other habitats.

The genus Brevibacillus is considered a plant-growth-promoting rhizobacterium (PGPR)
and has significant potential value in preventing plant diseases (in tea, tomatoes, cotton,
corn, lettuce, and others), in soil bioremediation for heavy metal removal, etc. Brevibacillus
has exhibited a broad spectrum of inhibitory effects in the field of biological control.
B. formosus strain DSM 9885 and B. brevis strain NBRC 15304 demonstrated the potential to
mitigate the impact of Alternaria alternata, thereby alleviating brown leaf spot disease in
potatoes [2,3]. B. laterosporus AMCC100017 and B. laterosporus BL12 exhibited biocontrol
capabilities against potato common scab [4,5]. B. brevis IPC11 exhibited inhibitory effects
against bacterial canker disease in tomatoes, and B. brevis has been demonstrated as a
potential biocontrol agent to reduce the impact of Fusarium oxysporum [6,7]. However,
Brevibacillus, as a bioremediation factor, plays a crucial role in the removal of chemical
materials and toxic metals and in reducing pollution in agricultural soil, water, and atmo-
spheric environments [8]. A prominent example is the degradation of polyvinyl alcohol
by B. laterosporus into acetate [9]. B. laterosporus can degrade plant tannins in wastew-
ater from tanneries and biodegrade phenol and toluene [10,11]. Brevibacillus sp. may
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exert a significant role in safeguarding plants against Pb, Zn, and Ni toxicity via various
mechanisms [12–14].

Brevibacillus spp. serve as a rich source of antimicrobial peptides (AMPs). Based on the
biosynthetic pathways, AMPs can be categorized into ribosomally and nonribosomally syn-
thesized groups [15]. The majority of Brevibacillus AMPs are nonribosomally synthesized, in-
cluding Tostadin [16], Gramicidin A-C [17], Edeine [18], Spergualin [19], Tauramamide [20],
Tridecapeptide family [21], Brevistin [22], and Brevibacillin [23]. Ribosomally synthesized
Brevibacillus AMPs include Bac-GM100 [24], Laterosporulin [25], and Laterosporulin 10 [26].
A novel lanthipeptide of Brevicillin isolated from the genus Brevibacillus exhibits antimi-
crobial, antifungal, and antiviral activity [27]. The thiazoline derivatives Ulbactin F and G,
isolated from Brevibacillus sp., demonstrate tumor cell migration inhibitory activity [28].
Ethylparaben, discovered from Brevibacillus brevis FJAT-0809-GLX, exhibits antimicrobial
activity [29].

In microbiology, hyaluronic acid (HA) plays a crucial role in immune evasion, protect-
ing bacteria from host and environmental factors [30,31]. Additionally, HA is thought to
participate in physiological processes such as embryogenesis, cell migration, wound heal-
ing, tissue turnover, and malignancies [32–34]. Hyaluronidases are classes of glycosidases
that primarily degrade HA. With the degradation of HA, exogenous inflammatory medi-
ators infiltrate the body, causing an inflammatory response [35,36]. HAase inhibitors are
involved in maintaining the balance between the anabolism and catabolism of HA, leading
to the development of therapeutics of non-steroidal anti-inflammatory drugs (NSAIDs) [37].
The secondary metabolites associated with HAase inhibition include fatty acids, alkaloids,
antioxidants, polyphenols, flavonoids, and terpenoids [38]. The human hyaluronidase
1 (HYAL 1, PDB ID: 2PE4) was studied using molecular docking methods to elucidate the
mechanism regulating the enzyme’s function in the body [39].

The site at which flavonoids (myricetin, rutin, naringin, hesperidin, genistein, and
puerarin) bind to HAase is near Tyr-75 (except for puerarin), Tyr-247, Tyr-286 (except for
hesperidin), Tyr-202, Trp-321, and/or Trp-324, and these compounds form hydrogen bond
interactions with Tyr-75, Tyr-247, and Tyr-286 [40]. Liquiritigenin forms two hydrogen bond
interactions with the Tyr-286 and Asp-292 residues of HAase [41]. N-acetyl cysteine (NAC)
forms hydrophobic interactions with Trp-130, Tyr-202, Phe-204, and Tyr-208. Glutathione
(GSH) binds to the active site via hydrogen bonding with Gly-63, Tyr-247, Tyr-286, Trp321,
and Trp-324 residues [42]. Glucoliquiritin apioside forms hydrogen bonds with Trp-324 and
π–alkyl interactions with Tyr-202 [43]. There are three hydrogen bonds between baicalein
and Asn-37, Tyr-75, and Trp-321. Similarly, three hydrogen bonds also exist between chrysin
and Tyr-75, Tyr-286, and Trp-321 [44]. There are four hydrogen bonds between the –OH
group of silybin and Asn-37, Val-127, Tyr-210, and Tyr-247 [45]. The synthesized eugenol
1,2,3-triazole derivatives exhibited strong binding interactions with Tyr-75 via hydrophobic
interaction, Tyr-286 via π–π interaction, and other Pi-alkyl interactions with Tyr-247, Pro-62,
and Ile-73 residues [46]. Synthesized betulinic acid derivatives form hydrogen bonding
interactions with Arg-240, Arg-20, and Arg-195 [47].

In HAase, Glu-131 plays a crucial direct role in chemical catalysis and may be the
proton donor for the hydroxyl-leaving group, while Asp-129 plays a supporting role [48].
Tyr-202 may bind to the substrate, and Tyr-247 is believed to coordinate and stabilize
oxidation during transition state formation [49].

In this study, Brevibacillus sp. JNUCC 41 was isolated, characterized, and subjected to
comprehensive gene functional annotation. To further investigate the secondary metabo-
lites governing biological functions, the strain was fermented, extracted, and isolated.
Compounds exhibiting hyaluronidase inhibitory activity were screened, followed by an
in-depth investigation of the inhibitory mechanism using molecular docking and molecular
dynamics (MD) simulations.
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2. Results and Discussion
2.1. General Characteristics of the Genome of Brevibacillus sp. JNUCC 41

The genomic sequencing of Brevibacillus sp. JNUCC 41 was performed using an
Illumina HiSeq sequencer, resulting in a total of 5,490,698 base pairs of sequences with a GC
content of 40.33%. The complete genome of JNUCC 41 comprises 5185 CDSs, accounting
for 92.21% of the total genes, along with 39 rRNA (13 5S, 13 16S, and 13 23S) and 84
tRNA operons. The assembled sequence has been submitted to and deposited in the NCBI
GenBank database under the accession ID CP062163.

The illustration in Figure 1 provides a physical chromosome map indicating the positions
of functional genes, the transcription occurring in both directions from specific sites, and
the locations of replication origins (oriC). The genome atlas was drawn using CG View 1.0
(http://stothard.afns.ualberta.ca/cgview_server/, accessed on 21 November 2023) [50].
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Figure 1. Circular map of the Brevibacillus sp. JNUCC 41 strain chromosome. Summary of gene
annotation and GC skew analysis of the genome of the strain JNUCC 41. Circles (from inner to outer):
circle 1 represents the scale; circle 2 shows the GC skew; circle 3 shows the GC content; circles 4 and
7 show CDS, rRNA, and tRNA on the positive and negative strands; and circles 5 and 6 show the
COGs of each of the coding sequences (CDSs).

2.1.1. COGs Database Annotations

The Clusters of Orthologous Genes (COGs) database has served as a widely utilized tool
for microbial genome annotation and comparative genomics. A notable feature of the COG
system is its classification, assigning all COGs to one of the 26 functional categories [51].

A total of 5185 protein-coding sequences were identified, of which 3478 were desig-
nated to COGs. Among the COGs categories in the strain JNUCC 41, seven had the largest
proportions (each with ≥5% of the total COGs classifications): E (amino acid transport and
metabolism, 513 open reading frames, ORFs, 9.89%), K (transcription, 408 ORFs, 7.87%),
R (general function prediction only, 397 ORFs, 7.66%), G (carbohydrate transport and
metabolism, 309 ORFs, 5.96%), J (translation, ribosomal structure, and biogenesis, 290 ORFs,
5.59%), I (lipid transport and metabolism, 274 ORFs, 5.28%), and H (coenzyme transport
and metabolism, 273 ORFs, 5.27%). The detailed numbers of COGs functional categories are
shown in Table S1. In short, the majority of the proteins could be assigned to carbohydrate
and amino acid transport and metabolism, reflecting the active metabolic ability of strain
JNUCC 41 [52].

Moreover, 274 proteins were assigned to lipid transport and metabolism. Lipid trans-
port and metabolism play crucial roles in bacterial metabolism, contributing to various
cellular processes and functions (energy storage and source, membrane structure and
fluidity, cell signaling, virulence and pathogenesis, environmental adaptation, etc.) [53,54].

http://stothard.afns.ualberta.ca/cgview_server/
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Therefore, bacteria modulate their lipid composition in response to environmental changes,
enabling them to adapt to different growth conditions and stresses [55].

2.1.2. GO Database Annotations

Gene ontology (GO) analysis is a powerful bioinformatics tool that plays a significant
role in elucidating the functional roles of genes and their products, including proteins, in
bacterial metabolism [56].

The comparison of the JNUCC 41 strain’s genomic nucleotide sequence with GO
database protein sequences reveals the presence of genes associated with three major types:
cellular components, biological processes, and molecular functions. A total of 2999 genes
have been annotated in the GO database, accounting for 57.8% of the total coding genes.
GO analysis suggested that the biological-process-related genes (1561 ORFs, 30.11%) were
the most abundant in strain JNUCC 41, followed by molecular function (605 ORFs, 11.17%)
and cellular component (833 ORFs, 17.03%).

Among the sub-functions annotated by GO analysis, the metabolic process (521 ORFs,
10.5%) and cellular process (594 ORFs, 11.46%) were dominant in the biological process
category. Catalytic activity (448 ORFs, 8.64%) and binding (187 ORFs, 3.61%) were the core
functions in the molecular function category, and cellular anatomical entity (518 ORFs,
9.99%) was dominant in the cellular component category, as shown in Figure 2.
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In summary, the above results provide a deeper understanding of the molecular basis
of bacterial physiology, adaptation to different environments, and interactions with hosts
or ecosystems.

2.1.3. KEGG Database Annotations

The KEGG database was developed as a reference knowledge base to reveal cellular and
organismal functions from genome sequences and other molecular datasets [57]. The strain
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JNUCC 41 has 2267 genes annotated in the KEGG database, including six primary func-
tional categories: metabolism, genetic information processing, environmental information
processing, cellular processes, organismal systems, and human diseases (Figure 3).
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According to the KEGG database, the genome of strain JNUCC 41 contained a variety
of functional genes related to metabolism (1454 ORFs, 28.14%), including amino acid
metabolism (317 ORFs, 6.11%), carbohydrate metabolism (276 ORFs, 5.32%), the metabolism
of cofactors and vitamins (235 ORFs, 4.53%), energy metabolism (162 ORFs, 3.12%), lipid
metabolism (96 ORFs, 1.85%) and nucleotide metabolism (96 ORFs, 1.85%). A total of
308 ORFs have been annotated in the environmental information processing category, with
178 ORFs related to membrane transport and 129 ORFs associated with signal transduction.

The extensive annotation of metabolism in the strain JNUCC 41 demonstrates its
metabolic capabilities and offers insights into the biochemical processes within bacterial
cells, encompassing the synthesis and breakdown of various molecules, energy production,
and other metabolic activities.

2.1.4. CAZy Database Annotations

A total of 116 proteins were annotated as CAZymes using the dbCAN meta-server [58,59].
As shown in Table S2, among the five functional family domains in strain JNUCC 41, glycosyl
transferases and glycoside hydrolases were the most abundant (32 domains each), followed
by carbohydrate-binding modules (26 domains), carbohydrate esterases (17 domains), and
auxiliary activity (9 domains). The genomic analysis revealed the presence of various glycoside
hydrolase families (GH1, GH3, GH4, GH8, GH13, GH15, GH18, GH23, GH25, GH73, GH109,
GH170, GH171, and GH179) encoding cell-wall-degrading enzymes.

The study suggests that glycoside hydrolases, including GH13, GH2, and GH43, assist
Vibrio parahaemolyticus in degrading algal extracellular polysaccharides. Additionally,
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certain bacteria within the Firmicutes phylum utilize enzymes such as GH1 for polysaccha-
ride degradation [60,61]. Beneficial bacteria utilize key carbohydrate metabolism genes to
metabolize algal polysaccharides, facilitating material exchange with algae and potentially
aiding in algae’s resistance to external stress via substance secretion or other mechanisms,
thereby achieving biological control [62].

Previous studies have indicated that glycoside hydrolase activity can reduce the
biomass of adherent biofilms, resulting in the secretion of low-molecular-weight Pel ex-
tracellular polysaccharides. This activity has the potential to decrease the virulence of
Pseudomonas aeruginosa in Caenorhabditis elegans and Drosophila melanogaster. The glyco-
side hydrolase family PeBgl1 has been shown to reduce the pathogenicity of Penicillium
expansum on apples [63]. In summary, it is tentatively speculated that the strain JNUCC 41
inhibits the proliferation of pathogenic bacteria by disrupting the integrity of the pathogen’s
cell wall.

2.1.5. Virulence Factor Gene Mining

A total of 43 putative virulence genes associated with the adhesion, colonization,
and destruction of tissues were found in the strain JNUCC 41 using the virulence factor
database (VFDB) [64]. As shown in Table S3, the VFDB functional categories revealed
that the most abundant families were immune modulation (23 domains), followed by
nutritional/metabolic factor (5 domains), adherence (4 domains), regulation (3 domains),
exoenzyme (2 domains), exotoxin (2 domains), effector delivery system (2 domains), and
motility (1 domain).

Immune modulation involves hyaluronic acid, polyglutamic acid, and polysaccharide
capsules, with previous studies showing bacteria like Streptococcus and Pasteurella multocida
produce hyaluronic acid in their capsules and mucus [65]. In vivo, Bacillus anthracis secretes
a polypeptide capsule called polyglutamic acid, which protects it from phagocytosis and
partially resists the bactericidal effects of human defensins [66]. Polysaccharide capsules
have the potential to mediate various biological processes, including invasive infections in
humans [67]. Additionally, fibronectin-binding protein (FbpA) is involved in adherence,
and studies have shown its effective antibacterial activity against Staphylococcus aureus
infections in the mammary gland [68,69].

2.2. Secondary Metabolites Isolated from Brevibacillus sp. JNUCC 41

A total of five known compounds were obtained from the purification of the ethyl
acetate extract (600 mg) of the culture broth of strain JNUCC 41, including methyl indole-
3-acetate (1) [70], dibutyl phthalate (2) [71], daidzein (3) [72], maculosin (4) [73], and
N-Acetyl-L-tryptophan (5) [74], as shown in Figure 4.
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2.3. Hyaluronidase Inhibitory Activity of the Isolated Secondary Metabolites

The hyaluronidase inhibitory activities of all compounds were screened. Among them,
methyl indole-3-acetate showed hyaluronidase inhibitory activity with an IC50 value of 343.9µM.
EGCG were used as positive controls, with IC50 values of 172.3 µM. (Table 1, Figure 5).
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Table 1. Hyaluronidase-inhibitory activity of compounds isolated from the strain JNUCC 41.

Compounds Hyaluronidase-Inhibitory Activity
IC50 (µM)

Methyl indole-3-acetate 343.9
Dibutyl phthalate -

Maculosin -
N-Acetyl-L-tryptophan -

EGCG 172.3
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2.4. Molecular Properties and Drug Likeness

The ADMET properties and drug-likeness properties of the compounds were ob-
tained via a web server, as shown in Tables S4 and S5. The physicochemical properties
indicate the high CaCO-2 permeability of methyl indole-3-acetate. It does not act as an
inhibitor or substrate of P-glycoprotein (p-gp). It only inhibits CYP1A2, whereas EGCG
is a CYP3A4 inhibitor. The topological polar surface area (TPSA) is correlated with the
transmembrane transport characteristics, blood–brain barrier penetration, and intestinal
permeability prediction [75]. Molecules with a TPSA/PSA of ≤160 Å2 demonstrate good
intestinal absorption, while those with a TPSA/PSA ≤ 60 Å2 exhibit blood–brain barrier
(BBB) permeability [76]. The TPSA of methyl indole-3-acetate is less than 160 Å2, and the
human intestinal absorption rates are more than 90%, far surpassing EGCG. Additionally,
methyl indole-3-acetate displays TPSA ≤ 60 Å2, suggesting that it is a better BBB agent.

The predicted plasma protein binding (PPB) of 56.81% suggests moderate affinity of
the molecule for plasma transport proteins. This may elevate levels of the active form in
tissues, enhancing pharmacological effects by facilitating improved tissue penetration and
interaction with target sites. Additionally, moderate PPB could minimize interference in
pharmacokinetic processes.

The predicted half-life of methyl indole-3-acetate is 0.898 h, and the clearance rate is
10.460 mL/min/kg. Regarding toxicity, methyl indole-3-acetate did not reveal hepatotox-
icity, skin sensitization, Ames toxicity, or hERG inhibition, while EGCG exhibited hERG
inhibition. The lethal toxicity dose of all compounds was high. In summary, the results
indicate that the compound methyl indole-3-acetate has certain advantages in ADMET
properties compared with the reference compound.

With a molecular weight of 189.08 g/mol, a log p of 2.2, one hydrogen-bond donor,
and three hydrogen-bond acceptors, methyl indole-3-acetate showed zero violations of
Lipinski’s rule [77]. The Ghose Filter values were −0.4 ≤ log p ≤ 130, 40 ≤ molar refractivity
≤ 130, 160 ≤ molecular weight ≤ 480, 20 ≤ number of atoms ≤ 70, and TPSA ≤ 140 Å2 [78],
the Veber Filter considers good bioavailability for compounds with TPSA ≤ 140 Å2 and
number of rotatable bonds ≤ 10 [79], and the Egan Filter considers drug candidates to have
good oral bioavailability when the values are −1.0 ≤ log p ≤ 5.8 and TPSA ≤ 130 Å2 [80].
The results show that methyl indole-3-acetate complies with the Ghose Filter, Veber Filter,
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Egan Filter, and Lipinski’s rule. Overall, methyl indole-3-acetate has better drug-likeness
properties compared to the reference compound.

2.5. Docking and Molecular Dynamics (MD) Simulations
2.5.1. Molecular Docking

Generally, if the change in system free energy is negative, protein–ligand binding
can occur spontaneously. A binding energy of more negative than −5 kcal/mol signifies
excellent binding affinity. To analyze the inhibition mechanism, molecular docking was
conducted utilizing the internal cavity of HAase (PDB ID: 2PE4) as the active site [81].
In this docking study of HYAL 1 with methyl indole-3-acetate, the binding energy was
calculated to be −6.4 kcal/mol, indicating a high degree of binding between HYAL 1
and methyl indole-3-acetate. The visualization of the docking results using PyMOL 2.3.0
and Discovery Studio 2019 [82,83] is shown in Figure 6. The results reveal that methyl
indole-3-acetate interacts with the amino acid residues Tyr-75 and Tyr-247 in chain A of
HYAL 1, forming two hydrogen bonds (represented by green dashed lines) with bond
distances of 2.35Å and 2.95Å, respectively. A hydrogen bond distance below 3.0 Å indicates
stronger mutual attraction between the hydrogen atom and the electronegative atom, hence
implying stronger interaction forces. Additionally, there is a π–π stacking interaction with
Tyr-202 (purple dashed line) and two π–alkyl interactions with Ile-73 and Tyr-202 (pale
pink dashed lines).
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The docking results reveal several key interactions: Firstly, the carbonyl group of
methyl indole-3-acetate forms hydrogen bonds with Tyr-247, a residue recognized for
stabilizing oxidation during transition state formation [49], and the amino group interacts
with Tyr-75 via hydrogen bonding. Secondly, the phenyl group interacts with Tyr-202, a
hydrophobic amino acid likely involved in substrate binding [84], via π–π stacking and
π–alkyl interactions. Thirdly, interactions occur between the compound and hydropho-
bic amino acid residues, specifically Asp-129 and Glu-131, recognized for their chemical
catalysis role [48], forming π–anion and carbon–hydrogen interactions, respectively. The im-
portance of Glu-131, Asp-129, Tyr-202, and Tyr-247 is underscored by mutagenesis studies,



Int. J. Mol. Sci. 2024, 25, 4611 9 of 18

which demonstrate impaired enzyme activity upon their alteration. These findings suggest
that methyl indole-3-acetate occupies the catalytic active site of HAase, potentially leading
to decreased catalytic activity.

The results indicate that in the ten repeated docking experiments, as shown in Figure 7,
methyl indole-3-acetate consistently binds to HYAL 1 at the same location with minimal con-
formational differences. Furthermore, the fluctuation in docking binding energies within
±0.1 kcal/mol suggests high reproducibility, affirming the feasibility of the molecular
docking method.
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However, the semi-flexible docking approach used in molecular docking cannot
account for the flexibility of protein structures. To further validate the degree and stability
of binding between ligands and proteins, this study conducted a 100 ns molecular dynamics
simulation of the complex between HYAL 1 and methyl indole-3-acetate.

2.5.2. Molecular Dynamics (MD) Simulations

The RMSD is a critical parameter for assessing the stability of protein–ligand com-
plexes, where smaller RMSD values indicate minimal overall structural changes in the
complex, thus indicating better stability of the complex [85]. As shown in Figure 8a, the
RMSD curve of the complex between HYAL 1 and methyl indole-3-acetate fluctuates within
a range of 1 nm during the process of MD simulations, with no significant fluctuations
observed. The RMSD analysis suggests that the structural flexibility of HYAL 1’s active
site regions is crucial in facilitating conformational changes induced by ligand binding,
particularly evident in the complex formed with methyl indole-3-acetate.
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Figure 8. Results of molecular dynamics simulations. (a) RMSD curve; (b) RMSF curve.

The RMSF represents the extent of the fluctuation of amino acid residues in the protein
during MD simulations [86]. Higher RMSF values indicate greater fluctuations in the
amino acid residues, whereas lower RMSF values indicate smaller fluctuations. As shown
in Figure 8b, the RMSF curves of the complex of HYAL 1 with methyl indole-3-acetate
fluctuate within a range of 1 nm, with no significant fluctuations observed. Only the
terminal amino acids exhibit reasonable fluctuations close to 0.5 nm. This indicates that
the addition of methyl indole-3-acetate has minimal impact on the stability of amino acid
residues in the HYAL 1, and the stability of the formed complex is excellent.
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Rg is used to characterize the compactness and stability of structures, with a larger
Rg indicating a more severe expansion of the system during MD simulations, whereas a
smaller Rg suggests that the system remains compact and stable during MD simulations [87].
As shown in Figure 9a, the Rg curve of the complex formed between HYAL 1 and methyl
indole-3-acetate consistently fluctuates within the range of 2.2–2.3 nm throughout the
simulation, maintaining a compact conformation without notable deviations. This observa-
tion suggests that the interaction between methyl indole-3-acetate and HYAL 1 leads to
a compact binding without inducing significant structural changes in the overall protein
conformation upon methyl indole-3-acetate binding.
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To investigate the hydrogen-bonding properties of the binding site of the complex,
this study calculated the number of hydrogen bonds between the ligand and the protein,
which play a major role in stabilizing the complex [88]. As shown in Figure 9b, after 20 ns,
the number of hydrogen bonds between HYAL 1 and methyl indole-3-acetate stabilized
at 1-2, with smooth fluctuations in the hydrogen bond curve, indicating a good hydrogen
bond interaction between HYAL 1 and methyl indole-3-acetate.

The SASA is one of the factors used to study protein structure folding and stability [89].
Proteins with stable structures typically exhibit more stable SASA curves. As shown in
Figure 10a, the SASA curve of the complex between HYAL 1 and methyl indole-3-acetate
remains stable throughout the simulation without significant fluctuations, indicating the
high stability of the complex.
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Figure 10. Results of molecular dynamics simulations. (a) SASA plot; (b) Gibbs FEL plot.

The Gibbs FEL was calculated using the built-in Gromacs scripts g_sham and xpm2txt.py.
The Gibbs relative free energy was obtained based on RMSD and Rg values and plotted as X, Y,
and Z axes to generate the Gibbs FEL [90]. The Gibbs FEL is used to describe the energetically
favored conformations throughout the entire MD simulation of the complex. Weak or unstable
interactions between the protein and ligand result in multiple and rough energy clusters on
the Gibbs FEL, whereas strong and stable interactions form nearly single and smooth energy
clusters. In Figure 10b, dark purple/blue spots reflect stable structures with the lowest energy
values, while red/yellow spots represent unstable structures. The results demonstrate that the



Int. J. Mol. Sci. 2024, 25, 4611 11 of 18

Gibbs FEL of the complex between HYAL 1 and methyl indole-3-acetate forms a single and
concentrated energy cluster, indicating the good stability of the complex.

After achieving stability in the complex system, we computed the MM/PBSA-binding
energy [91] of the HYAL 1 with methyl indole-3-acetate complex. In the gas phase, interactions
primarily consist of van der Waals forces and electrostatic interactions. In MM-PBSA calcu-
lations, gas phase Gibbs free energy (GGAS) can be computed as the sum of van der Waals
energy (VDWAALS) and electrostatic energy (EEL). with VDWAALS at −24.15 kcal/mol
and EEL at −25.01 kcal/mol, GGAS is calculated as −49.17 kcal/mol (Figure 11a). Typically,
solvent effects are considered via solvent polarization energy (EGB) and surface tension energy
(ESURF), which contribute to solvent Gibbs free energy (GSOLV). With EGB at 27.83 kcal/mol
and ESURF at −3.56 kcal/mol, GSOLV is calculated as 24.27 kcal/mol. The total free energy
(∆G) in MM-PBSA calculations is the sum of GSOLV and GGAS. Negative ∆G values denote
stable binding, indicating strong ligand-receptor interactions, while positive values suggest
instability or repulsion. A final MM-PBSA result of −24.9 kcal/mol indicates a stronger
binding affinity.
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The results of the residue–energy analysis [92] demonstrated that the methyl indole-3-
acetate ligand binds most effectively to the amino acid residues Tyr-202, Tyr-247, Tyr-286,
and Trp-321 in the HYAL 1, indicating that Tyr-202, Tyr-247, Tyr-286, and Trp-321 play
a major role in the interaction between the methyl indole-3-acetate ligand and HYAL 1.
The results are shown in Figure 11b.

To further analyze the binding status of the complexes during the MD simulation
process, the complex structures at 25 ns, 50 ns, 75 ns, and 100 ns in the MD simulation
trajectory of the methyl indole-3-acetate were extracted and compared. Throughout the
MD simulation process, it was evident that methyl indole-3-acetate consistently occupies
the internal cavity of the active binding site in the HYAL 1 without significant changes,
indicating that the formed complex exhibits good stability, as depicted in Figure 12.
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3. Materials and Methods 

3.1. Isolation of the Bacterial Brevibacillus sp. JNUCC 41 

Brevibacillus sp. JNUCC 41 was isolated from Baengnokdam, the summit crater of 
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performed using 16S ribosomal RNA gene sequencing. Soil samples (0.5 g) were sus-
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3.2. Genome Extraction and Sequencing 
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3. Materials and Methods
3.1. Isolation of the Bacterial Brevibacillus sp. JNUCC 41

Brevibacillus sp. JNUCC 41 was isolated from Baengnokdam, the summit crater of
Mount Halla on Jeju Island, Republic of Korea. The initial identification of the strain was
performed using 16S ribosomal RNA gene sequencing. Soil samples (0.5 g) were suspended
in 0.45 mL of 0.1% Tris buffer (w/v) and agitated at 180 rpm at 30 ◦C for 1 h. Subsequently,
100 µL of the suspension was subjected to serial dilution (10−5 to 10−9) and plated onto
MRS medium. For routine culture, the strain JNUCC 41 was cultured aerobically on LB
solid medium and LB liquid broth for 1 day at 30 ◦C, with preservation in a 20% (v/v)
glycerol suspension at −80 ◦C.

3.2. Genome Extraction and Sequencing

The QIAGEN genomic-tip Kit (Qiagen Inc., Shenzhen, China) was used to extract
whole-genomic DNA from solid colonies of strain JNUCC 41. The genome was sequenced
using PacBio RSII and an Illumina platform at Macrogen, Inc. (Seoul, Republic of Korea).
The presence of plasmids in the genome was assessed using PlasmidFinder 2.1.

3.3. Genome Annotation

The genes obtained were subjected to comparison with COGs (https://www.ncbi.nlm.
nih.gov/COG/, accessed on 21 November 2023), GO (https://geneontology.org/, accessed
on 21 November 2023), and KEGG (https://www.kegg.jp/, accessed on 21 November 2023)
databases for functional annotation information using BLAST, BLAST2GO, and Diamond
sequence alignment tools. The parameter E-value for Diamond was set to 10−5. To predict
virulence genes, antibiotic resistance genes, and carbohydrate-active enzymes in strain
JNUCC 41, the Virulence Factor Database (VFDB) (http://www.mgc.ac.cn/cgi-bin/VFs/
v5/main.cgi, accessed on 21 November 2023) was used for virulence gene detection, and
the Carbohydrate-Active Enzymes database (CAZy) (https://bcb.unl.edu/dbCAN2/blast.
php/, accessed on 21 November 2023) was used for carbohydrate-active enzyme detection.
http://www.mgc.ac.cn/VFs/main.htm, accessed on 21 November 2023.

3.4. General Experimental Procedures

Luria–Bertani Broth (LB) and Lactobacilli MRS Broth (Becton, Franklin Lakes, NJ, USA)
were used for the bacterial culture. Silica gel (Merck, Darmstadt, Germany) and Sephadex
LH-20 gel (Sigma-Aldrich, St. Louis, MO, USA) were used for chromatographic separations.
Thin-layer chromatography (TLC) plates (Merck, Darmstadt, Germany) were used for
analytical purposes. Hyaluronidase was obtained from bovine testes (Sigma-Aldrich,
St. Louis, MO, USA). Nuclear magnetic resonance (NMR) spectrums were obtained using
JNM-ECX 400 (FT-NMR system, 400 MHz, JEOL Co., Akishima, Japan).
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3.5. Fermentation, Extraction, and Isolation

The strain JNUCC 41 was cultured in a 250 mL flask containing 125 mL of LB medium
at 30 ◦C for 48 h in a shaking incubator. Subsequently, the culture was scaled up to four 5 L
flasks, each containing 1 L of LB medium, with an initial inoculum volume of 5% (v/v).
The culture solution (4 L) of strain JNUCC 41 underwent extraction with EtOAc (4 L
× 3 times). The EtOAc extraction was concentrated under reduced pressure to yield a
residue (600 mg). Subsequently, The EtOAc soluble fraction was subjected to vacuum liquid
chromatography (VLC) on silica gel using a step gradient (CHCl3–MeOH, 300 mL each) to
provide 10 fractions (Fr. V1–V10).

Compound 1 (10.4 mg), Compound 2 (11.2 mg), and Compound 3 (13.8 mg) were isolated
from combined Fr. V5 using silica gel column chromatography (CC) with CHCl3–MeOH (50:1,
v/v). Compounds 4 (16.2 mg) and 5 (10.7 mg) were isolated from combined Fr. V9 using
silica gel column chromatography (CC) with CHCl3–MeOH (20:1, v/v). The nuclear magnetic
resonance (NMR) data of the isolated compounds are presented in Figures S1–S10.

3.5.1. Methyl Indole-3-Acetate
1H NMR (400 MHz, CHLOROFORM-D) δ 7.62 (ddt, J = 7.8, 1.5, 0.8 Hz, 1H, H-4),

7.34 (dt, J = 8.1, 1.0 Hz, 1H, H-7), 7.21 (ddd, J = 8.1, 7.0, 1.3 Hz, 1H, H-1), 7.17–7.12 (m,
2H, H-5 and H-6), 3.79 (d, J = 0.9 Hz, 2H, H-9), 3.71 (s, 3H, H-11). 13C NMR (101 MHz,
CHLOROFORM-D) δ 172.71 (C-10), 136.19 (C-8), 127.31 (C-3), 123.20 (C-1), 122.33 (C-6),
119.81 (C-5), 118.95 (C-4), 111.33 (C-7), 108.51 (C-2), 52.12 (C-11), and 31.26 (C-9).

3.5.2. Dibutyl Phthalate
1H NMR (400 MHz, CHLOROFORM-D) δ 7.71 (dd, J = 5.7, 3.3 Hz, 2H, H-3 and H-4),

7.57 –7.48 (m, 2H, H-2 and H-5), 4.30 (t, J = 6.7 Hz, 4H, CH2-2′ and CH2-2′′), 1.77–1.66 (m,
4H, CH2-3′ and CH2-3′′), 1.51–1.37 (m, 4H, CH2-4′ and CH2-4′′), 0.96 (t, J = 7.4 Hz, 6H,
CH3-5′ and CH3-5′′). 13C NMR (101 MHz, CHLOROFORM-D) δ 167.55 (C-1′ and C-1′′),
132.11 (C-1 and C-6), 130.74 (C-3 and C-4), 128.65 (C-2 and C-5), 65.38 (C-2′ and C-2′′), 30.37
(C-3′ and C-3′′), 18.99 (C-4′ and C-4′′), and 13.55 (C-5′ and C-5′′).

3.5.3. Daidzein
1H NMR (400 MHz, DMSO-D6) δ 10.80 (s, 1H, H-5′), 9.55 (s, 1H, H-11), 8.29 (s, 1H,

H-2), 7.97 (d, J = 8.8 Hz, 1H, H-5), 7.42–7.36 (m, 2H, H-2′ and H-2′′), 6.94 (dd, J = 8.8,
2.3 Hz, 1H, H-6), 6.86 (d, J = 2.2 Hz, 1H, H-8), 6.84–6.78 (m, 2H, H-3′ and H-3′′). 13C NMR
(101 MHz, DMSO-D6) δ 174.74 (C-4), 162.55 (C-7), 157.47 (C-9), 157.22 (C-4′), 152.87 (C-2),
130.13 (C-2′ and C-2′′), 127.34 (C-5), 123.52 (C-3), 122.58 (C-1′), 116.67 (C-10), 115.16 (C-3′

and C-3′′), 114.99 (C-6), and 102.14 (C-8).

3.5.4. Maculosin
1H NMR (400 MHz, METHANOL-D3) δ 7.10–6.98 (m, 2H, H-10 and H-14), 6.75–6.66

(m, 2H, H-11 and H-13), 4.36 (td, J = 4.9, 1.9 Hz, 1H, H-6), 4.04 (ddd, J = 11.0, 6.3, 1.9 Hz,
1H, H-3), 3.54 (dt, J = 11.9, 8.3 Hz, 1H, H-4a), 3.36 (d, J = 5.9 Hz, 1H, H-4b), 3.13–2.97 (m,
2H, H-8), 2.16–2.00 (m, 1H, H-2a), 1.80 (tdd, J = 8.4, 6.6, 4.6 Hz, 2H, H-1), 1.29–1.15 (m,
1H, 2b). 13C NMR (101 MHz, METHANOL-D3) δ 170.78 (C-5), 166.95 (C-7), 157.66 (C-
12), 132.12(C-10 and C-14), 127.62 (C-9), 116.17 (C-11 and C-13), 60.04 (C-3), 57.88 (C-6),
45.91 (C-4), 37.63 (C-8), 29.38 (C-2), and 22.71 (C-1).

3.5.5. N-Acetyl-L-Tryptophan
1H NMR (400 MHz, DMSO-D6) δ 10.84 (d, J = 2.3 Hz, 1H, H-1′), 8.17 (d, J = 7.8 Hz, 1H,

H- 4), 7.53 (dd, J = 7.8, 1.1 Hz, 1H, H-6′), 7.33 (dt, J = 8.0, 0.9 Hz, 1H, H-7′), 7.14 (d, J = 2.4 Hz,
1H, H-5′), 7.06 (ddd, J = 8.1, 7.0, 1.2 Hz, 1H, H-2′), 6.98 (ddd, J = 7.9, 6.9, 1.1 Hz, 1H, H-4′),
4.51–4.41 (m, 1H, H-2), 3.16 (dd, J = 14.6, 5.0 Hz, 1H, H-1), 2.98 (dd, J = 14.6, 8.8 Hz, 1H, H-1),
1.80 (s, 3H, H-6). 13C NMR (101 MHz, DMSO-D6) δ 173.65(C-3), 169.31(C-5), 136.14(C-8′),
127.24 (C-9′), 123.59 (C-5′), 120.97 (C-4′), 118.42 (C-2’), 118.21 (C-6′), 111.44 (C-7′), 110.02 (C-3′),
53.03 (C-2), 27.18(C-6), and 22.46 (C-1).
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3.6. Hyaluronidase Inhibitory Activity of Secondary Metabolites

In the enzymatic assay, 5 µL of hyaluronidase enzyme and 12.5 mM CaCl2 samples at
varying concentrations were added to a 96-well plate. The samples were reacted for 20 min
and incubated at 37 ◦C. After the initial incubation, 25 µL of the substrate solution (HA at
a concentration of 2.4 mg/mL) was added. The reaction mixture was incubated again at
37 ◦C for 40 min. Then, 5 µL of 0.4 N NaOH and 5 µL of 0.4 M potassium tetraborate were
added to the mixture, followed by incubation at 100 ◦C for 3 min. After cooling, 150 µL
of DMAB solution (p-dimethylaminobenzaldehyde + acetic acid + 10 N HCL) was added
to the reaction mixture. The absorbance of the reaction mixture was measured at 540 nm.
Epigallocatechin gallate (EGCG) was used as a positive control in this assay.

3.7. Molecular Properties and Drug Likeness

Pharmacokinetic parameters were assessed via the analysis of ADMET and drug-
likeness properties. By submitting the SMILES information of the compound to a prediction
website, obtain the ADMET and drug-likeness properties of the compound. The ADMET
properties of the compounds were comprehensively investigated utilizing various models,
including ADMETlab 2.0, admetSAR 2.0, and pkCSM. The drug-likeness properties of the
compounds were assessed using SwissADME (http://www.swissadme.ch/, accessed on
18 February 2024).

3.8. Molecular Docking Simulation

The 3D structure of the receptor protein human hyaluronidase 1 (PDB ID: 2PE4)
was obtained from the Protein Data Bank (PDB) (http://www.rcsb.org/, accessed on
29 January 2024). PyMOL 2.3.0 software was used to inspect the protein structure for
docking purposes. The 3D structure of the ligand methyl indole-3-acetate (PubChem CID:
74706) was downloaded from the PubChem database (https://pubchem.ncbi.nlm.nih.gov/,
accessed on 29 January 2024), and the molecular structure was optimized using the MMFF94
force field in OpenBabel 2.4.1 software to obtain the optimal molecular structure in its
lowest energy state [93].

Using AutoDock Tools 1.5.6 [94], the protein was subjected to hydrogenation treatment,
and the ligand molecules were hydrogenated and treated to identify rotatable bonds
and saved as pdbqt files. The docking parameters were set as follows: center_x = 41.8,
center_y = −19.2, center_z = −16.2, size_x = 28, size_y = 28, and size_z = 28. The docking
mode was configured for semi-flexible docking, with an exhaustiveness of 25, and the
Lamarckian Genetic Algorithm (LGA) as the docking algorithm. Molecular docking was
performed using AutoDock Vina 1.2.0 software to obtain the binding free energy and
docking result files. To validate the reliability of molecular docking, this study conducted
ten repeated docking simulations of the protein–ligand complex under identical conditions
and compared the results.

3.9. Molecular Dynamics (MD) Simulations

The complex of HYAL 1 and methyl indole-3-acetate was subjected to molecular
dynamics simulations using Gromacs 2022 software. The Amber14sb force field was
applied to the protein, while the Gaff2 force field was used for the ligand. The SPC/E
water model was employed to solvate the protein–ligand system, and a periodic boundary
box with a size of 1.2 nm was established. The particle mesh Ewald (PME) method was
utilized to compute long-range electrostatic interactions. To neutralize the system’s charge,
an appropriate number of sodium and chloride ions were introduced using the Monte
Carlo ion placement method.

Prior to the formal simulation, the system underwent energy minimization and equi-
libration via the following three steps: (1) The energy minimization of each system was
performed using the steepest descent algorithm with 50,000 steps (minimization stopped
when the maximum force < 1000 kJ/mol). (2) Each system underwent a 50,000-step NVT
ensemble simulation, maintaining the number of particles, temperature at 310 K, and a time
step of 2 fs. (3) A 50,000-step NPT ensemble simulation was conducted for each system,

http://www.swissadme.ch/
http://www.rcsb.org/
https://pubchem.ncbi.nlm.nih.gov/
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with the temperature set at 310 K, pressure at 1 atm, and a time step of 2 fs. The simulation
was then continued for 100 ns, whereby the coordinates were saved every 10 ps for analysis.

Ultimately, we analyzed the MD simulation trajectory of the HYAL 1–methyl indole-3-
acetate complex, focusing on the root mean square deviation (RMSD), root mean square fluc-
tuation (RMSF), solvent-accessible surface area (SASA), radius of gyration (Rg), hydrogen-
bond analysis (H-bond), Gibbs free energy landscape (FEL), molecular mechanics–Poisson–
Boltzmann surface area (MM-PBSA) binding energy, and energy contributions from amino
acids involved in binding (residue–energy). Additionally, we conducted structural compar-
isons of the complex at time points of 25, 50, 75, and 100 ns.

4. Conclusions

The genome functional annotation of Brevibacillus sp. JNUCC 41 indicates robust
metabolic capabilities, thus prompting the exploration of secondary metabolites that play
significant roles in biological metabolism. Among the secondary metabolites, methyl
indole-3-acetate exhibited better HAase inhibitory activity and demonstrated favorable
ADMET and drug-likeness properties compared to the reference compound EGCG.

The results of molecular docking simulations on the inhibition mechanism showed
that methyl indole-3-acetate forms two hydrogen bonds with amino acid residues Tyr-247
and Tyr-75 and interacts with various hydrophobic amino acid residues within the active
site, thereby inhibiting the activity of HYAL 1. MD simulation revealed that the com-
plex formed between HYAL 1 and methyl indole-3-acetate exhibits remarkable stability, as
evidenced by RMSD, RMSF, Rg, SASA, and Gibbs FEL. Hydrogen bond analysis further sup-
ports the stability of the complex through favorable interactions. The MM/PBSA binding
energy calculation (−24.9 kcal/mol) underscores a robust binding affinity. The residue–
energy analysis identified Tyr-247 and Tyr-202 as crucial residues mediating the binding
of methyl indole-3-acetate to the HYAL 1, consistent with molecular docking predictions
highlighting their pivotal roles in the interaction. In general, methyl indole-3-acetate,
as an active molecule inhibiting HAase, exhibits promising potential for applications in
anti-inflammatories and cosmetics (anti-aging, wrinkle reduction, and moisturizers).
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