
Citation: Marafini, I.; Monteleone, I.;

Laudisi, F.; Monteleone, G. Aryl

Hydrocarbon Receptor Signalling in

the Control of Gut Inflammation. Int.

J. Mol. Sci. 2024, 25, 4527. https://

doi.org/10.3390/ijms25084527

Academic Editor: Jörg Lehmann

Received: 25 March 2024

Revised: 11 April 2024

Accepted: 17 April 2024

Published: 20 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Aryl Hydrocarbon Receptor Signalling in the Control of
Gut Inflammation
Irene Marafini 1, Ivan Monteleone 2, Federica Laudisi 3 and Giovanni Monteleone 1,3,*

1 Gastroenterology Unit, Policlinico Universitario Tor Vergata, 00133 Rome, Italy; irene.marafini@gmail.com
2 Department of Biomedicine and Prevention, University of “Tor Vergata”, 00133 Rome, Italy;

ivan.monteleone@med.uniroma2.it
3 Department of Systems Medicine, University of “Tor Vergata”, 00133 Rome, Italy;

federica.laudisi@uniroma2.it
* Correspondence: gi.monteleone@med.uniroma2.it; Tel.: +39-06-20903702

Abstract: Aryl hydrocarbon receptor (AHR), a transcription factor activated by many natural and
synthetic ligands, represents an important mediator of the interplay between the environment and
the host’s immune responses. In a healthy gut, AHR activation promotes tolerogenic signals, which
help maintain mucosal homeostasis. AHR expression is defective in the inflamed gut of patients
with inflammatory bowel diseases (IBD), where decreased AHR signaling is supposed to contribute
to amplifying the gut tissue’s destructive immune–inflammatory responses. We here review the
evidence supporting the role of AHR in controlling the “physiological” intestinal inflammation and
summarize the data about the therapeutic effects of AHR activators, both in preclinical mouse models
of colitis and in patients with IBD.
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1. Mechanisms Controlling Intestinal Homeostasis

The normal intestine is infiltrated with huge numbers of immune cells, and this is due
to the myriad of microbial and dietary antigens that continuously stimulate the gut immune
system. This state of “physiological”, low-grade inflammation does not result in overt
mucosal damage, because several mechanisms, each with a specific function, contribute
to turning down the activity of the immune cells [1–4]. The intestinal epithelium contains
several cell types (i.e., enterocytes, Paneth cells, goblet cells, tuft and cup cells, microfold
cells, and enterochromaffin cells) that generate a physical and functional barrier protecting
the host from harmful molecules and microorganisms in the intestinal lumen, enabling the
tolerance of commensal organisms, and optimizing the absorption of nutrients [5,6]. Some
dietary and microbial antigens can cross the intestinal epithelium. This occurs, for example,
in Peyer’s patches or follicles, where there is a specialized epithelium consisting of M cells
that can transport luminal antigens to the mucosa-associated lymphoid tissue and activate
an immune response [6]. In addition, cells of innate immunity such as dendritic cells (DCs)
or macrophages can sample luminal antigens, with the extension of protrusions between
epithelial cells [7]. In normal conditions, these cells have anti-inflammatory properties as
they produce suppressive cytokines, such as interleukin (IL)-10 and transforming growth
factor (TGF)-β1, which can directly suppress both innate and adaptive immune response
and favor the differentiation and activity of regulatory T cells (Tregs) [8,9]. Additionally,
activated effector T cells undergo apoptosis, a phenomenon that limits the pool of antigen-
specific reactive cells [10,11].

Host genetics contribute to maintaining intestinal homeostasis as substantiated by
the fact that mutations in genes encoding for regulatory molecules (i.e., IL-10 receptor) or
proteins involved in the intestinal barrier function lead to monogenic forms of inflammatory
bowel diseases (IBD) [12–15], a group of chronic inflammatory disorders that affect the
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intestine [15]. Similarly, dietary components (i.e., fibers) can be fermented by intestinal
bacteria and act as a source of short-chain fatty acids that provide energy for colonocytes
and preserve the integrity of the intestinal barrier [16,17]. On the other hand, many other
environmental factors (e.g., infections, drugs, cigarette smoking, red meat) can break
mucosal immune homeostasis and contribute to the development of IBD [18–20].

The mechanisms by which the gut immune system recognizes and responds ade-
quately to luminal antigens are not fully understood, even though recent studies have shed
light on the role that some transcription factors play in the control of mucosal immune
responses. One such factor is the aryl hydrocarbon receptor (AHR), a transcription factor
ubiquitously expressed in vertebrate cells. In this article, we will review the available
evidence on the role of AHR in the gut in physiologic conditions and the contribution of
AHR deficiency in the pathogenesis of IBD. We will also describe the results of preclinical
work in mouse models of IBD-like colitis, and of clinical trials in which the therapeutic
modulation of AHR function has been tested in IBD patients.

2. AHR Ligands

AHR is a member of the periodic circadian protein (PER)–AHR nuclear translocator
(ARNT)–single-minded protein (SIM) superfamily of transcription factors, in which the
PER-ARNT-SIM domain senses both endogenous factors (e.g., oxygen tension or redox
potential) and exogenous factors (e.g., polyaromatic hydrocarbons and environmental
toxins) [21]. In the absence of a ligand, AHR is located in the cytoplasm bound to actin
filaments as an inactive complex with several chaperones. Upon ligand binding, AHR
translocates into the nucleus, where it is released from the complex, heterodimerizes
with ARNT, and binds genomic regions containing its binding motif [dioxin response
element (DRE)], inducing the transcription of target genes such as CYP1A1, CYP1A2,
CYP1B1, and AhR repressor (AhRR) [22–24]. AHR signaling is also regulated at additional
levels, including the proteasomal degradation of AHR protein, ligand metabolism by
CYP1A1, and AHR/ARNT complex disruption by AhRR [24–27]. For a better description
of the mechanisms controlling the AHR pathway, the reader is directed towards recent
reviews [28–31].

Classically known as a mediator of the toxicity of environmental pollutants, such as
2,3,7,8-tetrachlorodibenzo-p-dioxin, AHR can be activated by many other ligands, includ-
ing environmental, dietary, and endogenous aromatic compounds. For example, vegetables
in the diet, particularly those belonging to the cruciferous family (e.g., broccoli, cabbage,
and brussels sprouts), are a major source of AHR agonists such as indole-3-acetate (I3A),
indole-3-carbinol (I3C) and 3,3′-diindolylmethane [32]. I3C can be broken down by gas-
tric acid, resulting in the production of 3,3′-diindolylmethane (DIM) and indole [3,2-b]
carbazole (ICZ), other potent agonists of AHR [33,34]. AHR agonists can also derive from
dietary tryptophan, a ubiquitous dietary amino acid that is metabolized by commensal
microorganisms (e.g., Lactobacillus reuteri) [35,36].

3. The Role of AHR in the Maintenance of Gut Mucosal Homeostasis
3.1. Anti-Inflammatory Effects of AHR in the Intestine

AHR signaling is critical for maintaining mucosal homeostasis and this regulatory
effect seems to be the result of the ability of AHR to control the function of both immune
and non-immune cells. Mice fed a diet free of AHR ligands have reduced levels of fecal
immunoglobulin (Ig) A, a phenomenon that has been associated with changes in the
content of some species of the family Erysipelotrichaceae [37]. Orally administered I3A, a
gut microbiota-derived tryptophan metabolite, alleviates liver steatosis and inflammation
in a mouse model of diet-induced non-alcoholic fatty liver disease. Notably, I3A does not
alter the intestinal microbiome, suggesting that the I3A’s beneficial effects likely reflect
the metabolite’s direct actions on the liver [38]. In colitic mice, the administration of I3C
triggers an IL-22-dependent mechanism that attenuates colonic inflammation, and prevents
the microbial dysbiosis caused by colitis by increasing a subset of Gram-positive bacteria
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known to produce butyrate [39]. Moreover, the intestinal microbiota of mice deficient in
caspase recruitment domain-containing protein-9, a susceptibility gene for IBD [40,41],
fails to metabolize tryptophan into AHR ligands and this is associated with an increased
susceptibility to colitis [42].

3.2. Epithelial Cells

Mice with selective deletion of AHR in intestinal epithelial cells (Vil1CreAhrfl/fl) are
unable to control Citrobacter rodentium infection and exhibit defective signaling in the WNT-
β-catenin and ubiquitin E3 ligase pathways, which results in the uncontrolled growth
of intestinal stem cells and epithelial cell malignant transformation. In this model, the
administration of AHR agonists suppresses tumor progression [43]. AHR sustains also
the intestinal barrier function, given its ability to increase the expression of tight junction
proteins and the production of defensins (i.e., REG3β and REG3γ) [44,45]. The exposure
of intestinal epithelial cells to AHR ligands enhances the levels of the IL-10 receptor, the
signaling of which, under normal conditions, sustains gut epithelial cell proliferation and
barrier integrity [15,46–48].

3.3. Intra-Epithelial Lymphocytes

AHR signaling is needed for the maintenance of both TCRγδ intraepithelial lympho-
cytes (IELs) and innate lymphoid cells (ILCs) in the gut. IELs act as a first line of defense
and promote epithelial barrier organization and wound repair [49]. AHR deficiency is
associated with a marked reduction in the number of IELs and increased susceptibility to
gut epithelial damage [50]. AHR can also reprogram IELs into immunoregulatory T cells.
An example is represented by the differentiation of CD4 + CD8αα+ double-positive IELs, a
subset of regulatory cells that originate from small intestinal CD4+ T cells following the
down-regulation of the transcription factor Thpok [51]. Lactobacillus reuteri generates indole
derivatives of tryptophan that promote both AHR activation and Thpok down-regulation
in CD4+ T cells with consequent CD4 + CD8αα+ double-positive IEL differentiation [51].
In mice with dextran sulfate sodium (DSS)-induced colitis, the activation of AHR by 6-
Formylindolo (3,2-b) carbazole (FICZ) attenuates the apoptotic rate of CD8αα + TCRαβ+
IELs [52], probably as a result of the increased expression of the IL-15 receptor on the
membrane of such cells, which serves as a positive regulator of IEL survival [53,54].

3.4. Innate Lymphoid Cells

ILCs are another subset of immune cells acting as ‘pre-primed’ terminal effector cells
that constitutively reside in barrier tissues and respond to alarmins and cytokine signals
released following tissue damage [55]. In contrast to T cells, ILCs lack antigen-specific
receptors and do not require de novo proliferation and polarization for cytokine produc-
tion [55,56]. ILCs are divided into various subgroups that are defined by their master tran-
scription factor usage and cytokine-producing capacity [57]. ILCs of the ILC22 type include
NKp46(+) and lymphoid tissue-inducer (LTi)-like subsets that express AHR and protect
the intestinal mucosa from infection by secreting IL-22 that acts on mucosal epithelial cells,
inducing their survival, proliferation, and secretion of antimicrobial peptides [55,58–60].
In line with this, AHR-deficient mice exhibit a marked reduction in the number of ILC22
and the secretion of IL-22 and are unable to mount a protective response during Citrobacter
Rodentium infection [61], a mouse model that mimics human colitis induced by attaching
and effacing enterotoxigenic E. coli [62]. AHR-deficient mice also lack post-natally im-
printed cryptopatches (CP) and isolated lymphoid follicles (ILF), but not embryonically
imprinted Peyer’s Patches (PP) [61]. It was also shown that AHR induces Notch, which
is required for NKp46 + ILC, while LTi-like ILC, CP, and ILF are partially dependent on
Notch signaling [61]. The NKp46 + ILCs are intact in germ-free mice, contradicting the
possibility that the AHR ligands inducing the development of these cells derive from the
action of the flora on foods. In contrast, the differentiation of NKp46 + ILCs likely relies on
AHR activation induced either by endogenous molecules, such as the tryptophan catabolite
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kynurenine (Kyn), or natural ligands present in the diet [50]. AHR-dependent produc-
tion of IL-22 by ILC22 is also positively regulated by IL-36 receptor (IL-36R) signaling.
IL-36R-deficient mice exhibit a significant impairment in the expression of IL-22, increased
intestinal damage, and failure to contain Citrobacter rodentium infection. Such defects in
IL-36R-deficient mice are secondary to the reduced production of IL-23 and IL-6, two key
IL-22 inducers in the early and late phases of infection, respectively [63].

In the small intestine, dietary AHR ligands are needed for the differentiation of a
subset of regulatory eosinophils, which express the C-type lectin domain family 4, member
a4 (Clec4a4), a C-type lectin inhibitory receptor specific for glycans. Mice with a selec-
tive deficiency of AHR in eosinophils exhibit an expansion of ILC of type 2 and clear
Nippostrongylus brasiliensis infection more effectively than wild-type mice [64].

3.5. T Cells

AHR expression is differently regulated in the various subsets of T helper (Th) cells,
with Th17 cells and regulatory T cells (Tregs) expressing the highest AHR levels [65,66].
There is also abundant evidence supporting the promoting effect of AHR activation on
Tregs [67–69]. A recent study showed that Porphyromonas gingivalis (Pg), a Gram-negative
anaerobic microbe implicated in the development of periodontitis, an inflammation of
the oral cavity that can be associated with IBD [70–72], targets the gut microbiota and
suppresses the pathway of linoleic acid (LA) [73]. LA functions as an AHR ligand that
suppresses Th17 differentiation while promoting Treg differentiation. Consistently, restor-
ing LA levels in colitis mice challenged with Pg decreases the Th17/Treg cell ratio in an
AHR-dependent manner, thus leading to the attenuation of mucosal inflammation [73].
Dietary L-tryptophan converted by host IDO1/2 enzymes, but not by gut microbiota, in-
duces G-protein coupled receptor (Gpr) 15 transcription preferentially in Tregs via the AHR,
increases the colonic number of Tregs and attenuates the ongoing inflammation in a mouse
colitis model generated by Citrobacter rodentium infection or DSS treatment [32]. Mechanis-
tically, AHR directly binds to open chromatin regions of the Gpr15 locus, a phenomenon
that can be further enhanced by Foxp3 and suppressed by RORγt [33]. In line with this,
the loss of dietary tryptophan perturbs the interaction between the host and intestinal
microbial communities, thus promoting the deprivation of bacterially derived tryptophan
metabolites and reduced numbers of Tregs [74]. On the other hand, there is evidence that
mice infected with the protist Blastocystis ST7 develop colitis characterized by the reduction
of Tregs and simultaneous expansion of Th17 cells. These CD4+ T cell alterations rely on
the tryptophan metabolite indole-3-acetaldehyde (I3AA) produced by the parasite. I3AA
acts as an AHR inhibitor and reduces the Treg subset in vivo and Treg development in vitro
by increasing the expression of Smad7, an inhibitor of TGF-β1 signaling [75].

3.6. Dendritic Cells

AHR activation is also critical for the function of DCs. Triggering AHR activation
in DCs leads to the reduced expression of CD80, CD83, and CD86, and diminished syn-
thesis of pro-inflammatory cytokines (i.e., IL-1β, IL-23, and IL-12). Moreover, following
the activation of AHR by FICZ, DCs become more efficient inducers of Tregs, and the
adoptive transfer of such regulatory DCs to mice with 2,4,6-trinitrobenzenesulfonic acid
(TNBS)-induced colitis alleviates the severity of the ongoing inflammation [76]. Mice with a
specific deletion of AHR in DCs are highly susceptible to DSS-induced colitis. Co-culturing
AHR-deficient DCs with intestinal epithelial organoids results in an aberrant WNT pathway
and a shortfall in the differentiation and proliferation of intestinal epithelial cells, raising
the possibility that AHR signaling in DCs is needed to promote the production of factors
that regulate intestinal epithelial cell biology [77]. Dubosiella newyorkensis, a murine com-
mensal bacterium, and its human homologue Clostridium innocuum, induce the production
of short-chain fatty acids, especially propionate and L-Lysine (Lys). Notably, Lys stimulates
the differentiation of regulatory DCs by enhancing tryptophan catabolism towards the kyn
pathway through the activation of the metabolic enzyme indoleamine-2,3-dioxygenase 1
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(IDO1) in an AHR-dependent manner. Consequently, Dubosiella newyorkensis rebalances
the Treg/Th17 responses and ameliorates mucosal barrier injury in the DSS-induced colitis
model [78]. Exopolysaccharide (EPS), an active molecule produced by Bacillus subtilis,
protects mice from Citrobacter rodentium-induced colitis by inducing, in a TLR4-dependent
manner, anti-inflammatory M2 macrophages or inhibitory DCs [79]. Analysis of the signal-
ing events downstream of TLR4 showed that EPS induces IDO in DCs, and the inhibition of
T cell proliferation by IDO-expressing DCs utilizes the kyn/AHR circuit [80]. The Quitana’s
group has recently described an integrated systems approach, combining publicly available
databases, zebrafish chemical screens, machine learning, and mouse preclinical models to
identify environmental factors that control intestinal inflammation. This approach showed
that the herbicide propyzamide, which is used on fruits, vegetables, and in ornamental
gardens, amplifies inflammation in the small intestine and colon induced by TNBS and
anti-CD3 monoclonal antibodies, respectively, in zebrafish and mice. The evaluation of the
mechanisms by which propyzamide enhances gut inflammation showed that the herbicide
alters the intestinal microbiota even though intestinal dysbiosis was not involved in the
inflammatory effect of propyzamide. In contrast, propyzamide reduces AHR activation in
DCs, thus enhancing NF-κB activation and, hence, propagates pathogenic T-cell responses
in the gut [81].

Collectively, the above findings indicate that AHR activation amplifies a multitude of
counter-regulatory signals with the downstream effect of maintaining mucosal homeostasis
in the gut (Figure 1).
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4. AHR Down-Regulation in Crohn’s Disease Contributes to Sustaining the Mucosal
Cytokine Response

Although the cause of Crohn’s disease (CD) and ulcerative colitis (UC), the main
IBD in human beings, remains unknown, a large body of evidence suggests that these
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pathologies arise in genetically predisposed individuals as a result of the action of many
environmental insults, which trigger an abnormal mucosal immune inflammatory response
characterized by a massive production of inflammatory cytokines and a variety of defects
in counterregulatory mechanisms [1,82–85]. In this context, we have demonstrated that the
inflamed gut of CD patients contains reduced levels of AHR RNA transcripts, as compared
with the uninflamed mucosa of the same patients and normal controls [86]. In contrast,
no reduction in AHR RNA expression was seen in the inflamed colon of UC patients, as
compared to normal controls, indicating that the down-regulation of AHR in CD does
not rely simply on mucosal inflammation. Flow cytometry analysis of AHR-expressing
immune cells in IBD mucosa revealed that, in CD, AHR expression is diminished in both
CD4+ T cells and natural killer cells [86]. Functionally, activation of AHR in lamina propria
mononuclear cells (LPMCs) isolated from the inflamed intestine of CD patients with FICZ
increased the production of IL-22 and reduced the expression of interferon (IFN)-γ and
T-bet. This finding was later confirmed by other authors showing that additional AHR
ligands induce IL-22 production by T cells isolated from IBD patients [87]. AHR gene
polymorphisms have been associated with an increased risk of developing IBD [35–37].

The mechanisms mediating the reduced expression of AHR in the intestine of CD
patients are not fully elucidated. A possibility is that such an alteration relies on defects in
the TGF-β1 signaling pathway [44], as TGF-β1 induces AHR in normal intestinal LPMC,
while in CD LPMCs, which are characterized by a Smad7-dependent TGF-β 1 signaling
inactivation [88,89], TGF-β1 does not enhance AHR expression unless Smad7 is knock-
down [45]. These data were consistent with the demonstration that the intestinal T cells
of Smad7-transgenic mice contain reduced levels of AHR and produce low amounts of
IL-22 following FICZ stimulation. Moreover, in a model of colitis induced by the transfer
of T cells into recombination-activating gene 1-deficient mice, the administration of FICZ
to mice did not attenuate intestinal inflammation obtained with the transfer of Smad7
transgenic T cells [45]. There is also evidence that microRNA 124, which sustains IBD-like
colitis in mice, can contribute to the reduced expression of AHR in intestinal epithelial cells
of CD patients [41].

The CD-associated chronic inflammation can evolve into the formation of stenosis,
which is the most frequent indication for surgery [90]. AHR is expressed by intestinal
fibroblasts, and the activation of AHR by FICZ in CD intestinal fibroblasts reduces colla-
gen production preliminary, thus suggesting the involvement of AHR in the fibrogenic
processes [91].

5. AHR Signaling Attenuates Experimental Colitis

Several studies have convincingly shown that AHR activation is useful for limiting
intestinal tissue-damaging pathogenic responses. In both TNBS-induced and T-cell transfer
colitis models, the administration of FICZ to mice reduces the severity of colitis, damp-
ens the production of Th1 cytokines, and increases IL-22 levels [86]. These AHR-driven
regulatory effects are abrogated by the neutralization of the IL-22 supporting the role of
this cytokine in the AHR-mediated immunosuppression. Similarly, 3,3′-diindolylmethane,
a natural ligand of AHR, attenuates oxazolone-induced colitis [92]. AHR-deficient mice
are more susceptible to DSS-induced colitis than wild-type mice, and AHR activation in
such a model reduces the degree of inflammation [93]. In the same model, the activation
of AHR by the administration of Lactobacillus bulgaricus OLL1181 inhibits ongoing coli-
tis [94]. In a humanized murine model in which human CD4+ T cells drive colitis upon
exposure to TNBS, the administration of the non-toxic AHR agonist 2-(10H-indole-30-
carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) ameliorates colitis and increases the
expression of CD39, Granzyme B, and IL10-secreting human Tregs [95]. In DSS-induced
colitis, alpinetin, a flavonoid compound extracted from the seeds of the Alpinia katsumadai
Hayata that acts as a strong AHR activator, alleviates colitis, and this effect is accompanied
by a restored Th17/Treg balance in colons [96]. Moreover, in DSS-treated mice, the ad-
ministration of Indigo naturalis (IN), a traditional Chinese medicine that contains ligands
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for AHR, increased Helios-positive Tregs and major histocompatibility complex class I-
positive colonic epithelial cells [97].

6. Evidence Supporting the Regulatory Effect of AHR Pathway in Humans: Data from
Clinical Studies

Considering the preclinical data outlined in the previous paragraphs and the impor-
tant role of AHR in regulating pathological and physiological processes, AHR activators
have been tested in humans for therapeutic purposes (Table 1). In the first multicenter,
randomized, double-blind clinical trial using IN, 86 Japanese UC patients were enrolled [98].
Patients were randomized to receive IN at three different dosages or placebo (1:1:1:1) for
8 weeks. The primary endpoint was the rate of clinical response at week 8 (defined as
a 3-point decrease in the Mayo score and a decrease of at least 30% from baseline, with
a decrease of at least 1 point for the rectal bleeding subscore or absolute rectal bleeding
score of 0–1). The main secondary endpoint was the rate of clinical remission at week
8; mucosal healing at week 8 was also assessed. The rates of clinical response at week 8
were significantly higher for patients receiving IN compared to the placebo, with a clear
dose-dependent trend (placebo, 13.6%; 0.5 g IN, 69.6%; 1.0 g IN, 75.0%; 2.0 g IN, 81.0%).
The clinical remission rate at 8 weeks was achieved significantly only in the two high-
est dosages of IN compared with the placebo, while the rates of mucosal healing were
13.6%, 56.5%, 60.0%, and 47.6%, respectively, for the placebo group and the three doses
of IN [98]. Mild liver dysfunction was documented in 10–20% of patients who received
0.5–2.0 g of IN daily but spontaneously disappeared in the majority of these patients with-
out dose adjustments. However, evidence about the possible development of pulmonary
arterial hypertension in a patient who independently took IN for 6 months outside of this
trial led to the discontinuation of this study and limited the large-scale, long-term use
of this compound.

Later on, the same group tested the use of topical IN, in the form of suppositories, in
UC patients with endoscopically active disease in the rectum and sigmoid colon [99]. This
was a small open-label, single-center study in which 10 UC patients were prospectively
enrolled. All patients received, once daily, 50 mg IN suppository for 4 weeks. The primary
endpoint of this study was safety at week 4. Secondary endpoints were the rate of rectal
bleeding subscore of 0, clinical remission, and mucosal healing after 4 weeks of treatment.
Only one treatment-related adverse event, namely the development of anal pain, was
recorded in one patient. At week 4, the rates of clinical remission and mucosal healing
were 30 and 40%, respectively. Mayo rectal bleeding subscores significantly improved after
treatment, but only in patients with a Mayo endoscopic subscore ≤ 2 and not in patients
with a Mayo endoscopic subscore of 3 [99]. However, all considerations of the safety and
efficacy of this formulation are limited by the low number of patients included in the study.

In another subsequent multicenter, randomized, placebo-controlled trial, the effect
of oral IN in mild-to-moderate UC patients was tested [100]. Nineteen UC patients were
assigned to the placebo group, and 23 were assigned to receive IN (500 mg) twice a day
for two weeks. In the placebo group, no change in the Lichtiger index (an 8-item measure
designed to assess disease activity in patients with UC [101]) was observed, while in the IN
group, the Lichtiger index improved significantly. No significant adverse event related to
treatment was recorded.

In a small open-label, dose-escalation study conducted in the United States, 11 patients
with UC were treated either with IN 500 mg/day or 1.5 g/day for 8 weeks and subsequently
followed up for a 4-week non-treatment period [102]. The primary endpoint was clinical
response at week 8, assessed by the total Mayo score. Secondary endpoints included
clinical remission, changes in Ulcerative Colitis Endoscopic Index of Severity, quality of
life, C-reactive protein, and fecal calprotectin levels from baseline. In this study, AHR
signaling was monitored by measuring RNA levels of CYP1A1, a downstream target of
AHR activation. After 8 weeks of treatment, 10/11 patients achieved a clinical response, and
3 patients were in clinical remission. An improvement in endoscopic severity, biomarkers,
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and quality of life was observed in all patients. Following treatment cessation, 6 patients
worsened, and four patients progressed to colectomy. RNA levels of CYP1A1 showed a
12,557-fold increase between baseline and week 8 in the colon tissue from six evaluated
patients [102].

Recently, Ben-Horin and coworkers tested the efficacy of QingDai (a form of Indigo)
combined with curcumin in the treatment of patients with active UC, based on preclinical
and clinical data demonstrating the efficacy of both compounds separately in vivo [103].
This study was divided into two parts. Part I was an open-label trial in which the com-
bination of curcumin and QingDai (CurQD) was given to 10 UC patients with a Simple
Clinical Colitis Activity Index (SCCAI) score of 5 or higher, and active colonic inflammation
(defined by a score of 2 or higher in the modified Mayo endoscopic subscore) for 4 weeks,
which extended proximally to the rectum (>15 cm) at the screening colonoscopy. Part II was
a double-blind, randomized, placebo-controlled induction trial in which CurQD was given
for 8 weeks, with additional 8 weeks of maintenance treatment for responders. The same
inclusion criteria were adopted for both parts of the study. The primary outcome of part I
of the trial was the percentage of patients in clinical remission at week 4. The co-primary
outcome of part II was the proportion of patients with clinical response (reduction in SC-
CAI of more than 3 points from baseline) and objective evidence of reduced inflammatory
activity (Mayo score improvement ≥1 or 50% calprotectin reduction) at week 8.

In part I, 7 of 10 patients responded and 3 of 10 achieved clinical remission. Of the
42 patients in part II, 43% and 8% of CurQD and placebo patients, respectively, achieved
the coprimary endpoint (p = 0.033). Clinical response was observed in 85.7% vs. 30.7%
(p < 0.001) of patients and clinical remission in 14/28 (50%) vs. 1/13 (8%) in the CurQD
and placebo groups, respectively [103]. An increased mucosal expression of CYP1A1 was
documented in treated patients. Although the number of treated patients was limited, no
case of pulmonary arterial hypertension was recorded.

Table 1. Table summarizing clinical studies in which AHR activators were used.

Compound Formulation Target Population Type of Study Reference

Indigo Naturalis Capsules
0.5–2.0 g per day Ulcerative colitis multicenter, randomized,

double-blind clinical trial [98]

Indigo Naturalis Suppositories
50 mg per day Ulcerative colitis open-label, single-center study [99]

Indigo Naturalis Capsules
1 g per day Ulcerative colitis multicenter, randomized,

placebo-controlled trial [100]

Indigo Naturalis Capsules
500 mg–1.5 g/day Ulcerative colitis open-label, dose-escalation

study [102]

QingDai
Capsules

Indigo Naturalis 1.5 g +
Curcumin 500 mg

Ulcerative colitis

Part 1: open-label trial
Part 2: double-blind,

randomized,
placebo-controlled

[103]

7. Conclusions and Future Directions

The data described in this article point to the role of the AHR as a keeper of the physical
and immunological barriers present in the gut. Consistently, defects in AHR expression
and/or activation are supposed to facilitate the propagation of pathogenic inflammation,
which ultimately leads to tissue damage. This appears to be the case of IBD, in which
the reduced expression of AHR in epithelial and immune cells contributes to promoting
several pathways that alter the epithelial barrier integrity, expand the effector cytokine
response, and block the function of anti-inflammatory molecules. Therefore, enhancing
AHR activation could be a novel and promising way to dampen IBD-associated mucosal
inflammation. In this context, many studies have documented the benefit of AHR activators
in the preclinical models of IBD-like colitis, and some AHR-related compounds have already
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been tested with success in IBD patients. However, the limited number of patients enrolled
in these studies reduces the relevance of the clinical data. Moreover, the clinical trials with
natural AHR ligands have suffered a setback due to the possible development of serious
side effects related to the use of these compounds. Many of the currently available natural
AHR agonists are considered inadequate for clinical use due to low activity, inadequate
pharmacokinetics, or toxicity. Therefore, in recent years, new synthetic agonists have been
synthesized [87,104]. These compounds are more stable and have limited toxicities, due
to their rapid clearance, than natural ligands, and exert desirable therapeutic effects [105].
Further experiments dedicated to studying their effects and improving their mode of
delivery are, however, needed to possibly test these compounds in patients with IBD.

Many questions about the factors/mechanisms regulating AHR expression in the
human gut, particularly in IBD, remain open. For instance, we do not yet know whether
there is a cell-specific regulation of AHR in the gut and which factors, other than Smad7,
account for the reduced expression of AHR in CD. Similarly, it remains unclear whether
the defect in AHR content is limited to some of the evolutive phases of CD and whether all
the phenotypes of the disease are marked by changes in AHR expression. Finally, further
studies are needed to evaluate the therapeutic potential of AHR agonists in CD because, so
far, the clinical trials have been conducted in UC but not in CD patients.

Because AHR activation triggers the differentiation of Tregs and the production of IL-
22, it is conceivable that AHR agonists can have a place in the therapeutic armamentarium
of other intestinal immune-mediated diseases. In this context, we have previously shown
that AHR expression is reduced in the gut of patients with active celiac disease, and that the
treatment of celiac disease IELs and LPMC with FICZ reduces the levels of inflammatory
cytokines, granzyme B and perforin, as well as the fact that AHR activation protects mice
against poly I:C-induced intestinal atrophy [106].

Notably, AhR-null mice do not exhibit an overt immunological phenotype and have
no intestinal pathology [107,108]. This indicates clearly that the AHR deficiency docu-
mented in CD, as well as in celiac disease mucosa by itself, should not be sufficient to
drive pathology. However, the exposure of AhR-deficient mice to inflammatory stimuli
triggers detrimental immune responses in main barrier organs, including the lung, the skin,
and the gastrointestinal tract. Studies aimed at evaluating how, in the absence of AHR,
environmental risk factors amplify the mucosal inflammatory pathways could shed light
on the pathogenesis of these diseases.
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