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Abstract: Myocardial ischemia/reperfusion injury is reduced by cardioprotective adaptations such
as local or remote ischemic conditioning. The cardioprotective stimuli activate signaling cascades,
which converge on mitochondria and maintain the function of the organelles, which is critical for
cell survival. The signaling cascades include not only extracellular molecules that activate sar-
colemmal receptor-dependent or -independent protein kinases that signal at the plasma membrane
or in the cytosol, but also involve kinases, which are located to or within mitochondria, phos-
phorylate mitochondrial target proteins, and thereby modify, e.g., respiration, the generation of
reactive oxygen species, calcium handling, mitochondrial dynamics, mitophagy, or apoptosis. In the
present review, we give a personal and opinionated overview of selected protein kinases, localized
to/within myocardial mitochondria, and summarize the available data on their role in myocardial
ischemia/reperfusion injury and protection from it. We highlight the regulation of mitochondrial
function by these mitochondrial protein kinases.
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1. Introduction

Mitochondria have important roles in the maintenance of normal cell function; there-
fore, a dysregulation of mitochondrial functions consequently accounts for a variety of
human disease pathologies including infectious and inflammatory diseases, pulmonary
diseases, neurodegenerative diseases, and cardiovascular diseases (for a review, see [1]).
In the present review, we focus on a personal and opinionated overview of the mito-
chondrially localized protein kinases potentially involved in mitochondrial signaling in
myocardial damage by ischemia and reperfusion (I/R) and the strategies to minimize such
myocardial injury.

In I/R injury, the death of cardiomyocytes and non-cardiomyocytes is based on necro-
sis, apoptosis, necroptosis, pyroptosis, and autophagy. The contribution of the different
modes of cell death to infarct size is unclear at present (for a review, see [2]). To prevent
myocardial cell death due to ischemia, it is essential to reperfuse the myocardium in a
timely manner. However, the restoration of blood flow itself causes additional damage
to the myocardium [3]. The high number of patients who suffer myocardial infarction
makes it necessary to develop strategies to reduce myocardial I/R damage [4]. Among
these strategies is ischemic conditioning, which is defined as the infarct size reduction by
nonlethal periods of I/R, which are executed at different points in time in relation to the
sustained phase of I/R. In ischemic preconditioning (IPC), the nonlethal periods of I/R are
carried out before, in ischemic perconditioning during, and in ischemic postconditioning
(IPostC) after the sustained phase of ischemia, which is followed by reperfusion. In contrast
to the aforementioned cardioprotective maneuvers, in remote ischemic conditioning (RIC),
the short periods of ischemia are not applied directly to the heart, but to other tissues such
as skeletal muscle [5]. In classical conditioning, the nonlethal I/R cycles are performed
in a close temporal context (minutes) to the index ischemia, whereas in late conditioning,

Int. J. Mol. Sci. 2024, 25, 4491. https://doi.org/10.3390/ijms25084491 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms25084491
https://doi.org/10.3390/ijms25084491
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-0508-7593
https://orcid.org/0000-0003-3576-3772
https://doi.org/10.3390/ijms25084491
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms25084491?type=check_update&version=2


Int. J. Mol. Sci. 2024, 25, 4491 2 of 31

24–48 h are left between the short cycles of I/R and the index ischemia. In contrast to classic
preconditioning, late preconditioning involves the de novo synthesis of proteins, e.g., of
the manganese superoxide dismutase (MnSOD) [6,7] or protein kinase C (PKC) [8]. Besides
these mechanical approaches, pharmacological interventions are also known to reduce
myocardial infarct size [2,9]. However, the strongest and most robust cardioprotective in-
tervention, which is effective in all species tested so far, including humans, is mechanically
induced ischemic conditioning [2,10].

The cardioprotective maneuvers activate signaling cascades (see below) and finally
target the mitochondria, where they modify the function of the organelles [11–14]. The
functional parameters affected by cardioprotective maneuvers include the preservation of
respiration and ATP production, the reduction in reactive oxygen species (ROS) release
at the onset of reperfusion, the inhibition of mitochondrial permeability transition pore
(MPTP) opening at the beginning of reperfusion, the preservation of mitochondrial mor-
phology, and the activation of mitophagy. For details on mitochondrial function in I/R
injury, the reader is referred to recent articles [15–20]. Taken together, the cardioprotective
maneuvers of IPC, RIC, or IPostC target the mitochondria and alter the function of the
organelles. As a result, mitochondrial function is preserved, which finally enhances cell
viability after I/R injury.

2. Cardioprotective Signaling to and within Mitochondria

Niemi and Pagliarini show that 91% of annotated mitochondrial proteins within Mito-
Carta3.0 have at least one phosphorylation site [21]; however, only about 5% of these sites
are associated with published studies. Proteomic studies identified 77 phosphoproteins
within different mitochondrial compartments of human skeletal muscle [22], 184 phos-
phoproteins in rodent myocardial mitochondria [23], 181 phosphoproteins in murine
mitochondria [24], and a total of 354 phosphoproteins in mitochondria isolated from rat
liver, heart, and muscle [25]. Whereas protein phosphorylation is a prerequisite for the
import into mitochondria [21], it is also suggested that the phosphorylation may take place
within the organelles. This hypothesis is supported by the identification of protein kinases
within isolated mitochondria. For example, 52 protein kinases are detected in mitochondria
isolated from the rat insulinoma cell line INS-1 [26], whereas 25 protein kinases are detected
within mitochondria isolated from rat liver, heart, and muscle [25]. Studies not only detect
kinases in the organelles, but also protein phosphatases, which regulate the activity of their
target proteins. In fact, 12 protein phosphatases with distinct catalytic domains to confer
substrate selectivity are known to be located within mitochondria of murine origin [21].

Cardioprotective maneuvers mediate the reduction of I/R injury through the re-
lease or generation of extracellular molecules that act on sarcolemmal receptors or act
receptor-independently and the subsequent activation of downstream cytosolic signaling
cascades [4,13]. The different signal transduction pathways can be grouped in three main
cascades, which are termed the RISK pathway (reperfusion injury salvage kinase pathway),
including protein kinase B (AKT) and extracellular signal-regulated kinase (ERK), glycogen
synthase kinase 3β (GSK3 β) [27–30], SAFE pathway (survivor activating factor enhance-
ment pathway), including tumor necrosis factor α and signal transducer and activator of
transcription 3 [31–33], and a pathway including protein kinase A (PKA), nitric oxide (NO),
protein kinase G (PKG), and PKC [34]. A schematic overview of the kinases involved in
the indicated pathways is presented in Figure 1. It is a common feature of these signaling
pathways, which can also interact with each other, that they converge on the mitochondria
and modify their function [12,13]. In addition, there are other protein kinases not directly
attributed to these classical protective pathways, which also confer cardioprotection by
targeting mitochondria such as Src-family protein tyrosine kinases (SFKs), hexokinase,
adenosine monophosphate-activated protein kinase (AMPK), C-Jun N-terminal kinase
(JNK), p38 mitogen-activated protein kinase (p38 MAPK), and PTEN-induced putative
kinase 1 (PINK1).
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Figure 1. Schematic overview of signaling pathways activated by cardioprotective adaptations and of 
mitochondrially associated and/or localized kinases and their effects on mitochondrial function. The 
figure summarizes the main cardioprotective signaling pathways. Released or generated extracellular 
molecules (gray dots) act on sarcolemmal receptors or act receptor-independently, and subsequent 
downstream cytosolic signaling cascades are activated: the NO/PKG, RISK, and SAFE pathways, as 
well as other kinases not associated with the indicated pathways. Pathways/kinases displayed in gray 
are not included in the present review. The kinases within the mitochondrion in the lower part of the 
figure are shown according to their influence on mitochondrial function in cardioprotective interven-
tions, not according to their localization within the organelles. Created with BioRender.com. Abbrevi-
ations: I, II, II, IV, V (ATP synthase) indicate respiratory chain complexes; ADP: adenosine diphos-
phate; AKT: protein kinase B; AMPK: adenosine monophosphate-activated protein kinase; ATP: aden-
osine triphosphate; BKCa: Ca2+-activated potassium channel; ERK: extracellular signal-regulated ki-
nase; GSK3β: glycogen synthase kinase 3β; HK II: hexokinase II; JNK: C-Jun N-terminal kinase; KATP: 
ATP-dependent potassium channel; MPTP: mitochondrial permeability transition pore; NO: nitric ox-
ide; PI3k: phosphoinositide 3-kinase; p38 MAPK: p38 mitogen-activated protein kinase; PINK: PTEN-
induced putative kinase 1; PKA: protein kinase A; PKC: protein kinase C; PKG: protein kinase G; RISK: 
reperfusion injury salvage kinase pathway; ROS: reactive oxygen species; SAFE: survivor activating 
factor enhancement pathway; SFK: Src-family protein tyrosine kinases; STAT3/5: signal transducer and 
activator of transcription 3/5; # protein kinases involved in the cardioprotective signaling pathways, 
but not selected based on the mentioned criteria (see text); * relevant cardioprotective signaling path-
way, but not further mentioned as its members do not meet the criteria indicated in the text. 

In our review, we highlight the role of protein kinases, which are located within mi-
tochondria and contribute to myocardial I/R injury or protection from it via the modula-
tion of mitochondrial function. We focus on protein kinases, selected based on the follow-
ing criteria: (1) a localization of the protein kinase within cardiac mitochondria is demon-
strated; (2) the protein kinase is known to be involved in signaling pathways contributing 
to I/R injury and the protection from it; (3) data indicate an influence of the mitochondrial 
fraction of the kinase on mitochondrial functional parameters important for I/R injury. 
The order in which the kinases are discussed is based on their affiliation to the signal 
transduction pathways stated above (i.e., the RISK and NO/PKG pathway; please note 
that the SAFE pathway is not further mentioned, as its members do not meet the criteria 
indicated above) or on their interaction with a kinase attributed to such pathway (even if 
it is unclear, if the mitochondrial fraction of the protein is part of the same pathway). If a 
kinase cannot be assigned to such a classical signaling pathway, we describe this accordingly. 

Figure 1. Schematic overview of signaling pathways activated by cardioprotective adaptations and of
mitochondrially associated and/or localized kinases and their effects on mitochondrial function. The
figure summarizes the main cardioprotective signaling pathways. Released or generated extracellular
molecules (gray dots) act on sarcolemmal receptors or act receptor-independently, and subsequent
downstream cytosolic signaling cascades are activated: the NO/PKG, RISK, and SAFE pathways, as
well as other kinases not associated with the indicated pathways. Pathways/kinases displayed in
gray are not included in the present review. The kinases within the mitochondrion in the lower part
of the figure are shown according to their influence on mitochondrial function in cardioprotective
interventions, not according to their localization within the organelles. Created with BioRender.com.
Abbreviations: I, II, II, IV, V (ATP synthase) indicate respiratory chain complexes; ADP: adenosine
diphosphate; AKT: protein kinase B; AMPK: adenosine monophosphate-activated protein kinase;
ATP: adenosine triphosphate; BKCa: Ca2+-activated potassium channel; ERK: extracellular signal-
regulated kinase; GSK3β: glycogen synthase kinase 3β; HK II: hexokinase II; JNK: C-Jun N-terminal
kinase; KATP: ATP-dependent potassium channel; MPTP: mitochondrial permeability transition
pore; NO: nitric oxide; PI3k: phosphoinositide 3-kinase; p38 MAPK: p38 mitogen-activated protein
kinase; PINK: PTEN-induced putative kinase 1; PKA: protein kinase A; PKC: protein kinase C; PKG:
protein kinase G; RISK: reperfusion injury salvage kinase pathway; ROS: reactive oxygen species;
SAFE: survivor activating factor enhancement pathway; SFK: Src-family protein tyrosine kinases;
STAT3/5: signal transducer and activator of transcription 3/5; # protein kinases involved in the
cardioprotective signaling pathways, but not selected based on the mentioned criteria (see text);
* relevant cardioprotective signaling pathway, but not further mentioned as its members do not meet
the criteria indicated in the text.

In our review, we highlight the role of protein kinases, which are located within mito-
chondria and contribute to myocardial I/R injury or protection from it via the modulation
of mitochondrial function. We focus on protein kinases, selected based on the following
criteria: (1) a localization of the protein kinase within cardiac mitochondria is demonstrated;
(2) the protein kinase is known to be involved in signaling pathways contributing to I/R
injury and the protection from it; (3) data indicate an influence of the mitochondrial fraction
of the kinase on mitochondrial functional parameters important for I/R injury. The order
in which the kinases are discussed is based on their affiliation to the signal transduction
pathways stated above (i.e., the RISK and NO/PKG pathway; please note that the SAFE
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pathway is not further mentioned, as its members do not meet the criteria indicated above)
or on their interaction with a kinase attributed to such pathway (even if it is unclear, if
the mitochondrial fraction of the protein is part of the same pathway). If a kinase cannot
be assigned to such a classical signaling pathway, we describe this accordingly. As the
contribution of the mitochondrial protein kinases discussed in the present review towards
cell death have not been systematically analyzed, we cannot present data on all forms of
cell death contributing to I/R injury.

We provide an overview of the localization, translocation, and protein–protein in-
teractions of these mitochondrial protein kinases (Table 1) and summarize their effects
on mitochondrial function in the context of I/R injury in the following chapters. Again,
this is not a comprehensive review of kinases targeting mitochondrial function; this is an
opinionated review focusing on those publications characterizing a cardioprotective kinase
function in mitochondria.

Table 1. Localization, translocation, and protein–protein interactions of mitochondrial protein kinases.

Protein
Kinase

Mitochondrial
Localization

Translocation
through

Interaction
with

PKA

OMM: murine embryonic fibroblasts
[35], mouse brain mitochondria [36];

IMM and matrix: bovine heart
mitochondria [37];

rat heart mitochondria [38]

n.d.

AKAP: mouse brain mitochondria [36]
ETC complex I: bovine heart

mitochondria [37]
Drp1: rat hearts [39]

PKCε

IMM: rat heart mitochondria [40]
IMM and matrix: rat heart

mitochondria [41]

HSP90-TOM20: rat heart
mitochondria [40]
HSP90-TOM70: rat
cardiomyocytes [42]

JNK, p38 MAPK, ERK: mouse heart
mitochondria [43]

Cyt c oxidase subunit 4: neonatal rat
cardiomyocytes [44]

VDAC, ANT, HKII: mouse heart
mitochondria [45]

GSK3β possibly OMM: rat heart
mitochondria [46] VDAC2: H9C2 cells [47] ANT: rat heart mitochondria [48]

VDAC2: rat heart mitochondria [46]

HKII OMM: reviewed in [49] n.d.

AKT: neonatal rat cardiomyocytes [50];
transfected neonatal rat cardiomyocytes [51];

VDAC: HL1 cells [52],
reviewed in [49]

AMPK OMM: mouse gastrocnemius
muscle mitochondria [53] n.d. MFF: transfected human embryonic

kidney–293 T cells [35]

JNK possibly OMM: mouse hepatocytes [54] n.d. SAB: mouse hepatocytes [54]

SFKs IMM: rat heart mitochondria [55]
Possibly matrix: HEK293 cells [56] n.d.

AKAP121: GC2 cells [57]
ANT1: rat heart mitochondria, HeLa cell

mitochondria [58]
ETC complex I: rat heart mitochondria [55]

ETC complexes I and III: rat heart
mitochondria [59]

Dok-4: transfected bovine aortic endothelial
cells [60]

Diverse matrix proteins: HEK293 cells [56]

p38 MAPK possibly matrix: mouse heart
mitochondria [61] n.d.

MnSOD: neonatal rat cardiomyocytes [62],
mouse heart mitochondria [61]

PKCε: mouse heart mitochondria [43]
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Table 1. Cont.

Protein
Kinase

Mitochondrial
Localization

Translocation
through

Interaction
with

PINK1 OMM: HeLa cell mitos [63],
reviewed in [64]

TOM complex: HeLa cell
mitochondria [63],
reviewed in [65]

E3 ubiquitin ligase Parkin complex:
transduced

Flp-In T-Rex HEK293 cells [66],
reviewed in [64]

Abbreviations: AKAP: PKA-anchoring protein; AKT: protein kinase B; AMPK: adenosine monophosphate-
activated protein kinase; ANT: adenine nucleotide transporter; Dok-4: downstream of kinase 4; Cyt c: cytochrome
c; Drp1: dynamin-related protein 1; ERK: extracellular signal-regulated kinase; ETC: electron transport chain;
GSK3β: glycogen synthase kinase 3 β; HKII: hexokinase II; HSP90: heat shock protein 90; IMM: inner mito-
chondrial membrane; JNK: C-Jun N-terminal kinase; MFF: mitochondrial fission factor; MnSOD: manganese
superoxide dismutase; n.d.: not determined; OMM: outer mitochondrial membrane; p38 MAPK: p38 mitogen-
activated protein kinases; PINK1: PTEN-induced putative kinase 1; PKA: protein kinase A; PKCε: protein kinase
C ε; SAB: SH3 domain-binding protein that preferentially associates with Bruton’s tyrosine kinase; SFK: Src-family
protein tyrosine kinases; TOM: translocase of the outer membrane; VDAC: voltage-dependent anion channel.

3. Protein Kinases of the NO/PKG Pathway

The following section of the manuscript deals with the function of mitochondrial PKA
and PKC as kinases assigned to the protective NO/PKG pathway.

3.1. Protein Kinase A (PKA)

PKA or cAMP-dependent protein kinase is causally involved in cardioprotection
by IPC [67–69] and nitrite [39] in rodent hearts. Studies on a PKA participation in RIC
or IPostC are not yet available. PKA activation is triggered through G protein-coupled
receptors, and PKA is upstream of PKC in the cardioprotective cytosolic nitric oxide/PKG
pathway [2,13,70]. In rodent hearts, PKA activates the endothelial nitric oxide synthase
(eNOS) [69], and the PKA activation increases the phosphorylation of the cAMP response
element-binding protein [68]. Also, in humans and mice, I/R injury induces oxidation and
disulfide formation of the regulatory subunit Iα-containing protein kinase A, which finally
reduces lysosomal two-pore channel-dependent calcium release and thereby limits infarct
size [71].

In rodent myocardium, PKA is recruited via its regulatory subunits and special an-
choring proteins—the PKA-anchoring proteins (AKAP)—to the mitochondrial outer mem-
brane [35,36,72]. PKA subunits are also detected within the inner mitochondrial membrane
and the matrix fraction of subfractionated mitochondria from rat heart [38], bovine heart,
and mouse myoblasts [37]. An enrichment of PKA is demonstrated in subsarcolemmal mito-
chondria isolated from mouse ventricular tissue [73]. PKA stimulation affects mitochondrial
function through the glycogen synthase kinase 3β (GSK3β)-dependent inhibition of MPTP
opening [74,75]. Also, PKA attenuates the mitochondrial Ca2+ overload via the cAMP-
dependent protein-kinase-mediated opening of mitochondrial calcium-sensitive potassium
channels [76,77]. In isolated mitochondria, PKA activates proteins of the respiratory chain
complex I [37]; in permeabilized cardiomyocytes, PKA regulates the mitochondrial redox
state and the mitochondrial membrane potential via mitochondrial ROS generation [78].
Activated PKA phosphorylates mitochondrial Drp1 at serine 637 [39] in rodent hearts
and Drp1 phosphorylation prevents I/R-induced mitochondrial fission [79]. A deficiency
of the PKA-anchoring protein AKAP1 promotes mitochondrial aberrations and exacer-
bates cardiac injury following permanent coronary ligation via enhanced mitophagy and
apoptosis [80]. In human myocardium, PKA is also described to be co-localized with
mitochondria [71]; however, whether this interaction is also relevant for cardioprotection is
unknown [81].

A fraction of PKA, which contributes to cardioprotection by IPC, resides within
cardiac mitochondria, although data on its role in cardioprotection by RIC or IPostC are
not yet available. However, data on the submitochondrial localization of the protein
are not consistent and more detailed studies are needed to precisely characterize the
submitochondrial PKA localization. The available studies show that PKA affects several
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parameters of mitochondrial function including respiration, ROS formation, MPTP opening,
fission, and mitophagy and may, therefore, contribute to cardioprotection, but a precise
role of the mitochondrially localized protein in the context of cardioprotection has not been
demonstrated yet.

3.2. Protein Kinase C (PKC)

In response to ischemic conditioning, PKC is activated and PKC activation is causally
involved in cardioprotection by IPC [82,83] and late IPC [8], IPostC [84,85] and nociceptive
remote conditioning [86], whereas PKC is unlikely to be involved in the protective effects of
RIC [87]. In porcine myocardium, the inhibition of PKC with staurosporine does not result
in a loss of cardioprotection by IPC [88], whereas the combination of staurosporine and
genistein to inhibit protein tyrosine kinase abolishes the infarct size reduction by IPC [89].
PKC is an element of the cardioprotective cytosolic NO/PKG pathway, which interacts
with the RISK pathway. Thus, several alternatives for activating PKC are known [2,13,70].
In response to the activation of G-protein-coupled receptors, PKC is directly activated
(i.e., via adenosine) or phosphatidylinositol 3-kinase/AKT is activated, which then results
in the activation of eNOS, NO production, guanylate cyclase activation, and PKG and
PKC activation. The three isoforms of the PKC (PKCα, PKCε, and PKCδ), however, ap-
pear to be involved in a species-dependent manner. The activation of PKCα in response to
IPC-mediated protection is responsible in dogs and pigs through the activation of ecto 5′ nu-
cleotidase and adenosine formation [90] and interaction/colocalization with sarcolemmal
Connexin 43 (Cx43) [91]. The PKCε isoform is involved in cardioprotection by IPC [92,93]
and IPostC [84,85] in rodents. Controversial results exist regarding the PKCδ isoform. In
rodent hearts, PKCδ knockout abolishes IPC’s cardioprotection [94], whereas in pigs, the
selective pharmacological blockade of PKCδ is associated with cardioprotection [95].

The activated PKCε isoform translocates through a heat-shock-protein-translocase
of the outer membrane (TOM) 20-interaction to mitochondria [40], and TOM70 is also
implicated in this process [42]. PKCε resides in mitochondria isolated from neonatal
rat cardiomyocytes [44,96] and mouse [45] and rabbit [97] myocardium. The analysis of
subfractionated mitochondria indicates PKCε at the inner mitochondrial membrane [40]
or in a protein pool consisting of inner mitochondrial membrane and matrix proteins [41].
Mitochondrial PKCε interacts with JNK, p38 MAPK, and ERK. The formation of PKCε/ERK
complexes inactivates the pro-apoptotic protein Bad (B cell lymphoma (BCL)2-associated
agonist of cell death) and thereby exerts cardioprotective effects [43]. PKC activation results
in the opening of the mitochondrial ATP-dependent K channel (mitoKATP). The influx
of potassium ions via the mitoKATP triggers modest ROS formation by respiratory chain
complex I, which then, in turn, results in p38 MAPK and PKC activation [97,98] and, finally,
prevents MPTP opening [99]. The ROS formation induced by mitoKATP opening with
diazoxide and the protection afforded by diazoxide are dependent on the presence of
Cx43 [100]. The cardioprotection by IPC is also dependent on the presence of Cx43 [101].
A small fraction of the gap junction protein Cx43 resides within cardiac subsarcolemmal
mitochondria [102,103] and influences mitochondrial function in terms of respiration, ROS
formation, and MPTP opening [102]. Mitochondrial Cx43 is phosphorylated at several
residues, whereby the phosphorylation by casein kinase 1 is central for the cardioprotection
by IPC [104]. However, it is unclear at present whether Cx43 is a target of mitochondrially
localized protein kinases or if the phosphorylation of the protein is a prerequisite for its
mitochondrial import.

The addition of recombinant PKCε to isolated cardiac mitochondria inhibits MPTP
opening, and this effect may be mediated by the interaction of PKCε with proteins modu-
lating the MPTP such as VDAC1, ANT, and HKII [45]. Complex IV of the electron transport
chain (cytochrome c reductase) is positively regulated by the cAMP-dependent action of
the PKCε and PKCε co-immunoprecipitates with the cytochrome c oxidase subunit IV [44].
The protein–protein interaction seems to be relevant for improved energetics following
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hypoxic preconditioning. Also, IPC [97,105]), isoflurane-induced preconditioning [106],
and adenosine treatment [42] increase the mitochondrial amounts of PKCε.

Not only PKCε but also PKCδ resides in rodent mitochondria [105,107]. The mito-
chondrial translocation of PKCδ occurs during the reperfusion, and the inhibition of PKCδ

decreases ROS formation and enhances mitochondrial respiration after I/R [108]. The
increase in mitochondrial PKCδ upon reperfusion stimulates the release of cytochrome c
and propagates apoptosis [107]. In line with the aforementioned data are studies demon-
strating that simultaneous PKCε activation and PKCδ inhibition seem to amplify the effect
of myocardial protection [109] and that the mitochondrial PKC isoform ratio is regulated
by cellular ROS levels [107]. The increase in mitochondrial PKCε at the end of reperfusion
in preconditioned rat hearts is paralleled with a reduction in mitochondrial PKCδ [110].

In isolated human right atrial trabeculae, PKC-activated protection is abrogated by a
KATP antagonist [111], and PKCε activation is supposed to be upstream and PKCα down-
stream of the mitoKATP channels [112]. The translation of PKC-dependent cardioprotection
to patients, however, has not been successful so far. Initial results on pharmacological
PKCδ inhibition in the preclinical situation seem promising. In rodent hearts, KAI-9803
inhibits PKCδ activity and prevents the translocation of this PKC isoform to the mitochon-
dria, which preserves mitochondrial function [107]. In a pig model, the intracoronary
administration of KAI-9803 prior to reperfusion reduces infarct size [95], and the PKCδ

inhibitor deltaV1-1 attenuates microvascular dysfunction at reperfusion [113]. In a clinical
trial, however, the inhibition of PKCδ by delcasertib as an adjunct to reperfusion therapy
during the primary percutaneous coronary intervention of patients with ST-elevation my-
ocardial infarction (PROTECTION AMI Randomized Controlled Trial) failed to induce
cardioprotection. There was no change in creatine kinase–muscle band release [114].

In sum, depending on the subfractionation method, PKC is detected in rodent hearts in
the inner mitochondrial membrane and in the mitochondrial matrix. Here, the translocation
of PKCε to the mitochondria affects the function of the organelles and thereby contributes
to cardioprotection (see Figure 2). The interaction of PKCε with other kinases also localized
within mitochondria is involved in the prevention of I/R injury. In addition to PKCε, PKCδ

is also detected in rodent mitochondria, where it exerts opposing effects to those of PKCε.
Therefore, the simultaneous activation of PKCε and inhibition of PKCδ is hypothesized to
be more effective in minimizing myocardial I/R damage than the activation/inhibition of
one isoform alone. The role of mitochondrial PKC in species other than rodents is not clear,
and the translation to human myocardium has failed so far.

A scheme that summarizes the influences of PKA and PKC isoforms localized within
the mitochondria of cardiomyocytes or cardiomyocyte cell lines on the function of the
organelles is shown in Figure 2.
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effects of mitochondrially localized protein kinase A (PKA; light green) and the protein kinase C
isoforms ε (PKCε; dark green) and δ (PKCδ; grass green) on mitochondrial function of cardiomy-
ocytes or cardiomyocyte cell lines. Arrows pointing upwards indicate an activating effect upon
a cardioprotective stimulus; arrows pointing downwards indicate an inhibiting effect upon a car-
dioprotective stimulus; lines without an arrowhead indicate influence on mitochondrial function
without cardioprotective stimulus; light green dotted arrows with question marks refer to alternative
localizations of PKA at the inner membrane or matrix, respectively. For further details, see Table 2.
Created with BioRender.com. Abbreviations: I, II, II, IV, V (ATP synthase) indicate respiratory chain
complexes; ADP: adenosine diphosphate; AKAP: PKA-anchoring protein; ATP: adenosine triphos-
phate; BKCa: Ca2+-activated potassium channel; HSP: heat shock protein; KATP: ATP-dependent
potassium channel; MPTP: mitochondrial permeability transition pore; ROS: reactive oxygen species;
TOM: translocase of the outer membrane.

4. Protein Kinases of the RISK Pathway

In the subsequent part of the manuscript, we describe the role of mitochondrial GSK3β
as a protein of the RISK pathway. Furthermore, the function of mitochondrial kinases such
as hexokinase II (HKII) and adenosine monophosphate-activated protein kinase (AMPK)
in the context of myocardial I/R injury is described, as these kinases influence the activity
of GSK3β, although they are not part of the classical RISK pathway. AKT, which is part of
the RISK pathway and described to be located in mitochondria, is discussed in the context
of its interaction with HKII.

4.1. Glycogen Synthase Kinase 3β (GSK3β)

The serine/threonine kinase GSK3 is ubiquitously expressed and highly conserved in
eukaryotes and has been shown to regulate glycogen metabolism. The finding that GSK3 is
a kinase with a high number of substrates [115] implies that its function is more diverse
than originally described. In the heart, GSK3 is involved, for example, in the development
of fibrosis [116], hypertrophy [117], and heart failure [118,119]. GSK3 is expressed in two
isoforms, i.e., GSK3α and GSK3β, which show an overall homology of about 85%. Whereas
GSK3α and GSK3β share some functions, the isoforms also demonstrate some unique
properties [120–122]. GSK3 differs from several other kinases in the way that it is mostly
active under unstimulated conditions, but becomes inactivated by phosphorylation upon
different forms of input including myocardial I/R injury. The major phosphorylation site
of GSK3β is serine 9 for the negative regulation, whereas tyrosine phosphorylation at
tyrosine 216 positively regulates GSK3β activity [123]. GSK3β is part of several signal
transduction pathways and is involved in the signaling induced by kinases such as AKT,
which phosphorylates GSK3β at serine 9, or AMPK, i.e., kinases, for which a mitochondrial
localization has been described (see text and [50]) and that contribute to myocardial I/R
injury and the protection from it. I/R injury induces a dephosphorylation of GSK3β
at serine 9 and thereby activates the kinase in rat hearts in vivo [124] and in vitro [125].
Accordingly, the inhibition of GSK3β by SB216763 decreases myocardial I/R injury in
isolated rat [126,127] and mouse hearts [128,129]. A recent study shows that the inhibition
of GSK3β by direct binding of neopetroside A protects the heart against myocardial I/R
damage [130]. However, the effects of GSK3β appear to be dependent on whether they
are characterized after myocardial ischemia alone or after I/R [131]. Phosphorylation and,
thereby, the inhibition of GSK3β is induced by IPC in mouse [132] and rat hearts [129]
in vitro, by IPostC in rats hearts in vitro [125] and in vivo [133], and by RIC in isolated rat
hearts [134]. However, one study shows that IPC and IPostC in mouse hearts in vitro fail to
induce GSK3β phosphorylation after ischemia or I/R [135]. Regarding the cardioprotection
by pharmacological preconditioning, GSK3β is increasingly phosphorylated at serine
9 upon the administration of rosuvastatin, sevoflurane, or triiodothyronine [124,136,137].
While IPostC fails to decrease myocardial infarction in mice in which serine 9 within
GSK3β is mutated to alanine (GSK3β-S9A mice) [128], IPC and IPostC effectively reduce
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infarct size in mice in which serine 9 of GSK3β and serine 21 of GSK3α are rendered to
non-phosphorylatable residues [135]. The discrepancies between these data are discussed
in an article by Murphy and Steenbergen [138]. The authors hypothesize that the already
reduced infarct size in the mouse line with a knockin of GSK3α and GSK3β that cannot
be phosphorylated (studied by Nishino et al. [135]) indicates an activation of protective
signaling pathways. If such signaling pathways act downstream of GSK, they can be
effectively induced by IPC or IPostC and may confer cardioprotection even in the presence
of non-phosphorylatable GSK3β.

Whereas GSK3β is present in the cytosol, a certain fraction of the protein localizes to
the mitochondria. Mitochondrial translocation of the protein is induced by ROS and re-
quires GSK3β kinase activity. Also, the interaction between GSK3β and VDAC2, which can
be phosphorylated by GSK3β [46], is involved in the mitochondrial import of GSK3β [47].
In the myocardium, GSK3β resides in similar amounts in subsarcolemmal and interfibril-
lar mitochondria, two mitochondrial subpopulations that differ in respiration and MPTP
opening [139–141]. In relation to myocardial I/R injury, the mitochondrial amounts of
total and serine-9-phosphorylated GSK3β increase after reperfusion compared to the pre-
ischemic values [48]. The phosphorylation of mitochondrial GSK3β is regulated by PKCδ,
since PKCδ inhibition enhances the amounts of serine-9-phosphorylated GSK3β within
cardiac mitochondria at 30 min of reperfusion [142]. The prolongation of reperfusion
to 60 min is sufficient to stimulate the phosphorylation of mitochondrial GSK3β in the
absence of the PKCδ inhibitor. Pharmacological preconditioning with diazoxide, which
provides cardioprotection by opening mitoKATP channels, enhances the mitochondrial
amounts of serine-9-phosphorylated GSK3β within cardiomyocytes under control condi-
tions [74] and after I/R [127]. These data are confirmed using nicorandil as a mitoKATP
channel opener [143]. The effects of serine-9-phosphorylated and thereby inactivated
GSK3β on mitochondrial function include the inhibition of apoptosis, the enhancement
of mitochondrial biogenesis and mitochondrial dynamics, and, especially, the inhibition
of MPTP opening [74,144,145]. In this respect, the protein–protein interaction between
GSK3β and the ANT, which is suggested to be a component of the MPTP [145,146], may
be important [48]. Mitochondria isolated from GSK3β-S9A mice or wildtype mice with
pharmacological GSK3β inhibition display no delayed MPTP opening after IPostC [128].
The inhibition of MPTP opening by GSK3β involves another kinase located within mi-
tochondria, hexokinase II (HKII), which we focus on in the next section of this review.
In addition, GSK3β is involved in mitochondrial bioenergetics (reviewed in [144]). The
protein decreases the activity of the complexes of the electron transport chain, leading to
diminished ATP and increased ROS formation. Accordingly, mitochondria from GSK3β-
S9A mice demonstrate increased ADP-stimulated respiration [128]. In line with this are
data showing that the GSK3β inhibitor neopetroside A increases ATP-linked respiration
and concomitantly elevates cellular ATP levels [130]. Whereas the cytoprotective role of
GSK3β in the protection from I/R injury is mainly attributed to the inhibition of MPTP
opening, the GSK3β inhibitors MLS2776 and MLS2779 minimize myocardial I/R injury in-
dependently from targeting MPTP opening and mitochondrial GSK3β amounts in isolated
murine hearts [139]. These data suggest that GSK3β may exert cardioprotective functions
independent of the inhibition of MPTP opening.

In summary, the inhibition of GSK3β activity via serine 9 phosphorylation decreases
myocardial I/R injury. Such phosphorylation is induced by cardioprotective maneuvers
and by pharmacological preconditioning. The translocation of GSK3β into the mitochondria
affects the function of the organelles in several aspects important for cell survival following
I/R injury, especially the inhibition of MPTP opening at reperfusion. In the cardioprotective
signal transduction cascades, GSK3β is interconnected with other protein kinases for
which a mitochondrial localization is described, e.g., AMPK or AKT. Whether the protein–
protein interactions between GSK3β and the other kinases take place inside or outside the
mitochondria is currently unknown. The precise elucidation of the role of mitochondrial
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GSK3β and its interactions with other proteins is required to develop strategies to reduce
I/R damage.

4.2. Hexokinase II (HKII)

The phosphorylation of glucose to glucose-6-phosphate by hexokinase (HK) is the
first step in glucose metabolism and glucose-6-phosphate serves as a precursor for gly-
colysis, glycogenesis, the pentose phosphate pathway, and the hexosamine biosynthetic
pathway [147]. Among the HK isoforms expressed in mammals, HKI, together with HKII,
is found in the heart [148]. Here, HKI predominates in neonatal rat ventricular cardiomy-
ocytes, whereas HKII is the major isoform in adult rat ventricular cardiomyocytes [148].
HKI and HKII differ in their subcellular localization and function: HKI is predominantly
present in mitochondria and promotes glycolysis, while HKII shuttles between cytosol and
mitochondria and exerts diverse functions including the supply of glucose-6-phosphate
for glycogen and pentose phosphate pathways (cytosolic form) as well as for glycolysis
and oxidative phosphorylation (mitochondrial form) [148,149]. The hydrophobic domain
in the aminoterminus of the HKs is important for the mitochondrial localization of the
proteins [150]. Due to its predominant expression in adult cardiomyocytes, in our review,
we focus on the role of HKII.

Within the mitochondria, HKII interacts with VDAC present in the outer membrane,
making it likely that HKII also localizes to the outer mitochondrial membrane [49,52]. The
knockout of VDAC in H9C2 cells diminishes mitochondrial HKII [151]. The shuttling of
HKII between the cytosol and the mitochondria is, in part, regulated by phosphorylation.
HKII is targeted by AKT, which phosphorylates the protein at threonine 473 [51]. Since
mitochondrial amounts of AKT increase in response to insulin-like growth factor treatment,
an effect associated with enhanced mitochondrial HKII, it is possible that the interaction be-
tween AKT and HKII occurs within the organelles and increases the mitochondrial binding
of HKII [51]. In line with this hypothesis are data showing that the addition of recombinant
kinase-active AKT to mitochondria isolated from the mouse hearts stimulates the phospho-
rylation of HKII. The HKII phosphorylation, in turn, decreases the Ca2+-induced release of
cytochrome c from the mitochondria, which is a hallmark of mitochondrial apoptosis [50].
Another kinase involved in mitochondrial HKII is GSK3β, which upon pharmacologi-
cal inhibition prevents and upon activation enhances the mitochondrial dissociation of
HKII [126]. Consequently, accelerating the mitochondrial HKII dissociation enhances and
maintaining mitochondrial HKII attenuates MPTP opening and the loss of mitochondrial
membrane potential induced by GSK3β in permeabilized myocytes. A reduction in the
mitochondrial calcium retention capacity indicative of enhanced MPTP opening by the
dissociation of mitochondrial HKII is also confirmed in HeLa cells and adult rat cardiomy-
ocytes [152]. However, the knockout of cyclophilin D, which is known to facilitate MPTP
opening [153], does not alter mitochondrial amounts of HKII or mitochondrial HKII activity
under physiological conditions [154]. In accordance with the hypothesis that the loss of
mitochondrial HKII enhances MPTP opening are data showing that the overexpression of
HKII in neonatal rat cardiomyocytes protects against H2O2-induced MPTP opening.

The finding that, under physiological conditions, the reduction in mitochondrial HKII
results in accelerated MPTP opening suggests that the dissociation of HKII from the or-
ganelles may be affected by myocardial I/R injury and the protection from it. Indeed,
mitochondrial HKII levels decrease by simulated ischemia in neonatal rat cardiomyocytes
in vitro and after ligation of the left anterior descending coronary artery in vivo [155]. In
contrast, one study presents increased mitochondrial translocation of HKII induced by
ischemia in isolated rat hearts [156]. The mitochondrial amounts of HKII decrease when
ischemia is followed by reperfusion in vitro or in vivo [157,158]. The detailed analysis of
HKII in mitochondrial subpopulations shows similar reductions of HKII in subsarcolemmal,
interfibrillar, and perinuclear mitochondria at reperfusion [159]. Moreover, mitochondrial
HKII decreases in coronary microvascular endothelial cells isolated after I/R in mouse
hearts in vivo [160]. The importance of mitochondrial HKII levels for I/R injury is strength-
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ened by data showing that the dissociation of mitochondrial HKII renders a non-injurious
I/R stimulus into an injurious one [161]. Plotting infarct size against the end-ischemic
mitochondrial HK activity results in a negative correlation between the parameters, thereby
emphasizing the importance of preserved mitochondrial HKII activity for cardioprotec-
tion [162]. The mechanism by which HKII contributes to reduced myocardial I/R damage
may comprise either direct or indirect MPTP inhibition. The direct inhibition of MPTP
opening by HKII may involve interference with the mitochondrial binding of the proapop-
totic protein Bax [163], whereas the indirect inhibition may occur through the stabilization
of contact sites between outer and inner mitochondrial membranes (resulting in a reduced
permeabilization of the outer mitochondrial membrane) and reduced cytochrome c and
ROS release [162,164]. Antioxidative effects may also be achieved by stimulating glycolytic
ATP production and limiting ATP consumption by mitochondria [165]. In addition to its
effect on MPTP opening, HKII affects other mitochondrial parameters such as mitophagy,
which is stimulated upon the reduction of mitochondrial HKII, as shown by the recruit-
ment of Parkin in neonatal rat cardiomyocytes [155]. Moreover, HKII modestly increases
oxygen consumption [166]. In contrast, the chronic reduction in mitochondrial HKII in
heterozygous HKII-deficient mice is without effect on respiration [166]. In the context of
cardioprotection, most studies focus on the role of HKII in IPC. Compared to rat hearts
perfused under normoxic conditions, IPC enhances the mitochondrial HKII activity [157].
When measuring both HKI and II activity and using hearts undergoing I/R as controls,
IPC is without effect on the mitochondrial HK activity in one study [167], but is increased
in another study [168]. The aforementioned data also show that the mitochondrial protein
amount of HKII is augmented at reperfusion in hearts undergoing IPC and that this effect
is accompanied by a decrease in cytosolic HKII [168]. IPC prevents the I/R-induced loss
of mitochondrial HKII in rat hearts in vitro and, accordingly, the induction of HKII disso-
ciation from the mitochondria blocks the cardioprotection by IPC [157]. Despite similar
reductions in mitochondrial HKII, the use of the TAT-HKII peptide prevents the protective
effect of IPC, whereas IPC efficiently reduces myocardial damage in heterozygous HKII-
deficient mice [169]. The reason for these discrepancies are unclear, but it is speculated
that the TAT-HKII peptide interferes with mitochondrial binding sites involved in mito-
chondrial protein import. Whereas the TAT-HKII peptide is suggested to have effects on
the vasculature independently from the mitochondrial dissociation of HKII [157], others
question the hypothesis that TAT-HKII administration evokes vasoconstriction resulting in
ischemia [170]. In the context of IPostC, measurement of the cytosolic HK activity indicated
no difference between postconditioned and non-postconditioned isolated rat hearts, which
was in line with the similar HK amounts in total protein extracts [171]. Pharmacological pre-
and postconditioning with the cAMP analog 8-Br-cAMP-AM, however, protected against
I/R damage by binding HKII to mitochondria and inhibiting MPTP opening [172].

In patients undergoing elective first-time on-pump isolated coronary artery bypass
graft surgery, a RIC protocol is without protective effects on the release of cardiac troponin
T and C-reactive protein. In the corresponding atrial tissue samples, mitochondrial HKII
levels and protein activities are similar between control and RIC-treated patients. Moreover,
no changes in the phosphorylation of AMPK and AKT are induced by RIC; however, it has
to be stated that the study is too underpowered to prove its primary goal: the reduction in
cardiac troponin T release by RIC [173].

In summary, myocardial I/R injury induces a dissociation of HKII from the mitochon-
dria and IPC prevents such loss. The preserved amounts of mitochondrial HKII contribute
to the reduction in myocardial damage via the prevention of apoptosis, the reduction in
ROS formation, and the inhibition of MPTP opening at reperfusion [164]. The mitochon-
drial localization and activity of HKII are, at least in part, regulated by other kinases such
as AKT and GSK3β, which also partially reside in the organelles. Data on the role of HKII
in other cardioprotective maneuvers such as IPostC or RIC are sparse. One (presumably
underpowered) clinical study failed to demonstrate an involvement of mitochondrial HKII
in RIC. Therefore, further studies and an alternative to the TAT-HKII peptide in order to
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modify HKII localization are needed to clarify the contribution of mitochondrial HKII in
the protection from myocardial I/R injury.

4.3. Adenosine Monophosphate-Activated Protein Kinase (AMPK)

AMPK exists as a heterotrimeric holoenzyme formed by the catalytic subunit α, the
scaffolding subunit β, and the regulatory subunit γ and is expressed in essentially all
eukaryotic cells [174]. The protein functions as a cellular energy sensor and restores
energy homeostasis in response to increased ATP consumption or decreased ATP produc-
tion [174,175]. Within cardiomyocytes, AMPK activity is involved in a variety of cellular
processes including glucose and lipid metabolism, protein synthesis, apoptosis, and au-
tophagy [176]. During ischemia, AMPK becomes activated via the binding of AMP or
phosphorylation at threonine 172 and stimulates glucose utilization and glycolytic ATP
production [177]. Hypoxic H9C2 cells also show increased AMPK phosphorylation [178].
Additionally, activation of AMPK occurs in response to excessive amounts of ROS (for
a review, see [179,180]), and the pharmacological activation of AMPK is associated with
decreased infarct size after myocardial I/R injury [181,182]. However, data also show a
lack of AMPK activation upon I/R [183]. The already stimulated activation of AMPK with
ischemia is further enhanced by IPC [184], RIC [185], and hypoxic postconditioning [186].
The preconditioning cycles of I/R are sufficient to induce AMPK activity [187]. Compared
to sole I/R, AMPK phosphorylation increases upon acute but not delayed RIC [188] and
also upon IPostC [189]. In contrast to the aforementioned data, a lack of increased AMPK
phosphorylation by IPC [190] and the absence of effects of the pharmacological inhibition
of AMPK by compound C on the cardioprotection by IPostC [191] are also described.

Mitochondrial function is regulated by AMPK in several aspects including mito-
chondrial biogenesis, fission and fusion, the removal of damaged mitochondria by mi-
tophagy [178,192], and MPTP opening [181]. All of these mitochondrial functional pa-
rameters are modified by cardioprotective maneuvers. The regulation of mitochondrial
function by AMPK suggests that a least a certain fraction of the protein is localized within
the organelles and will directly modify mitochondrial function. Indeed, AMPK is identified
in mitochondria isolated from mouse embryonic fibroblasts [193,194], L6 myotubes [195],
kidney, liver, gastrocnemius muscle, and heart [53]. A detailed analysis on subfractionated
mitochondria indicates that the protein localizes to the outer mitochondrial membrane [53].
Phosphorylated AMPK is enriched in mitochondria isolated from muscle cells and targets
AKAP, whereby a direct interaction between AMPK and AKAP has not been demonstrated
yet. However, the AMPK-induced phosphorylation of AKAP facilitates mitochondrial res-
piration [195]. The mitochondrial fission factor MFF, which is an outer membrane receptor
for the fission protein Drp1, also represents a mitochondrial protein phosphorylated by
AMPK [35]. The MFF phosphorylation induced upon AMPK phosphorylation may prepare
the cells to initiate mitophagy [35]. The importance of AMPK for mitochondrial fission
is confirmed in HEK293 cells, where the protein ARMC10 (Armadillo repeat-containing
protein 10) is phosphorylated at serine 45 by AMPK. The knockout of ARMC10 prevents
mitochondrial fission stimulated by AMPK activation [196].

Taken together, the available data point to a mitochondrial localization of AMPK in
several organs or cell types and to a contribution of the protein towards cardioprotection
(see Figure 3). However, it is unclear whether the cardioprotective strategies include a
translocation of the protein to the mitochondria and whether the signaling cascades include
and are dependent on the translocation of AMPK to the mitochondria. Without such
proof of a causal significance of mitochondrial AMPK for cardioprotection, a conclusive
evaluation of the mitochondrial fraction of protein in this context is not possible.

A scheme that summarizes the influences of GSK3β, HKII, and AMPK localized
within the mitochondria of cardiomyocytes or cardiomyocyte cell lines on the function of
the organelles is shown in Figure 3.



Int. J. Mol. Sci. 2024, 25, 4491 13 of 31Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 13 of 32 
 

 

 
Figure 3. Effects of mitochondrially localized protein kinases associated with the RISK pathway on 
the mitochondrial function of cardiomyocytes or cardiomyocyte cell lines. The figure summarizes 
the effects of mitochondrially localized glycogen synthase kinase 3β (GSK3β, turquoise), hexokinase 
II (HKII, light blue), and adenosine monophosphate-activated protein kinase (AMPK, dark blue) on 
mitochondrial function. Arrows pointing upwards indicate an activating effect upon a cardiopro-
tective stimulus; arrows pointing downwards indicate an inhibiting effect upon a cardioprotective 
stimulus; lines without an arrowhead indicate influence on mitochondrial function without cardio-
protective stimulus; light blue dotted arrow with question mark refers to an alternative localization 
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der.com. Abbreviations: I, II, II, IV, V (ATP synthase) indicate respiratory chain complexes; ADP: adeno-
sine diphosphate; ANT: adenine nucleotide transporter; ATP: adenosine triphosphate; BKCa: Ca2+-acti-
vated potassium channel; KATP: ATP-dependent potassium channel; MPTP: mitochondrial permeability 
transition pore; ROS: reactive oxygen species; VDAC: voltage-dependent anion channel. 
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Figure 3. Effects of mitochondrially localized protein kinases associated with the RISK pathway on
the mitochondrial function of cardiomyocytes or cardiomyocyte cell lines. The figure summarizes the
effects of mitochondrially localized glycogen synthase kinase 3β (GSK3β, turquoise), hexokinase II
(HKII, light blue), and adenosine monophosphate-activated protein kinase (AMPK, dark blue) on
mitochondrial function. Arrows pointing upwards indicate an activating effect upon a cardiopro-
tective stimulus; arrows pointing downwards indicate an inhibiting effect upon a cardioprotective
stimulus; lines without an arrowhead indicate influence on mitochondrial function without cardio-
protective stimulus; light blue dotted arrow with question mark refers to an alternative localization
of HKII within the mitochondrial matrix; for further details, see Table 2. Created with BioRen-
der.com. Abbreviations: I, II, II, IV, V (ATP synthase) indicate respiratory chain complexes; ADP:
adenosine diphosphate; ANT: adenine nucleotide transporter; ATP: adenosine triphosphate; BKCa:
Ca2+-activated potassium channel; KATP: ATP-dependent potassium channel; MPTP: mitochondrial
permeability transition pore; ROS: reactive oxygen species; VDAC: voltage-dependent anion channel.

5. Protein Kinases Not Assigned to the RISK or NO/PKG Pathways

In the following section, we describe two proteins, C-Jun N-terminal kinase and p38
MAPK, that are clearly involved in myocardial I/R injury, but are not assigned to one of
the classical protective signaling pathways such as the RISK or NO/PKG pathway. As
Src seems to be downstream of JNK, we discuss the kinase in the following section. With
PTEN-induced putative kinase 1 (PINK1), we discuss a protein whose main function relates
to mitophagy.

5.1. C-Jun N-Terminal Kinase (JNK)

JNK is a member of the mitogen-activated protein kinase (MAPK) family [197]. It
becomes transiently phosphorylated and activated upon I/R and contributes to myocar-
dial damage [198]. Accordingly, the use of JNK inhibitors reduces myocardial I/R dam-
age [198–200]; however, an aggravation of myocardial I/R damage is also observed upon
inhibition of the JNK pathway [201]. Whether the activation of JNK mediates protective
or deleterious effects seems to be dependent on the duration of ischemia and the bioen-
ergetic state of the postischemic myocardium [202]. The complexity of the consequences
of JNK phosphorylation or dephosphorylation is emphasized in the context of cardiopro-
tection, where ischemic and pharmacological preconditioning increase, whereas ischemic
or pharmacological postconditioning decrease JNK phosphorylation [198,203,204]. JNK
phosphorylation, which is enhanced by myocardial I/R, is reduced by RIC [205]. The
detrimental effects of JNK activation during myocardial I/R are mediated, e.g., by the
induction of mitochondrial dysfunction, including the activation of apoptosis [198,206]
and ROS generation [200]. The influence of JNK on mitochondrial function suggests that
the protein may exert its function directly within the organelles. Indeed, JNK is detected
in mitochondria isolated from different cells or organs, including human umbilical vein
endothelial cells [207], HeLa cells [208], lung [207], liver [209,210], brain [211,212], and
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heart [206,213]. Within mitochondria, JNK is present in the outer mitochondrial membrane,
where it binds and phosphorylates the mitochondrial membrane scaffold protein SAB (SH3
domain-binding protein that preferentially associates with Bruton’s tyrosine kinase) [54].
The docking of JNK to SAB induces an intramitochondrial signal transduction cascade
leading to impaired respiration and, thus, increased ROS formation [214–216]. ROS then
activate apoptosis signal-regulating kinase, which targets mitogen-activated protein ki-
nase 4 and 7, thereby creating a P-JNK/SAB/ROS activation loop with continuous JNK
activation, finally inducing cell death [216]. The P-JNK/SAB/ROS activation loop is ini-
tiated upon different stressors including drug toxicity, a high-fat diet, immune attack, or
endoplasmic reticulum stress [207,216]. Within cardiac myocytes, oxidative stress causes
JNK activation, which, in turn, leads to the release of cytochrome c from the mitochondria,
thereby inducing apoptosis [206]. In rat hearts in vivo, infarct size is reduced after the inhi-
bition of JNK activity by SR-3306. Here, the protective effect of JNK inhibition is mediated
via mitochondrial JNK, as the inhibition of the protein–protein interaction between JNK
and SAB reduces oxidative stress and, finally, infarct size after 30 min ischemia and 24 h
reperfusion [200]. Increased JNK phosphorylation is also observed upon the activation of
mammalian STE20-like kinase 1, leading to the mitochondrial translocation of the fission
protein dynamin-related protein (Drp)1, which, in turn, causes excessive mitochondrial
fission, ROS formation, and apoptosis [217]. It is suggested that I/R injury decreases the
protein amounts of dual-specificity protein phosphatase 1, which activates JNK. The subse-
quent increase in the JNK-mediated transcription of the mitochondrial fission factor (MFF)
finally leads to excessive mitochondrial fission, apoptosis, and cell death [218]. However,
the complex role of JNK in myocardial I/R injury is demonstrated in rat hearts in vitro,
where the cardioprotection by IPC is associated with increased mitochondrial amounts of
JNK [213].

JNK exerts a complex role in myocardial I/R injury including protective or deleterious
effects depending on the experimental conditions. Within mitochondria, JNK is present in
the outer mitochondrial membrane. The inhibition of mitochondrial JNK reduces infarct
size due to the reduction in oxidative stress, whereas the stimulation of mitochondrial JNK
enhances excessive fission and apoptosis, which finally induces cell death. The conditions
favoring the mitochondrial import of JNK, the exact protein–protein interactions of the
protein within the organelles, and the corresponding function of mitochondrial JNK in the
context of I/R injury need to be addressed in further studies.

5.2. Src-Family Protein Tyrosine Kinases (SFKs)

In cardiomyocytes, seven members of the SFKs, a subfamily of non-receptor tyrosine
kinases, are expressed: Fyn, Fgr, Yes, Src, Lyn, Lck, and Blk. Among them, the activation of
Src and Lck, which appears to be distal to PKCε, is associated with IPC in rabbit hearts [219]
and in isolated rabbit cardiomyocytes [220]. The finding that the combined inhibition of
PKC and protein tyrosine kinase interferes with the cardioprotection by IPC in pigs [89]
suggests that downstream signaling pathways, including proteins such as Src, may also
be suppressed.

Although SFKs are permanent residents of cytoplasm, Src, Fyn, Lyn, and Fgr are
also localized in the mitochondria of several cell types [221], including the heart [59]. In
human and bovine cell lines, Src translocation to mitochondria seems to be dependent on
anchoring proteins (AKAP)121 [57] or docking protein 4 [60]. In H9C2 cells, simulated hy-
poxia/reoxygenation decreases mitochondrial Src phosphorylation, an effect prevented by
the inhibition of JNK [20]. Also, the blocking of SAB reverses the hypoxia/reoxygenation-
induced dephosphorylation of mitochondrial Src [222]. In rodent hearts, cardioprotection
by IPC causally involves mitochondrial Src tyrosine 416 phosphorylation upon reperfu-
sion, with Src and phospho-Src located in complex I of the electron transport chain and
phospho-Src associated with a reduction in complex I activity and ROS formation [55]. Of
note, in contrast to the other cardioprotective kinase signaling pathways, Src appears to
reduce complex I activity. However, the effects of Src on respiration appear to be cell-type-
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dependent, since Src also increases the activity of complexes of the electron transport chain
in rat brain mitochondria [223]. Src-dependent tyrosine phosphorylation of the adenine nu-
cleotide translocator 1 (ANT1)—a member of the mitochondrial carrier family relevant for
mitochondrial metabolism—seems to be linked to cardioprotection via isoflurane-induced
preconditioning [58]. Morphin-induced cardioprotection increases mitochondrial Src phos-
phorylation at reperfusion [224]. Cardioprotection by exogenous NO at reperfusion reduces
oxidative stress through the Src-mediated inhibition of complex I at reperfusion [225].

In summary, Src interacts with complex I of the electron chain in rodent heart mito-
chondria, suggesting a localization of the protein at the inner mitochondrial membrane.
Data demonstrating interactions of mitochondrial Src in HEK293 cells with matrix proteins
indicate that the function of mitochondrial Src is not restricted to the inner mitochondrial
membrane [56]. Considering that SFKs affect mitochondrial function in cell types other
than cardiomyocytes through different pathways [221] and that the co-localization of SFKs
with mitochondria is also evident in human cells, it is reasonable to assume that additional,
yet unknown, SFK-dependent signaling cascades involving mitochondria may be relevant
for cardioprotection. While a role of Src in the cardioprotection by late IPC is known [226],
it is still unclear whether a mitochondrial fraction of Src is involved in this process. The
effects of Src within mitochondria are inadequately investigated and further studies are
needed to elucidate the role of the mitochondrial fraction of the protein in myocardial
I/R injury.

5.3. p38 Mitogen-Activated Protein Kinases (p38 MAPK)

p38 MAPK is not included in the classical cardioprotective intracellular signaling
pathways [2,13,70]; nevertheless, p38 MAPK is activated through and causally involved in
cardioprotection by IPC in rodents [227], rabbits [228], and pigs [229], and possibly also
in RIC, where a pharmacological p38 inhibition abrogates the protection in rats [230]. The
two p38 MAPK isoforms α and β seem to have different or even opposing functions [231].
Pharmacological p38 MAPK inhibition and knockout mouse experiments identify that p38
MAPK α activation during the preconditioning stimulus is causal to mediate IPC [232]
whereby p38 MAPK α activation during myocardial ischemia aggravates injury [233]. The
increased activity of p38 MAPK β during sustained ischemia is associated with reduced
infarct size in pigs undergoing IPC [229]. In isolated rat neonatal cardiomyocytes, the
activation of p38 MAPK α during ischemia triggers apoptosis, whereas p38 MAPK β is
responsible for pro-survival signaling during preconditioning [234]. In chick embryonic
ventricular cells, p38 MAPK localizes to mitochondria and p38 MAPK inhibition blocks
ceramide-induced apoptosis [235]. Specifically, p38 MAPK β resides in mitochondria iso-
lated from rat neonatal cardiomyocytes and interacts with the MnSOD [62]. The interaction
between p38 MAPK β and MnSOD is confirmed in mitochondria from adult female mice,
where p38 MAPK β phosphorylates MnSOD at threonine 79 and serine 106 [61]. However,
since mitochondria have not been subfractionated in this study, it is not clearly shown
whether p38 is localized in the mitochondrial matrix as is MnSOD. The activation of Mn-
SOD by p38 MAPK β decreases ROS formation and is implicated in the cardioprotection
of 17β-estradiol [61]. The mitochondrial localization of p38 MAPK is not restricted to
the β isoform, and p38α is also detected in mitochondria isolated from rat hearts [236].
The activation of p38 MAPK during I/R is compartmentalized: whereas during ischemia,
p38 MAPK is activated through the protein kinase C (PKC) isoform ε within mitochon-
dria, p38 MAPK activity is increased in cytosolic, mitochondrial, and membrane fractions
during reperfusion [43,236]. A non-isoform-specific p38 MAPK inhibitor, given before
or during ischemia in rodent hearts, attenuates mitochondrial swelling, mitochondrial
ROS generation, and mitochondrial membrane potential depolarization, whereas it fails
to prevent the loss of mitochondrial function when given at the onset of reperfusion [237].
The concurrent inhibition of p38 MAPK α and p38 MAPK β in all of these reports, however,
complicates the interpretation of the exact role of p38 MAPK, so the specific function of
mitochondrial p38 MAPK remains elusive. The pharmacological inhibition just indicates
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that p38 MAPK is crucial for mitochondrial function during I/R [238]. Given the lack of
evidence for a role of p38 MAPK in the cardioprotection of the human heart and the known
opposing function of the p38 MAPK isoforms, it is not surprising that a clinical trial with
an oral, non-isoform-specific p38 MAPK inhibitor in patients with acute non-ST-elevation
myocardial infarction was neutral in terms of reducing infarct size as measured by troponin
I release [239].

In sum, whereas data point to a mitochondrial localization of p38 MAPK α and
β in myocardial cells, the exact submitochondrial localization of the proteins has not
been established so far. It is hypothesized that mitochondrial p38 MAPK contributes to
cardioprotection via reduced ROS formation; however, the impact of mitochondrial p38
MAPK on the function of the organelles under physiological conditions and in the context
of I/R injury needs to addressed in further and more detailed studies.

5.4. PTEN-Induced Putative Kinase 1 (PINK1)

As described above, AMPK plays a role in the cardioprotective signaling pathways
by stimulating mitophagy and, thereby, the removal of damaged mitochondria from their
cellular pool. Mitophagy proceeds in both PINK1/Parkin-dependent and -independent
pathways. PINK1 is a serine/threonine kinase, which, under physiological conditions, is im-
ported into the mitochondria, cleaved by the protease presenilin-associated rhomboid-like
protein, and then translocated into the cytosol and degraded by the proteasome, resulting
in low protein amounts of the kinase [240]. The PINK1/Parkin-dependent pathway is
stimulated in dysfunctional mitochondria with a reduced membrane potential, which
leads to the inhibition of PINK1 hydrolysis. PINK1 translocates to the outer mitochondrial
membrane of mitochondria with reduced membrane potential via the TOM complex, un-
dergoes dimerization and autophosphorylation, and then becomes activated [63–65,241].
Upon PINK1 activation, the E3 ubiquitin ligase Parkin is recruited from the cytosol to the
mitochondria via PINK1-induced downstream phosphorylation events [64,66]. Parkin,
in turn, polyubiquitylates proteins of the outer mitochondrial membrane such as VDAC
(voltage-dependent anion channel) and Mfn1 and Mfn2 involved in the fusion of mito-
chondria. The subsequent degradation of mitofusin stimulates mitochondrial fission and
induces mitophagy [242]. PINK1/Parkin-independent pathways to induce mitophagy are
reviewed in detail elsewhere [240,243,244].

The effects of PINK1 on mitochondrial function are not restricted to mitophagy; rather,
they also include other functional parameters important for the outcome of myocardial I/R
injury and the protection from it. The analysis of mitochondrial function in isolated car-
diomyocytes from PINK1-deficient mice demonstrates reduced mitochondrial respiration
and membrane potential and susceptibility to MPTP opening, whereas ROS formation is
stimulated in cells undergoing simulated I/R [245].

Infarct size increases after I/R in PINK1-deficient mouse hearts, showing that the
absence of PINK1 enhances the vulnerability of the heart towards a damaging insult [245].
Consequently, the overexpression of PINK1 in HL1 cells reduces cell death induced by
simulated I/R [245]. The permanent ligation of the left anterior descending coronary
artery (LAD) in Parkin-deficient mice leads to increased mortality, and the surviving
animals are characterized by impaired heart function and decreased mitophagy [246]. Mi-
tophagy is initiated by myocardial I/R injury in rat hearts in vivo, as indicated by the
increased expression of PINK1 and Parkin [247–250]. The amounts of PINK1 are also
induced in the mitochondria of H9C2 cells subjected to hypoxia/reoxygenation [250] and
upon permanent LAD ligation in mice [251]. Here, the small GTPase RhoA plays a role
in the stabilization of mitochondrial PINK1 by interacting with PINK1 at the mitochon-
dria [251,252]. PINK1 expression and its function in mitophagy are also controlled by
microRNA-421 [253]. In contrast to the aforementioned studies showing the increased
expression of PINK1 in models of myocardial I/R injury, reduced amounts of PINK1 are
described in neonatal rat cardiomyocytes [254] and in the mitochondria of H9C2 cells
subjected to hypoxia/reoxygenation [255].
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Even though data demonstrate that the initiation of autophagy protects the heart
against I/R injury [256] and the activation of PINK1 by IPC in kidneys [257] or by RIC in
the rat brain [258], studies on the role of PINK1 in cardioprotection by IPC, RIC, or IPostC
are still lacking. However, some studies address the role of cardiac PINK1 in pharmacolog-
ical preconditioning and show increased PINK1 expression in cardiomyocytes upon the
administration of remifentanil [254], whereas the cardioprotection by activating aldehyde
dehydrogenase 2 is associated with reduced amounts of PINK1 [250]. Pharmacological post-
conditioning with triiodothyronine further elevates the already increased PINK1 amounts
in neonatal rat cardiomyocytes undergoing simulated I/R [259]. Additionally, acetylcholine
given to H9C2 cells at reoxygenation enhances the mitochondrial amounts of PINK1 and
stimulates mitophagy [255].

While it is generally assumed that the activation of mitophagy is beneficial in my-
ocardial I/R injury and is activated by cardioprotective maneuvers, excessive mitophagy—
which seems to depend on the duration of I/R—may also have detrimental effects [15].
PINK1 is important for mitophagy, but also for other mitochondrial functions affected
by myocardial injury and the protection from it. However, direct evidence that PINK1 is
activated by IPC, RIC, or IPostC in the heart is still lacking. Further studies should aim to
investigate PINK1 as a putative target protein of cardioprotective strategies.

A scheme that shows the influences of JNK, Src, p38 MAPK, and PINK1 localized in
cardiomyocytes or cardiomyocyte cell lines on mitochondrial function is given in Figure 4.
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Figure 4. Effects of mitochondrially localized protein kinases not associated with the RISK or
NO/PKG pathway on mitochondrial function of cardiomyocytes or cardiomyocyte cell lines. The fig-
ure summarizes the effects of mitochondrially localized glycogen synthase kinase C-Jun N-terminal
kinase (JNK, orange), Src (yellow), p38 mitogen-activated protein kinase (p38 MAPK, red), and
PTEN-induced putative kinase 1 (PINK1, pink) on the mitochondrial function of cardiomyocytes or
cardiomyocyte cell lines. Arrows pointing upwards indicate an activating effect upon a cardiopro-
tective stimulus; arrows pointing downwards indicate an inhibiting effect upon a cardioprotective
stimulus; lines without an arrowhead indicate influence on mitochondrial function without cardiopro-
tective stimulus; yellow and red dotted arrows with question marks refer to alternative localizations
of p38 MAPK and Src within the matrix; for further details, see text. Created with BioRender.com.
Abbreviations: I, II, II, IV, V (ATP synthase) indicate respiratory chain complexes; ADP: adenosine
diphosphate; AKAP: PKA-anchoring protein; ATP: adenosine triphosphate; BKCa: Ca2+-activated
potassium channel; Dok-4: downstream of kinase 4; KATP: ATP-dependent potassium channel;
MPTP: mitochondrial permeability transition pore; ROS: reactive oxygen species; SAB: SH3 domain-
binding protein that preferentially associates with Bruton’s tyrosine kinase; TOM: translocase of the
outer membrane.
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6. Conclusions

Cardioprotective strategies such as IPC, RIC, and IPostC activate signaling trans-
duction pathways, which finally lead to the reduction in myocardial damage upon I/R
injury. The beneficial effects of cardioprotection are partly achieved by the maintenance of
normal mitochondrial function in terms of respiration, ROS formation, MPTP opening, mi-
tochondrial dynamics, ion homeostasis, apoptosis, and mitophagy. The signal transduction
pathways stimulated by IPC, RIC, and IPostC include protein kinases, of which a certain
amount resides within mitochondria. An overview of the localization, translocation, and
protein–protein interactions of these mitochondrially localized protein kinases is given in
Table 1. The mitochondrial translocation and activities of these kinases are modified by
myocardial I/R injury and regulate mitochondrial function. The effects of these mitochon-
drially localized kinases on mitochondrial function in the context of cardioprotection are
summarized in Figures 2–4 and Table 2.

Table 2. Mitochondrially localized protein kinases in cardiomyocytes or cardiomyocyte cell lines and
their functional effects.

Protein
Kinase

Experimental Model
Functional Effects

Preparation Stimulus

PKA

adult guinea pig cardiomyocytes without vs. with
pharmacological PKA activation - prevention of mitochondrial Ca2+

overload [77]

mitochondria, mitoplasts from cattle heart - activation of mitochondrial complex I
respiration [37]

permeabilized adult rat cardiomyocytes - increased mitochondrial ROS
generation [78]

H9c2 rat cardiomyocytes with in vitro H/R, rat
myocardium and mitochondria from WT mice

myocardium vs. myocardium of mice expressing
activated PKCε with in vitro I/R

without vs.
with NO

Drp1-dependent reduction of
mitochondrial fission [39]

adult and neonatal rat cardiomyocytes with
in vitro H/R

without vs.
with HC

GSK3β-dependent inhibition of MPTP
opening [74]

PKCε

mitochondria from myocardium of WT mice vs. of
mice with transgene expression of

activated PKCε

-
PKCε/VDAC-dependent reduction of
apoptosis [43] and inhibition of MPTP

opening [45]

neonatal rat cardiomyocytes with in vitro H/R and
without and with pharmacological PKCε specific

translocation inhibitor

without vs.
with HC

cytochrome c oxidase dependent PKCε

translocation, improved mitochondrial
respiration [44]

mitochondria from rabbit hearts with
in vitro I/R without vs. with IC increased KATP opening [97]

mitochondria, mitoplasts from rat hearts without vs.
with pharmacological PKCε

activation
- increased KATP opening and reduced

ROS formation [98]

PKCδ

mitochondria from rat hearts with in vitro I/R,
without vs. with pharmacological inhibition of

PKCδ translocation
-

decreased mitochondrial ROS
formation and improved mitochondrial

respiration [108]

rat hearts with in vitro I/R, without vs. with
pharmacological inhibition of PKCδ

translocation
- reduction of apoptosis via release of

cytochrome c [107]
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Table 2. Cont.

Protein
Kinase

Experimental Model
Functional Effects

Preparation Stimulus

GSK3β

mitochondria from WT mice and mice with
permanently activated GSK3β with in vivo I/R,

without and with pharmacological GSK3β inhibition
without vs. with IC increased respiration, inhibition of

MPTP opening [128]

adult and neonatal rat cardiomyocytes with
in vitro H/R

without vs.
with HC

inhibition of MPTP opening and
apoptosis, enhanced mitochondrial

biogenesis [74]

adult cardiomyocytes and mitochondria from mouse
hearts without vs. with pharmacological GSK3β

inhibition and neonatal rat cardiomyocytes
- increased mitochondrial respiration

and ATP production [130]

HKII

neonatal rat cardiomyocytes with Ca2+ and
H2O2-treatment without vs. with
pharmacological AKT activation

and mouse mitochondria with Ca2+-treatment
without vs. with recombinant

kinase active AKT

-
inhibition of MPTP

opening—decreased
release of cytochrome c [50]

adult rat cardiomyocytes without vs. with
pharmacological enhancement of
mitochondrial HKII binding with

recombinant GSK3β

- inhibition of MPTP opening [126]

HeLa cells and adult rat cardiomyocytes without vs.
with peptide displacing HKII from mitochondria - enhanced MPTP susceptibility to

ROS [152]

mitochondria from rat hearts without vs. with the
cAMP analogue 8-Br-cAMP-AM - inhibition of MPTP opening [172]

mitochondria from neonatal rat cardiomyocytes
with in vitro H and mitochondria from mouse hearts

with in vivo I without vs. with AAV9-mediated
expression of mitochondrial HKII

dissociating peptide

- increased Parkin-mediated
mitophagy [155]

mouse hearts in vitro perfused without vs. with
HKII peptide reducing mitochondrial HKII - increased mitochondrial

respiration [166]

AMPK

H9c2 rat cardiomyocytes with in vitro H
without vs. with
pharmacological
AMPK activation

induced mitophagy [178]

adult rat cardiomyocytes with mechanical stress
without vs. with
pharmacological
AMPK activation

inhibition of mPTP opening [181]

JNK

mitochondria from H9c2 rat cardiomyocytes and
primary human cardiomyocytes

without vs. with in vitro H2O2/FeSO4-treatment,
neonatal rat cardiomyocytes without vs. with

in vitro H2O2/FeSO4-treatment,
mitochondria from rat hearts without vs. with

in vivo I/R

- increased ROS formation [200]

mitochondria from rat hearts without vs. with
in vitro JNK-activation - increased cytochrome c release [206]

adult cardiomyocytes from hearts of WT mice and
Mst KO mice without vs. with in vitro H and

without vs. with in vivo I
- enhanced fission [217]

hearts of WT mice vs. DUSP1 KO mice with
in vivo I/R - enhanced fission [218]
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Table 2. Cont.

Protein
Kinase

Experimental Model
Functional Effects

Preparation Stimulus

SFKs (Src)

mitochondria from adult rat cardiomyocytes with
in vivo I/R without vs. with IC decreased mitochondrial respiration

during IC, reduced ROS generation [55]

adult rat cardiomyocytes with in vitro H/R without vs.
with NO

decreased complex I activity, reduced
ROS generation [225]

p38
MAPK

mitochondria from hearts of WT and Ovx mice/ER
null mice with in vivo I/R

without vs. with
17β-estradiol

p38 MAPKβ decreased ROS
formation [61]

mitochondria from rat hearts with in vivo I/R
pharmacological

p38 MAPK
inhibition

attenuated mitochondrial swelling,
mitochondrial ROS generation, and
mitochondrial membrane potential

depolarization [237]

PINK1

HL-1 mouse cardiomyocytes, WT vs. with PINK1
over-expression with mechanical stress and adult

cardiomyocytes from WT vs. PINK1-deficient mice
-

inhibition of MPTP opening, decreased
mitochondrial membrane potential,
reduced mitochondrial respiration,

increased ROS [245]

adult and H9c2 rat cardiomyocytes with
in vitro H/R

mitochondria from WT vs. PINK1-deficient mice

without vs. with
acetylcholine at
reoxygenation

increased mitophagy [255]

Abbreviations: AAV9: adeno-associated virus 9; AKT: protein kinase B; AMPK: adenosine monophosphate-
activated protein kinase; ANT: adenine nucleotide transporter; BAG5: B cell lymphoma (BCL)2-associated
athanogene 5; BNIP: BCL2/adenovirus E1B 19 kDa protein-interacting protein 3; Drp1: dynamin-related protein 1;
DUSP1: dual specificity protein phosphatase 1; ER: endoplasmatic reticulum; ERK: extracellular signal-regulated
kinase; GSK3β: glycogen synthase kinase 3 β; H: hypoxia; HC: hypoxic conditioning; HKII: hexokinase II; H/R:
hypoxia/reoxygenation; I: ischemia; IC: ischemic conditioning; I/R: ischemia/reperfusion; JNK: C-Jun N-terminal
kinase; KATP: ATP-dependent potassium channel; MPTP: mitochondrial permeability transition pore; Mst KO:
3-mercaptopyruvate sulfurtransferase; NO: nitric oxide; Ovx: ovariectomy; p38 MAPK: p38 mitogen-activated
protein kinases; PINK1: PTEN-induced putative kinase 1; PKA: protein kinase A; PKC: protein kinase C; ROS:
reactive oxygen species; SAB: SH3 domain-binding protein that preferentially associates with Bruton’s tyrosine
kinase; SFK: Src-family protein tyrosine kinases; VDAC: voltage-dependent anion channel; WT: wild type.

Whereas, in general, the positive effects of cardioprotective strategies on mitochondrial
function are relatively well described, the contribution of protein kinases present within
mitochondria is less clear, and systematic analyses to elucidate the influence of mitochon-
drial protein kinases on the function of the organelles in I/R injury and the protection from
it are lacking. These ambiguities concern possible differences regarding the localization
of kinases in mitochondrial subpopulations such as subsarcolemmal or interfibrillar mito-
chondria. In addition, whether the function of mitochondrial protein kinases is specific for
certain species is currently unknown. Furthermore, it is unclear whether and how the mito-
chondrial part of the kinases is involved in the known cardioprotective signaling pathways.
With regard to the translation of preclinical data to the clinical situation, it is necessary to
define the exact site of action of the involved protein kinases. Only the characterization of
the precise functions of the kinases involved in cardioprotection, including their subcellular
sites of action, will allow the proteins to be used as therapeutic targets in order to reduce
myocardial I/R damage.
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