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Abstract: As one of the largest and most diverse classes of specialized metabolites in plants, terpenoids
(oprenoid compounds, a type of bio-based material) are widely used in the fields of medicine and light
chemical products. They are the most important secondary metabolites in coniferous species and play
an important role in the defense system of conifers. Terpene synthesis can be promoted by regulating
the expressions of terpene synthase genes, and the terpene biosynthesis pathway has basically been
clarified in Pinus massoniana, in which there are multiple rate-limiting enzymes and the rate-limiting
steps are difficult to determine, so the terpene synthase gene regulation mechanism has become a hot
spot in research. Herein, we amplified a PmDXR gene (GenBank accession no. MK969119.1) of the
MEP pathway (methyl-erythritol 4-phosphate) from Pinus massoniana. The DXR enzyme activity and
chlorophyll a, chlorophyll b and carotenoid contents of overexpressed Arabidopsis showed positive
regulation. The PmDXR gene promoter was a tissue-specific promoter and can respond to ABA,
MeJA and GA stresses to drive the expression of the GUS reporter gene in N. benthamiana. The DXR
enzyme was identified as a key rate-limiting enzyme in the MEP pathway and an effective target for
terpene synthesis regulation in coniferous species, which can further lay the theoretical foundation
for the molecularly assisted selection of high-yielding lipid germplasm of P. massoniana, as well as
provide help in the pathogenesis of pine wood nematode disease.

Keywords: terpenoids; Pinus massoniana Lamb.; 1-deoxy-D-xylulose-5-phosphate synthase; abiotic
stresses; functional identification

1. Introduction

Pine wilt disease (PWD), native to North America, is the most dangerous and devastat-
ing epidemic forest disease caused by pine wood nematode (PWN) [1,2]. PWN has spread
to 701 county-level administrative regions and 5250 townships, with an epidemic area of
up to 1,5115,13.3 hm2 in China (as of 2022). Masson pine (Pinus massoniana Lamb.) belongs
to the Pinus subgen, Oleifera Group (Pinus sect. Pinus) of the genus Pinus (Pinaceae),
which has a unique position in ensuring ecological security and timber resource supply in
China [3]. China is the largest producer of tallow turpentine in the world, and according
to statistics, Guangxi Province ranks first in the country in terms of tallow turpentine
production year round, of which 80% of production comes from P. massoniana [4]. As a

Int. J. Mol. Sci. 2024, 25, 4415. https://doi.org/10.3390/ijms25084415 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms25084415
https://doi.org/10.3390/ijms25084415
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-4954-7926
https://orcid.org/0000-0002-8119-3216
https://orcid.org/0000-0001-9250-8036
https://doi.org/10.3390/ijms25084415
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms25084415?type=check_update&version=1


Int. J. Mol. Sci. 2024, 25, 4415 2 of 20

natural resource, the utilization of pine resin has immeasurable development prospects in
the context of sustainable development and ecological protection. Cultivating excellent
lipid-producing trees through genetic improvement is the only way to achieve sustainable
development. Obviously, like P. thunbergii and P. densifloras, the most widely distributed
P. massoniana in China is also facing a serious threat of high or moderate susceptibility [5].
The various secondary metabolic pathways in plants have mostly evolved over time in re-
sponse to various adversities such as environmental changes and biotic stresses [6]. In PWD
development, the role of host secondary metabolites and volatiles on PWN behavior may
directly determine the rate of disease spread, such as the products of the phenylpropane
pathway (i.e., phenolics) and the isoprene-like pathways (i.e., terpene resins), which have a
strong killing effect on invasive organisms [7,8]. A good example is that pine resin can be
released from traumatic resin ducts, while new pine resin can be synthesized by induction
and local terpene reactions are released [9].

Early land plants and higher plants have a complete MEP (methyl-erythritol
4-phosphate) pathway and MVA (mevalonate-independent) pathway, which contain more
than 1000 terpene secondary metabolites [10]. The terpene composition of P. massoniana
pine resin consists mainly of monoterpenes, sesquiterpenes and diterpenes, which are
generally stored in the roots, stems, needles and cones of pine trees. The monoterpenes
(C10) in gymnosperms (especially pine and fir), mainly in the form of α-pinene, β-pinene,
limonene and cotyledonene, are toxic to various insects [11]; sesquiterpenes (C15) can act as
herbivore inhibitors and antifungal agents [12]; diterpenes (C20) prey on insects by exuding
when natural enemies feed on the resin ducts [13]; azadirachtin, a triterpene (C30), has an
extremely strong food-repelling and reproductive-growth-inhibiting effect on lepidopteran
insects [14]; and polyterpenoids have protective mechanisms against oxidation, herbivores
and wound healing [15]. It has been shown that β-pinene content in P. massoniana is posi-
tively correlated with host disease resistance [16,17]. The synthesis of most terpenoids relies
on the MEP pathway. DXR (1-deoxy-D-xylulose-5-phosphate-reductoisomerase) catalyzes
the conversion of DXP to MEP by a reduction reaction assisted by divalent metal ions
(e.g., Mn2+, Co2+ or Mg2+) and the oxygen donor NADPH, which is the branching point of
the “carbon flow” in the MEP pathway [18] and is also the most effective regulatory site.
DXRase is a homodimer with an N-terminal transit peptide that directs DXR localization to
the plasmid and has a conserved Cys-Ser-(Ala/Met/Val/Thr) motif; it has a proline-rich re-
gion P(P/Q)PAWPG(R/T). They have been successfully cloned from gymnosperms, such as
P. densiflora [19], Ginkgo biloba [20], Taxus chinensis [21], and T. madia [22], and are commonly
present as single-copy genes. Previous studies have shown that the overexpression of DXR
genes in plants affects the terpenoid content. For example, it increased DXR activity and
essential oil biosynthesis in leaf tissues of peppermint (Mentha × piperita) [23]; increased the
content of monoterpene indole alkaloids in periwinkle (Catharanthus roseus) [24]; and led to
the accumulation of various terpenoids, such as chlorophyll a, luteolin, β-carotene, and
lycopene, in N. tabacum [25]. Interestingly, mutations in DXR also affect the expression of
plastid-encoded genes and inhibit gibberellins (GAs) and abscisic acid (ABA) biosynthesis
due to the metabolic disruption of enzyme mutants involved in the MEP pathway [26,27].
These results reveal a critical role for the MEP biosynthetic pathway in controlling the
biosynthesis of isoprenoids. DXR rate-limiting enzymes are key controllers of functional
gene expression in the MEP synthesis pathway of terpenoids.

To investigate the transcriptional regulatory function of DXR enzymes in the MEP
synthesis pathway during growth and development of P. massoniana, in this study we
validated the function and mechanism of action of a 1-deoxy-D-xylulose-5-phosphate-
reductoisomerase. As a highly methylated gymnosperm, PmDXR has different expressions
in the regulation of the MEP pathway during the development of different organs of
P. massoniana. Here, we demonstrated that PmDXR plays a positive role in abiotic stress.
By analyzing the promoter, we found that the PmDXR promoter regulates the regulatory
elements of stress in the metabolic pathways and multiple stresses, as a key enzyme
in the MEP pathway. In summary, these results provide new insight into the molecular



Int. J. Mol. Sci. 2024, 25, 4415 3 of 20

regulation of the MEP and MVA pathways during the invasion of pine wilt disease and pine
wood nematode.

2. Results
2.1. PmDXR Identification and Bioinformatics Analysis

We cloned and identified a new nucleotide sequence using the 5′RACE and 3′RACE PCR
methods and found that it is 1994 bp nucleotides in length (Figure 1e), with a predicted ORF
of 1584 bp (Figure 1d), a 3′RACE of 697 bp (Figure 1c) and a 5′RACE of 357 bp (Figure 1b),
encoding 527 amino acids, with a predicted molecular weight of 57.43 kD. The PmDXR
protein contains 60 total negatively charged residues (Asp + Glu) and 55 total positively
charged residues (Arg + Lys) (Table 1). The homology model template for the PmDXR′s
tertiary structure construction was 1-deoxy-D-xylulose 5-phosphate reductoisomerase (1 jvs.1.
A) with a GMQE value of 0.55 (Figure 1i). This protein has the characteristic sequence of
1-deoxyxylulose-5-phosphate reductase (PLN02696 functional structural domain) and also has
the core sequences of the NADB_Rossman superfamily and the DXP_reductoisom functional
structural domain (Figure 1h). Amino acids 7 to 29 of the PmDXR protein form a typical
transmembrane helix region (Figure 1f). Corresponding to the hydrophobicity predicted by
ProtScale, this protein is a hydrophobic protein (Figure 1h) and has an N-terminal signal
peptide probability of 3.180% (Figure 1g).
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Figure 1. Cloning and structural analysis of the PmDXR. (a) Product of the intermediate fragment 
(M: 250 bp-IIDNA ladder; 1: PCR amplification product of the intermediate fragment, 1739 bp). (b) 
Product of the 5′RACE fragment (M: 250 bp-IIDNA ladder; 1: PCR amplification product of the 
5′RACE fragment, 357 bp). (c) Product of the 3′RACE fragment (M: 250 bp-IIDNA ladder; 1: PCR 
amplification product of the 3′RACE fragment, 697 bp). (d) Product of the ORF fragment (M: 250 
bp-IIDNA ladder; 1: PCR amplification product of ORF fragment, 1584 bp). (e) Structural features 
of PmDXR. (f) Hydrophobicity plot of PmDXR. (g) Predicted transmembrane helical structural do-
mains of PmDXR. (h) Schematic diagram of the domains of PmDXR. (i) Schematic diagram of the 
tertiary structure of PmDXR. (j) Multiple sequence alignments of the deduced amino acid sequences 
among PmDXR and DXR from other plants (the DXR functional binding motif is marked by a solid 
red box, and the NADPH-binding site binding motif is marked with a dashed red box. The 
“jnetpred” in the figure represents the prediction result of the secondary structure of the DXR pro-
tein; the α-helix is represented by a red bar, and the β-sheet is represented by a green arrow). (k) 
Phylogenetic tree analysis of DXR from P. massoniana and other species. (Inner circle colors: light 
purple background represents seed plants, and light green background represents spore plants; 
outer circle colors: dark purple represents gymnosperms, gray represents angiosperms, brown rep-
resents algae, and dark blue represents mosses; asterisk colors: purple represents woody plants, 
light green represents herbaceous plants, grass green represents lianas, and purple represents algae; 
dot colors: dark blue for higher plants and green for lower plants. Pinus densiflora DXR ACC54558.1, 
Pinus taeda DXR ACJ67022.1, Taxus cuspidate DXR AAT47184.1, Ginkgo biloba DXR AAR95700.1, Zea 
mays DXR NP_001105139.100.1, Indosasa hispida DXR ASU91353.1, Oryza sativa DXR AAL37560.1, 
Dioscorea zingiberensis DXR APW35790.1, Narcissus tazetta subsp. Chinensis DXR ADD82536.1, Elaeis 
guineensis DXR XP_010940050.1, Arabidopsis thaliana DXR NP201085.1, Glycine max DXR AEB91528.1, 
Glycine soja DXR XP_028231512.1, Arachis duranensis DXR XP_015968127.1, Tripterygium wilfordii 
DXR AHW46302.1, Ricinus communis DXR XP002511399.1, Catharanthus roseus DXR AAF65154.1, Ar-
temisia argyi DXR QBB78631.1, Nicotiana tabacum DXR NP001312964.1, Camellia sinensis DXR 
AKE33276.1, Antirrhinum majus DXR AAW28998.1, Rehmannia glutinosa DXR ANW06222.1, Dunal-
iella salina DXR ACT21081.1, Ulva prolifera DXR QBP34360.1, Chlorella variabilis DXR XP_005850817.1, 
Plagiochasma appendiculatum DXR AFM78686.1, and Pinus massoniana DXR MK969119.1). 

Figure 1. Cloning and structural analysis of the PmDXR. (a) Product of the intermediate fragment
(M: 250 bp-IIDNA ladder; 1: PCR amplification product of the intermediate fragment, 1739 bp).
(b) Product of the 5′RACE fragment (M: 250 bp-IIDNA ladder; 1: PCR amplifica-
tion product of the 5′RACE fragment, 357 bp). (c) Product of the 3′RACE fragment
(M: 250 bp-IIDNA ladder; 1: PCR amplification product of the 3′RACE fragment, 697 bp). (d) Prod-
uct of the ORF fragment (M: 250 bp-IIDNA ladder; 1: PCR amplification product of ORF fragment,
1584 bp). (e) Structural features of PmDXR. (f) Hydrophobicity plot of PmDXR. (g) Predicted trans-
membrane helical structural domains of PmDXR. (h) Schematic diagram of the domains of PmDXR.
(i) Schematic diagram of the tertiary structure of PmDXR. (j) Multiple sequence alignments of the
deduced amino acid sequences among PmDXR and DXR from other plants (the DXR functional binding
motif is marked by a solid red box, and the NADPH-binding site binding motif is marked with a
dashed red box. The “jnetpred” in the figure represents the prediction result of the secondary struc-
ture of the DXR protein; the α-helix is represented by a red bar, and the β-sheet is represented by a
green arrow). (k) Phylogenetic tree analysis of DXR from P. massoniana and other species. (Inner circle
colors: light purple background represents seed plants, and light green background represents spore
plants; outer circle colors: dark purple represents gymnosperms, gray represents angiosperms, brown
represents algae, and dark blue represents mosses; asterisk colors: purple represents woody plants,
light green represents herbaceous plants, grass green represents lianas, and purple represents algae;
dot colors: dark blue for higher plants and green for lower plants. Pinus densiflora DXR ACC54558.1,
Pinus taeda DXR ACJ67022.1, Taxus cuspidate DXR AAT47184.1, Ginkgo biloba DXR AAR95700.1, Zea mays
DXR NP_001105139.100.1, Indosasa hispida DXR ASU91353.1, Oryza sativa DXR AAL37560.1, Dioscorea
zingiberensis DXR APW35790.1, Narcissus tazetta subsp. Chinensis DXR ADD82536.1, Elaeis guineensis
DXR XP_010940050.1, Arabidopsis thaliana DXR NP201085.1, Glycine max DXR AEB91528.1, Glycine soja
DXR XP_028231512.1, Arachis duranensis DXR XP_015968127.1, Tripterygium wilfordii DXR AHW46302.1,
Ricinus communis DXR XP002511399.1, Catharanthus roseus DXR AAF65154.1, Artemisia argyi DXR
QBB78631.1, Nicotiana tabacum DXR NP001312964.1, Camellia sinensis DXR AKE33276.1, Antirrhinum
majus DXR AAW28998.1, Rehmannia glutinosa DXR ANW06222.1, Dunaliella salina DXR ACT21081.1,
Ulva prolifera DXR QBP34360.1, Chlorella variabilis DXR XP_005850817.1, Plagiochasma appendiculatum
DXR AFM78686.1, and Pinus massoniana DXR MK969119.1).
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Table 1. The number and proportion of amino acids in the PmDXR protein.

Amino Acid
Species Quantity Proportion Amino Acid

Species Quantity Proportion

Ala (A) 53 10.1% Leu (L) 51 9.7%
Arg (R) 20 3.8% Lys (K) 35 6.6%
Asn (N) 9 1.7% Met (M) 10 1.9%
Asp (D) 26 4.9% Phe (F) 19 3.6%
Cys (C) 8 1.5% Pro (P) 34 6.5%
Gln (Q) 10 1.9% Ser (S) 36 6.8%
Glu (E) 34 6.5% Thr (T) 26 4.9%
Gly (G) 35 6.6% Trp (W) 8 1.5%
His (H) 16 3.0% Tyr (Y) 11 2.1%
Ile (I) 41 7.8% Val (V) 45 8.5%

The PmDXR had high similarity with the DXR of P. taeda EU862299.1, P. densiflora
EU439294.1, and P. kesiya var. Langbianensis MG764427.1, with a similarity greater than
98%. Multiple comparisons of the DXR amino acid sequences of different species us-
ing ClustalX2.1 and Jalview showed (Figure 1j) that the amino acid composition of the
DXR functional domains of different species were relatively consistent with two DXR
functional binding motifs, LPADSEHSAI and NKGLEVIEAHY; two highly conserved
NADPH-binding site binding motifs, GSTGS(I/V)GT and LAAGSN(V/I)T; and the N-
terminal proline-rich sequence PPPAWPG(R/T)A. The phylogenetic tree shows (Figure 1k)
that PmDXR clusters into a large group with DXRs of other gymnosperms, among which it
is more closely related to P. densiflora and P. taeda, which belong to the same genus Pinus.

2.2. Codon Preference Analysis of PmDXR

The GC and GC3s of the PmDXR gene codons were 43.75% and 34.47%, respectively,
indicating that its codons prefer to end in A/T. The results of the CUSP and CodonW
calculations (Table 2) showed that 25 codons of the PmDXR had RSCU values greater than
1, including 12 codons with RSCU values greater than 1.5 for GCA, GCT, AGA, AGA, GGA,
CCA, CCT, TCA, TCT, ACA, TAT, GTT, and AGA, which encodes arginine, and TCT, which
encodes serine. The RSCU values of AGA coding for arginine and TCT coding for serine
were 3.60 and 2.17, respectively, indicating that a total of 25 codons in the PmDXR gene had
preferences, of which 12 had strong preferences and 2 had very strong preferences. The
RSCU values of the NCG-type codons in P. massoniana (GCG: 0.15, CCG: 0.24, TCG: 0.33,
and ACG: 0.15) were low, inferring that P. massoniana may be a plant with a high degree
of methylation.

Table 2. RSCU of the PmDXR gene in P. massoniana.

Codon Amino
Acid Proportion Frequency Number

Relative
Codon
Usage

Codon Amino
Acid Proportion Frequency Number

Relative
Codon
Usage

GCA Ala 0.377 37.879 20 1.51 CTT 0.235 22.727 12 1.41
GCC 0.189 18.939 10 0.75 TTA 0.176 17.045 9 1.06
GCG 0.038 3.788 2 0.15 TTG 0.196 18.939 10 1.18
GCT 0.396 39.773 21 1.58 AAA Lys 0.543 35.985 19 1.09
AGA Arg 0.600 22.727 12 3.60 AAG 0.457 30.303 16 0.91
AGG 0.150 5.682 3 0.90 ATG Met 1.000 18.939 10 1.00
CGA 0.150 5.682 3 0.90 TTC Phe 0.316 11.364 6 0.63
CGC 0.000 0.000 0 0.00 TTT 0.684 24.621 13 1.37
CGG 0.100 3.788 2 0.60 CCA Pro 0.441 28.409 15 1.76
CGT 0.000 0.000 0 0.00 CCC 0.088 5.682 3 0.35
AAC Asn 0.222 3.788 2 0.44 CCG 0.059 3.788 2 0.24



Int. J. Mol. Sci. 2024, 25, 4415 6 of 20

Table 2. Cont.

Codon Amino
Acid Proportion Frequency Number

Relative
Codon
Usage

Codon Amino
Acid Proportion Frequency Number

Relative
Codon
Usage

AAT 0.778 13.258 7 1.56 CCT 0.412 26.515 14 1.65
GAC Asp 0.385 18.939 10 0.77 AGC Ser 0.056 3.788 2 0.33
GAT 0.615 30.303 16 1.23 AGT 0.083 5.682 3 0.50
TGC Cys 0.500 7.576 4 1.00 TCA 0.278 18.939 10 1.67
TGT 0.500 7.576 4 1.00 TCC 0.167 11.364 6 1.00
CAA Gln 0.600 11.364 6 1.20 TCG 0.056 3.788 2 0.33
CAG 0.400 7.576 4 0.80 TCT 0.361 24.621 13 2.17
GAA Glu 0.471 30.303 16 0.94 ACA Thr 0.500 24.621 13 2.00
GAG 0.529 34.091 18 1.06 ACC 0.269 13.258 7 1.08
GGA Gly 0.400 26.515 14 1.60 ACG 0.038 1.894 1 0.15
GGC 0.143 9.470 5 0.57 ACT 0.192 9.470 5 0.77
GGG 0.200 13.258 7 0.80 TGG Trp 1.000 15.152 8 1.00
GGT 0.257 17.045 9 1.03 TAC Tyr 0.091 1.894 1 0.18
CAC His 0.563 17.045 9 1.13 TAT 0.909 18.939 10 1.82
CAT 0.438 13.258 7 0.88 GTA Val 0.244 20.833 11 0.98
ATA Ile 0.390 30.303 16 1.17 GTC 0.089 7.576 4 0.36
ATC 0.146 11.364 6 0.44 GTG 0.222 18.939 10 0.89
ATT 0.463 35.985 19 1.39 GTT 0.444 37.879 20 1.78
CTA Leu 0.157 15.152 8 0.94 TAA TER 0.000 0.000 0 0.00
CTC 0.098 9.470 5 0.59 TAG 0.000 0.000 0 0.00
CTG 0.137 13.258 7 0.82 TGA 1.000 1.894 1 3.00

The underlines mean that the value of RSCU > 1.

2.3. DXR Gene/Protein Interactions

Interactions with proteins related to the MEP and MVA pathways were predicted
using A. thaliana as a reference species, and a co-expression prediction analysis of DXS of
P. massoniana with other interacting proteins was performed using A. thaliana and other
organisms as references (Figure 2a). The PmDXR protein interacted with DXPS, HDR, HDS,
IPP, and GPS1 (downstream proteins) in the MEP pathway and with HMGS, HMG, and
FPS1 (downstream proteins) in the MVA pathway (Figure 2b). The co-expression analysis
with other proteins showed that AtDXR was co-expressed with CDPMEK, HDS, CAL1,
DXPS3, ISPD, and ISPF but not with MK and GPS1; Oryza sativa and other plants had
lower levels of co-expression of DXR proteins with MK proteins. The co-expression study
will help in the investigation of differential protein expression and gene regulation in the
terpenoid biosynthesis pathway of P. massoniana.

2.4. Spatial and Temporal Expression Patterns of PmDXR

The expression of the PmDXR gene in different tissues (roots, young stems, old stems,
young needless, mature needles, flowers, xylem and phloem) of P. massoniana was analyzed
using the qRT-PCR technique. Setting the expression level in young stems to 1, the PmDXR
expression was highest in xylem, not significantly different from that in mature needles and
roots, and significantly higher than that in other tissues. Overall, xylem > roots > mature
needles > young needles > phloem > mature stems > young stems > flowers. After mechanical
damage treatment (Figure 3e), the expression of the PmDXR gene appeared to be upregulated
to different degrees at all treatment times, except for 3 h. The expression was highest at 6 h
of treatment and was 2.92 times higher than that of the control. After the H2O2 treatment,
MeJA treatment and PEG6000, the expression level of the PmDXR gene decreased at all
treatment time points (Figure 3b–d). After ETH treatment (Figure 3a), PmDXR was slightly
upregulated at 6 h of treatment. After the SA treatment (Figure 3f), the expression of PmDXR
was upregulated at 6 h, and the expression decreased at the rest of the treatment time points.
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GGC  0.143 9.470 5 0.57 ACT  0.192 9.470 5 0.77 
GGG  0.200 13.258 7 0.80 TGG Trp 1.000 15.152 8 1.00 
GGT  0.257 17.045 9 1.03 TAC Tyr 0.091 1.894 1 0.18 
CAC His 0.563 17.045 9 1.13 TAT  0.909 18.939 10 1.82 
CAT  0.438 13.258 7 0.88 GTA Val 0.244 20.833 11 0.98 
ATA Ile 0.390 30.303 16 1.17 GTC  0.089 7.576 4 0.36 
ATC  0.146 11.364 6 0.44 GTG  0.222 18.939 10 0.89 
ATT  0.463 35.985 19 1.39 GTT  0.444 37.879 20 1.78 
CTA Leu 0.157 15.152 8 0.94 TAA TER 0.000 0.000 0 0.00 
CTC  0.098 9.470 5 0.59 TAG  0.000 0.000 0 0.00 
CTG  0.137 13.258 7 0.82 TGA  1.000 1.894 1 3.00 

The underlines mean that the value of RSCU > 1. 

2.3. DXR Gene/Protein Interactions 
Interactions with proteins related to the MEP and MVA pathways were predicted 

using A. thaliana as a reference species, and a co-expression prediction analysis of DXS of 
P. massoniana with other interacting proteins was performed using A. thaliana and other 
organisms as references (Figure 2a). The PmDXR protein interacted with DXPS, HDR, 
HDS, IPP, and GPS1 (downstream proteins) in the MEP pathway and with HMGS, HMG, 
and FPS1 (downstream proteins) in the MVA pathway (Figure 2b). The co-expression 
analysis with other proteins showed that AtDXR was co-expressed with CDPMEK, HDS, 
CAL1, DXPS3, ISPD, and ISPF but not with MK and GPS1; Oryza sativa and other plants 
had lower levels of co-expression of DXR proteins with MK proteins. The co-expression 
study will help in the investigation of differential protein expression and gene regulation 
in the terpenoid biosynthesis pathway of P. massoniana. 
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tool (https://cn.string-db.org/cgi/input?sessionId=bFnV2zuGf1l0&input_page_show_search=on));
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2.5. PmDXR Protein Is Localized to the Chloroplast

The CaMV35S::PmDXR::GFP expression vector was successfully constructed using the
homologous recombination method (Figure 4a), and the positive single clone was detected
by PCR and sequenced correctly (Figure 4b). Transient transformation of
N. benthamiana by injection and observation of the leaves under laser confocal microscopy
revealed that 35S::GFP was localized in the whole tobacco leaf epidermal cells in vacuo,
while the CaMV35S::PmDXR::GFP recombinant vector was localized in the chloroplasts of
tobacco leaf epidermal cells. We also scanned and captured the chloroplast fluorescence
field of a stomatal guard cell, which also confirmed that the N-terminal end of PmDXR has
a conserved peptide guiding DXR localization in the plastids (Figure 4c).

https://cn.string-db.org/cgi/input?sessionId=bFnV2zuGf1l0&input_page_show_search=on
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Figure 3. Analysis of the qPCR spatiotemporal expression patterns of PmDXR: (a–f) expression
of PmDXR under different treatments; (g) expression quantity of PmDXR in different organs of
P. massoniana (R: roots; F: flowers; YS: young stems; MS: mature stems; YN: young needles; MN:
mature needles; X: xylem; P: phloem). The data represent the mean ± SE of three biological replicates.
The asterisks represent significant differences between each treatment time and 0 h (* p < 0.05 and
** p < 0.01). (h) Diagram of the predicted hydrophobicity of the PmDXR protein.

2.6. Ectopic Expression of PmDXR Promoted Arabidopsis DXR Enzyme Activity and
Photosynthetic Pigment Contents

Transgenic Arabidopsis and wild-type Arabidopsis were cultured under the same cul-
ture conditions, and the differences in rosette and shoot growth were observed after
30 days of normal growth. There was no significant difference in rosette growth between
Arabidopsis overexpressing PmDXR and wild-type Arabidopsis, but there was a difference in
carex growth, with the carex of transgenic Arabidopsis being significantly lower than that of
wild-type Arabidopsis (Figure 5a). After 15 days of drought treatment of Arabidopsis, it was
found that the transgenic Arabidopsis grew better than the wild type at 15 days of water
deficit, and both transgenic Arabidopsis and wild-type Arabidopsis could gradually recover
after 3 days of rehydration (Figure 5b). We also found that the DXRase activities of the
transgenic Arabidopsis plants were all higher than those of the wild-type plants, with Line
R5, R11 and R12 showing significantly higher DXRase activities than the wild-type plants;
R5 showed the highest enzyme activity, reaching 1.7 times that of the wild type, and R11
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and R12 showed about 1.5 times the DXRase activity of the wild type (Figure 5c). These
results indicate that the transformation of PmDXR into Arabidopsis elevated the enzymatic
activity of DXR. The chlorophyll a, chlorophyll b and carotenoid contents of the trans-
genic plants increased compared with the wild type, with the chlorophyll a content being
1.1–1.7 times higher than that of the wild type, the chlorophyll b content of the transgenic
plants being 1.3–2.0 times higher than that of the wild type and the carotenoid content
being 1.2–1.4 times higher than that of the wild type, with Line R1 having the highest
carotenoid content of 210.4 pg mL−1 (Figure 5d).
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Figure 4. Subcellular localization fusion expression vector construction and GFP fluorescence
observation: (a) construction of subcellular localization CaMV35S::PmDXR::GFP fusion plasmid;
(b) detection of CaMV35S::PmDXR::GFP recombinant plasmids in DH5α transformants by bac-
teriophage electrophoresis (M: DNA marker DL2502; 1–8: CaMV35S::PmDXR::GFP recombinant
plasmids, 1994 bp); (c) schematic diagram of the observed results of the subcellular localization
(GFP: green fluorescence; Chloroplast: chloroplast autofluorescence; Bright field: bright field; Merge:
superimposed field).

2.7. Determination of Physiological Indicators of Transgenic A. thaliana under Different
Stress Treatments

Wild-type and transgenic seeds were spotted on 1/2 MS0 medium and 1/2 MS
medium containing different concentrations of NaCl, SA, MeJA and D-Mannitol, and
phenotypic changes in Arabidopsis were observed and analyzed after 10 days (Figure 6a).
The growth of wild-type and transgenic Arabidopsis was less affected by the low concentra-
tion treatment, and the growth of transgenic roots was less inhibited by the 100 mM NaCl,
50 µM SA and 50 µM MeJA treatments compared with the wild type. However, overall, the
root length and fresh weight of the wild-type and transgenic Arabidopsis were slightly less
affected by each treatment condition (Figure 6b,c).
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2.8. GUS Staining Analysis of the ProPmDXR Promoter in N. benthamiana

The 5′ flanking sequence of the PmDXR gene, 1600 bp upstream of the start codon
(ATG), was obtained after three rounds of PCR amplification and named ProPmDXR
(Figure 7b). ProPmDXR has the basic elements of eukaryotic promoters, TATA-box and
CAAT-box, and contains various cis-acting elements, such as the stress response element
(STRE), light response element (Sp1 and TCT-motif), jasmonate response element (CGTCA-
motif, TGACG-motif) and damage response element (WUN-motif) (Table 3). We success-
fully constructed the pBI121-proPmDXR::GUS fusion expression vector and transiently
transformed N. benthamiana (Figure 7c). Root, stem and leaf GUS histochemical staining
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analyses showed (Figure 7a) that the GV3101 null strain of N. benthamiana, the negative con-
trol, did not have any GUS expression activity, and the roots, stems and leaves transformed
with ProPmDXR showed different levels of blue color. The results (Figure 7d) of the GUS
staining in N. benthamiana leaf discs confirmed that the GUS activity driven by ProPmDXR
after ABA and MeJA treatment was stronger than that in the control (ProPmDXR tobacco
leaves cultured on MS medium without any hormones). It is hypothesized that ProPmDXR
is a tissue-specific promoter and an inducible promoter that drives the expressions of GUS
reporter genes in tobacco in response to ABA and MeJA stresses.
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Figure 6. Analysis of phenotypic and physiological indicators of transgenic A. thaliana under different
treatments: (a) phenotype observation of A. thaliana under different treatments, scale bar = 1 cm;
(b) determination of the fresh weight of A. thaliana under different treatments (note: CK1-4 is
1/2 MS0); (c) determination of the root length of A. thaliana under different treatments (note: CK1-4 is
1/2 MS0).
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Figure 7. Construction of the PmDXR promoter vector and analysis of GUS activity: (a) detection
of GUS activity in different tissues; (b) PCR detection of pBI121-proPmDXR::GUS recombinant
plasmid-transformed E. coli (M: DNA marker DL2502; 1–2: pBI121 plasmid, 500 bp; 3–8: pBI121-
proPmDXR::GUS recombinant plasmid, 1600 bp); (c) Schematic diagram of pBI121-proPmDXR::GUS
recombinant vector construction; (d) GUS chemical staining analysis of the PmDXR promoter under
MeJA, ABA and GA.

Table 3. Part of the putative cis-acting elements and their positions in the PmDXR promoter.

Cis Element Sequence Function Quantity

AT-rich element ATAGAAATCAA ATBP-1-binding sites 1

CAAT-box CAAT/CCAAT/CAAAT Promoter and enhancer region
regulatory elements 30

CAT-box GCCACT Syngeneic tissue expression
cis-elements 1

CCAAT-box CAACGG MYBHv1-binding site 1
CGTCA-motif CGTCA Methyl jasmonate response element 1
STRE AGGGG Stress response element 8
Sp1 GGGCGG Light-responsive elements 3

TC-rich repeats ATTCTCTAAC Defense and stress response cis-acting
elements 1

TCT-motif TCTTAC Partial photoresponse elements 1
TGACG-motif TGACG Methyl jasmonate response element 1
WUN-motif AAATTTCTT Damage response element 1
W-box TTGACC Salicylic acid response element 1

TATA-box
ATATAT/TATA/TATATA/
ATTATA/ATATAA/TATACA/
TATAA/TATATAA/TATATAAATC

Transcription initiation-30 core
promoter element 20

3. Discussion

Turpentine, also known as “the oil that grows on trees”, is more than one-third of the
total global turpentine production in China, and it has become a major export commodity
of Chinese forestry in the world [28]. As a renewable resource, the utilization of turpentine
is beneficial to the sustainable development of the national economy. P. massoniana is an
important native species, and most of the total annual production of turpentine in China
still comes from this species. So, it is crucial to clarify the molecular regulation mechanism
of turpentine production to improve the species’ own resistance and increase the national



Int. J. Mol. Sci. 2024, 25, 4415 13 of 20

economy. PWD causes pine trees to lose their normal function and the canopy gradually
dies, for which no fully effective treatment has been found. It has been shown that an in-
depth understanding of terpenoid biosynthesis, such as α-isopinene and β-watercressene,
can provide strong support for the development of more effective nematicides, control of
PWD, and contribute to forest conservation and economic development [17]. Therefore, it
is important to study the synthesis of isoprenoid compounds in plants for the growth and
conservation of pine trees. It is especially important to increase their output by improving
their yield and regulating the expression of target genes with the help of genetic engineering.
In agreement with the results of Li Lu et al. [29], we also hypothesized that the N-terminal
end of the PmDXR protein has a conserved peptide guiding DXR localization in plastids,
which has been confirmed in the results of subcellular localization, and that the PmDXR
gene may also be involved in chloroplast formation and play an important role in normal
plant growth and development, as well as in the synthesis of secondary metabolites. During
the long process of natural selection and evolution, species have developed specific codon
usage patterns, and their usage preferences are biologically important for the study of gene
evolution and functional identification. The PmDXR gene codons prefer more to end in
A/T, have a weak codon usage preference, and among the 12 high-frequency codons, AGA
and TCT are extremely and strongly preferred, which is consistent with the analysis by Fan
Weijun et al. [30], indicating that P. massoniana is a highly methylated plant.

DXR regulation of the MEP pathway can vary among plants and their different devel-
opmental periods, e.g., LaDXR gene expression in Lavandula angustifolia correlates with the
developmental period of flowering organs [31], and PdDXR expression in P. densiflora is higher
in wood than in needles, bark and roots [19]. The analysis of the gene’s spatiotemporal ex-
pression patterns showed that PmDXR can be highly expressed in the xylem, mature needles
and root tissues of P. massoniana, and they are similar to the expression patterns of Amomum
villosum AvDXR [32], Populus trichocarpa PtDXR [33], and Dioscorea zingiberensis DzDXR [34].
Terpenoids can be involved in plant defense responses, and phytohormones play an important
role in regulating plant growth and development, as well as signaling, but the expressions
of DXR genes show some variability among species after hormone induction. It was shown
that the expression of PdDXR increased and then decreased after both 1 mM MeJA treatment
and mechanical damage treatment of P. densiflora [19]. Dendranthema indicum DiDXR could
be induced by 0.25% MeJA activation up to a 20-fold expression after 24 h [35]; GmDXR
expression was significantly higher in Gentiana macrophylla leaf tissue after 2 d treatment
with the hormone [36]. The expression of AoDXR in the rootstock of Alpinia officinarum was
1.8-fold higher than the control after 12 h of spraying with 10 µM MeJA [37]. The expression
of the PmDXR gene in P. massoniana needle leaf tissue could be induced by ETH and SA but
not by MeJA, which shares the same results with the Salvia officinalis SmDXR gene [38] and
Dendrobium officinarum DoDXR gene [39].

DXR enzymes are involved in the synthesis of secondary metabolites such as pigments
in the MEP pathway. When the DXR gene is overexpressed, its regulation of the MEP
pathway is enhanced, which, in turn, promotes the biosynthesis of terpenoids. Therefore,
the content of terpenoids in transgenic plants can be significantly increased by the overex-
pression of DXR genes [40]. We overexpressed the PmDXR gene in Arabidopsis and found
that DXR enzyme activity and chlorophyll a, chlorophyll b and carotenoid contents all
increased compared to the wild type. The PmDXR gene promoter contains a number of
important cis-acting elements that control gene-specific expression, including in response
to abiotic stresses and phytohormones. ABA is a very important plant hormone that in-
tegrates multiple stress signals to regulate the expression of downstream-related genes
under adversity [41]; exogenous MeJA stress induces the expression of plant defense genes
and is an important inducer to promote the accumulation of plant secondary metabolites
for yield [42]. The PmDXR gene promoter responds to ABA and MeJA induction, and
CGTCA motif and TGACG motif elements may play a role in response to exogenous MeJA
treatment, but the key functional regions regulated in response to MeJA need to be further
investigated by constructing deletion bodies, and further studies on the specific regulatory
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mode of the PmDXR gene promoter are needed. In summary, DXR rate-limiting enzymes
can directly affect the product production of the MEP synthesis pathway, thereby affecting
plant growth and development. These results provide researchers with a new perspective
on controlling plant growth and yield by regulating the expression of DXR rate-limiting
enzymes. These findings also help us, as researchers, to better understand the complexity
of secondary metabolic pathways and gene regulatory networks in plant cells.

4. Materials
4.1. Pinus massoniana Lamb.

Seeds of P. massoniana were obtained from the clonal seed orchard of Baisha State
Forestry Farm (latitude: 25◦08′58′′ N; longitude: 116◦35′24′′ E) in Shanghang City, Fujian
Province, China. For successful germination, seeds were sprouted and rooted in pots
containing a mixture of black carbon soil + perlite + vermiculite (4:2:1) and at a rela-
tive humidity of 60% to 70%, 25 ± 2 ◦C, and 16 h light/8 h dark light. Tissue material
of 15-year-old seedlings was harvested from the tree garden of Nanjing Forestry Uni-
versity (latitude: 32◦47′12′′ N; longitude: 118◦49′ E) and used for tissue-specific qPCR
expression analysis.

4.2. Arabidopsis thaliana

The wild-type (Col-0) A. thaliana of a Columbia (Col) genetic background was used in
this study, and the seeds were preserved by our Lab. Wild-type and transgenic plants were
grown under the same culture conditions. PmDXR gene transformation was performed
by the flush infestation method [43] using 30 mg L−1 hygromycin as a screening pressure
to screen positive PmDXR overexpression plants, which were identified by PCR until
T2 generation pure plants were produced. Wild-type and transgenic A. thaliana were
grown under the same culture conditions. After first sterilizing the surface, wild-type and
transgenic A. thaliana seeds were spotted on ½ MS medium (20 % sugar, 0.6 % agar and
pH 5.85) and then placed in 4 ◦C dark conditions for 2 days for vernalization and, finally,
placed in an artificial climate incubator (25 ± 2 ◦C, 16 h light/8 h dark light) to wait for
germination and growth. After about 7–10 days, the Arabidopsis seedlings were transferred
to the potting soil with Hoagland nutrient solution (black soil: vermiculite: perlite = 4:2:1)
and covered with plastic wrap. The cling film was removed on the third day, the phenotype
was observed, and the root length and fresh weight were counted. Each experiment was
designed with three replications and at least 90 seeds per genotype. Finally, we took leaves
of wild-type and transgenic A. thaliana separately and snap-froze them in liquid nitrogen
and stored at −80 ◦C for the extraction of genomic DNA and RNA, a qPCR assay, and an
assay of the DXR enzyme activity and photosynthetic pigment content [44].

4.3. Nicotiana benthamiana

The seeds of wild-type N. benthamiana were stored in our laboratory. After surface
sterilization, the seeds were spotted in MS0 medium, and root, stem and leaf tissues were
taken after about 21 days for the PmDXR promoter Agrobacterium transient infestation
assay; another portion of seeds were taken in the same manner as A. thaliana seed treatment
and then transplanted into nutrient soil for 21 days for the PmDXR subcellular localization
assay. The environmental culture conditions were the same as those described above for
A. thaliana, and three biological replicates and three technical replicates were conducted for
each set of experiments, with three plants per replicate design.

4.4. Reagent

Agrobacterium strains EHA105 and GV3101 were purchased from Weidi Biotechnology
company (Shanghai, China), and the cloning vectors pEASY®-Blunt and Escherichia coli
strain Transl-T1 were purchased from TransGene Biotechnology company (Beijing, China).
The localized expression vector 35S::GFP was obtained from E. coli strains preserved in
our laboratory.
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5. Experimental Method
5.1. PmDXR Gene Cloning

After searching the DXR sequences of different plants in NCBI and comparing them with
the Masson pine young shoots transcriptome database (NCBI Accession: PRJNA655997) [45],
the target mRNA sequences were screened and the intermediate fragment primers of PmDXR
were designed using software named PmDXR-MidF and PmDXR-MidR (Table 4). Total RNA
of P. massoniana was isolated using RNAprep Pure Plant Plus Kit (Tiangen Biologicals, Beijing,
China), followed by the removal of genomic DNA contamination using DnaseI Storage
Solution (Tiangen). The extracted RNA was reverse transcribed into complementary DNA
(cDNA) using the TransScript® One-Step gDNA Removal and cDNA Synthesis SuperMix
Kit (TransGen). The RACE cloning primers PmDXR 5′RACE Outer, PmDXR 5′RACE Inner,
PmDXR 3′RACE Outer, and PmDXR 3′RACE Inner (Table 4) were designed with reference to
the 3′-Full RACE Core Set with the PrimerScriptRTase Kit (TaKaRa Biologicals, Dalian, China)
and the SMARTer®RACE 5′/3′ Kit (TaKaRa); reverse-transcribed cDNAs were used for the
3′RACE and 5′RACE cloning templates, respectively. The full-length sequence of the PmDXR
gene was obtained by splicing using DNASTAR.Lasergene.v7.1 (SeqMan software), and ORF
region primers PmDXR ORF-F and PmDXR ORF-R were designed (Table 4).

Table 4. All primers in this experiment.

Primer Name Sequence of Primers (5′ → 3′) Use

PmDXR-Mid-F GGTGTCCAATTCCACTACTACATTGC

Gene cloning

PmDXR-Mid-R CATGATAAAAGGCATCCCTTCATGGG
PmDXR 5′RACE Outer GCGGGAGGAGGTGCTTGTAGGGA
PmDXR 5′RACE Inner GGAAAGGGGCGGAGGATAAGACAAA
PmDXR 3′RACE Outer CTGGCCTCGGCTTGACCTTTGCG
PmDXR 3′RACE Inner GCTTGGAGCCTGCCACAGTCTTC
PmDXR ORF F ATGGGAGTATTAGTAGTAG
PmDXR ORF R GACTGTGGCAGGCTCCAAGC

qPmDXR-F GTTCCCTACAAGCACCTCCTC

qRT-PCRqPmDXR-R GTTCGGCAACAATGTCCAAT
TUA-F CAAACTTGGTCCCGTATCCTC
TUA-R CACAGAAAGCTGCTCATGGTAA

pPmDXR-SP1 GTGAAGATGGCAGAGTCGCAGGAA

Promoter cloning

pPmDXR-SP2 GCGAGTGTAGGGTGGAGGCTTATT
pPmDXR-SP3 GGGCGGAGGATAAGACAAAGAAGA
pPmDXR-F TGGTAATGCAATGAAGTTGGGAGG
pPmDXR-R GGGGTGGAAAGGGGCGGAGGATAA
pBI121-ProDXR-F GACCATGATTACGCCAAGCTTTGGTAATGCAATGAAGTTGGGA
pBI121-ProDXR-R ACCACCCGGGGATCCTCTAGAGGGGTGGAAAGGGGCGGA

PmDXR-GFP-F GAGAACACGGGGGACTCTAGAATGGGAGTATTAGTAGTAG
TAATAATAATAAG Subcellular

localizationPmDXR-GFP-R GCCCTTGCTCACCATGGATCCGACTGTGGCAGGCTCCAAGC

1302-PmDXR-F CGGGGGACTCTTGACCATGATGGGAGTATTAGTAGTAGTAA
TAATAATA

Overexpression of A.
thaliana

1302-PmDXR-R ACTAGTCAGATCTACCATGGTCAGACTGTGGCAGGCTCCAAG
1302-CheckF ACAGTCTCAGAAGACCAAAGGGCA
AtActin2-F ACTCTCCGCTATGTATGTCGCC
AtActin2-R ATTTCCCGCTCGCTGTTGTGGT

After the target fragment was obtained, it was ligated by the pEASY-Blunt vector
(TransGene Biotech, Beijing, China), transformed with the Escherichia coli strain Transl-
T1 (TransGene Biotech, Beijing, China), and the sequencing was conducted by the com-
pany. The sequences measured were compared with the transcript sequences of our
group, and the sequence of the coding region of PmDXR was determined. The primers
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were synthesized by JieRui Biology (Shanghai, China) and sequenced by JieLi Biology
(Shanghai, China).

5.2. Bioinformatics Analysis

We performed the physicochemical properties and hydrophilicity analysis of the proteins
of PmDXR using ProtParam (https://web.expasy.org/protparam/, accessed on 20 April
2020) and ProtScale (https://web.expasy.org/protscale/, accessed on 20 April 2020) online
software successively [46]. We also used the online software ProScan (https://www.ebi.
ac.uk/interpro/result/InterProScan/, accessed on 20 April 2020) to predict the structural
domain of the PmDXR protein. The secondary structure of the PmDXR protein was analyzed
using the SOFMA (https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.
html, accessed on 20 April 2020) online software [47]. The transmembrane structure of the
PmDXR protein was analyzed using TMHMM Server v.2.0 (http://www.cbs.dtu.dk/services/
TMHMM/, accessed on 20 April 2020) [48]. The tertiary structure of PmDXR was predicted by
Swiss-Model (https://www.swissmodel.expasy.org/, accessed on 20 April 2020) to construct a
homology model [49]. The nucleotide sequences of PmDXR were compared using Blastn from
the NCBI website (https://www.ncbi.nlm.nih.gov/, accessed on 20 April 2020). The multiple
sequence alignment of the amino acid sequences was performed using ClustalX2.1 [50] and
Jalview [51]. The evolutionary tree based on PmDXR-encoded amino acid sequences was
constructed using MEGA5.0 software [52], and the phylogenetic tree was constructed by
the neighbor-joining method with the bootstrap method and a test count of 1000; the gaps
processing method was complete deletion, and the evolutionary tree was visualized using the
online mapping software EvolView (https://evolgenius.info//evolview-v2/#login, accessed
on 20 April 2020) [53]. The software CodonW (https://codonw.sourceforge.net/culong.html#
CodonW, accessed on 20 April 2020) and EMBOSS (http://emboss.open-bio.org/, accessed
on 20 April 2020) and an online server were used to analyze the preference of the codons of
PmDXR. Protein–protein interactions (PPIs) were predicted and analyzed using the search
tool for retrieval of interacting genes/proteins (STRING) analysis (https://cn.string-db.org/
cgi/input?sessionId=bop583S4w1aI&input_page_active_form=multiple_sequences, accessed
on 20 April 2020) [54] and Cytoscape software (Cytoscape_v3.7.2) [55]. Interactions with
proteins related to the MEP and MVA pathways were predicted using A. thaliana as a reference
species, and the co-expression prediction analysis of PmDXS with other interacting proteins
was performed using A. thaliana and other organisms as references.

5.3. Abiotic Stress and Hormone Treatment of Plant Materials

All tissue samples used for RNA extraction were thoroughly ground in liquid nitrogen.
In this experiment, the column purification method was adopted, and the RNA extraction
experiment was carried out with reference to the RNAprep Pure Plant Plus Kit (catalogue
number DP441, Tiangen Biotech, Beijing, China). The 1st strand cDNA synthesis kit
(catalogue number 11141, Yeasen Biotech, Shanghai, China) was used to reverse transcribe
RNA into cDNA, and the cDNA was stored at −80 ◦C.

(1) The relative expression levels of PmDXR in young stems (YS), mature stems (MS),
young needles (YN), mature needles (MN), flowers (F), xylem (X), phloem (P) and
roots (R) of 15-year-old P. massoniana were detected.

(2) The expression patterns under abiotic stress and hormone induction of PmDXR in
2-year-old P. massoniana included the following: mechanic wound, 15% polyethylene
glycol (PEG6000), 10 mM H2O2, 500 µM ethephon (ETH), 1 mM salicylic acid (SA)
and 100 µM methyl jasmonate (MeJA). Mechanical damage was treated by cutting the
needles at 1/2 of the upper half of the needles in the potted seedlings of P. massoniana,
and collecting the cut needles at 0 h, 3 h, 6 h, 12 h, 24 h and 48 h intervals. We
immediately put the sample in liquid nitrogen and put it in the refrigerator at −80 ◦C.
In addition, the abiotic stress treatment and hormone treatment were carried out by
spraying the surface of the plant. The needles of P. massoniana were collected every 0 h,
3 h, 6 h, 12 h, 24 h and 48 h, frozen in liquid nitrogen and stored at −80 ◦C [44,56]. The
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above treatments were 0 h without any treatment as a control group. Three technical
and biological replicates were set up for each group of experiments, and the biological
replicates for each treatment consisted of three pots (three plants per pot), with every
three seedlings serving as one technical replicate.

5.4. Real-Time Quantitative PCR (qRT-PCR) Analysis

The RT-qPCR-specific primers were designed using Primer (premier 5.0) software
on the basis of the reference gene sequence, as shown in Table 4, for qPmDXR-F and
qPmDXR-R. A StepOnePlus TM Real-Time PCR System with Laptop (Applied Biosystems
Inc., Foster, CA, USA) was used to detect the expression of the gene of interest. Hieff
UNICON® Universal Blue qPCR SYBGreen Master Mix (Yeasen Biotech, Shanghai, China)
was used for qPCR reactions. The TUA gene was used as an internal reference gene (NCBI
accession number: KM496535.1) (Table 4) [57]. The reference gene AtActin2 (Table 4) was
used for the qPCR analysis of the PmDXR gene in A. thaliana. The total volume of the PCR
reaction was 20 µL: cDNA, 2 µL; forward primer (10 µM), 0.4 µL; reverse primer (10 µM),
0.4 µL; Hieff UNICON® Universal Blue qPCR SYBR Green Master Mix, 10 µL; and sterile
ultrapure water, 7.2 µL. The data represent three biological replicates and three technical
replicates. The RT-qPCR reaction procedure used was 95 ◦C for 2 min; 95 ◦C for 10 s,
55 ◦C for 30 s, 72 ◦C for 30 s, 40 cycles, and each reaction was performed in three biological
triplicates and three technical replicates.

The relative expression level of the gene was calculated by the 2−∆∆CTmethod [58]
based on the expression level of the gene in the control sample. IBM SPSS Statistics 25.0
(http://www.ibm.com/us/en/, accessed on 5 August 2020) was used for the statistical
analysis (t test, p < 0.05). The plots were created using GraphPad Prism 6 software.

5.5. Subcellular Localization of the PmDXR

In order to analyze the subcellular localization of PmDXR, we constructed a GFP
fusion expression vector. First, the stop codon of the PmDXR gene coding region sequence
was removed, and then the digested primers were designed by Snapgene software 6.0
(Table 4; PmDXR-GFP-F and PmDXR-GFP-R). PCR amplification was performed using the
pEASY-Blunt plasmid of PmDXR as a template to recover the target fragment. We used XbaI
and BamHI to double digest the recovered gene fragment and 35S::GFP empty plasmid [44].
According to the ClonExpress II One Step Kit instructions (Vazyme Biotech, Nanjing, China),
the amplified product was connected to the 35S::GFP vector, and the connected product was
transferred into E. coli. The positive clone was sequenced and confirmed. The recombinant
35S::PmDXR-GFP plasmid was transformed into Agrobacterium GV3101, and the leaf back
of N. benthamiana was injected by transient transformation [59]. Subsequently, we used
a laser confocal microscope (LSM710, Zeiss, Germany) for fluorescence detection. The
experiment was designed with three technical replicates, each containing three seedlings
and each injected with three leaves.

6. Conclusions

This study identified the key gene PmDXR in the plant isoprene-like synthesis pathway,
and its expression level is closely related to the rate of isoprene-like synthesis in plants. On
the basis of the transcriptome sequencing data, we identified a second rate-limiting enzyme,
PmDXR, in the MEP pathway of terpenoid synthesis from P. massoniana, belonging to a
plastid protein with a functional structural domain of PLN02696 and two highly conserved
NADPH-binding site binding motifs. We speculated that PmDXR has spatiotemporal
expression specificity in P. massoniana xylem, needles and roots and is involved in response
to mechanical damage, PEG6000, H2O2, ETH, SA and MeJA stresses under adversity.
Heterologous expression of the PmDXR Arabidopsis lines showed negative regulation of
the elongation growth of the shoots. The transgenic phenotype showed some sensitivity to
growth and development under stress conditions (NaCl, SA, MeJA and D-Mannitol). ABA
and MeJA could promote the expression of the ProPmDXR promoter, thus enhancing the
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adaptation of P. massoniana to the adversity environment. Therefore, studying the PmDXR
and its regulatory mechanism in response to adversity is important for understanding the
terpene synthesis pathway of P. massoniana and its adversity adaptation mechanism.
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