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Characterizations 

The Rigaku TTRIIIX instrument used for the X-ray diffractometer (XRD) has a 

scan angle 2θ range of 5°-90°, a radiation source of Cu Kα radiation (λ=1.5418 Å), an 

operating current of 150 mA, an operating voltage of 40 kV, and a scan speed of 

10°/min. Transmission electron microscopy (TEM) and X-ray spectroscopy elemental 

mapping (EDS) were performed using the FEI Talos F200X TEM at 200 kV. XPS data 

were performed on X-ray photoelectron spectra (ESCALAB 250Xi, hν= 1486.6 eV, 

Al Kα radiation) and corrected by the C1s standard peak (284.8 eV). The sample 

transition metal monoatomic content was obtained by ICP-OES testing. 

Electrochemical measurements  

Electrochemical measurements are performed in a standard three-electrode 

system using a CHI660E electrochemical workstation with a pt-sheet as counter 

electrode and a saturated glymeric electrode as reference electrode, with the working 

electrode prepared in the well-known manner. First, an aqueous solution of catalyst 

ink was prepared by homogeneously dispersing 5 mg of catalyst in 250 μL of water, 

250 μL of ethanol and 30 μL of Nafion (5 wt%). After sonicating the ink for half an 

hour, 100 μL of the ink-water solution was evenly added dropwise onto a carbon cloth 

with an area of 1 cm*1 cm and dried for 40 minutes to produce a working electrode. 

All electrochemical tests were calibrated by reversible hydrogen electrode 

(ERHE=ESCE+0.0591×pH+0.241). After activating the electrode with CV, the LSV 

polarization curve was tested under 0.5 M H2SO4 aqueous electrolyte with a scan rate 

of 2 mV/s and corrected by 95% IR compensation. The AC impedance spectrum (EIS) 
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is tested in the frequency range of 105 Hz to 10-1 Hz. The CV curves were measured 

by sweeping at 20, 40, 60, 80, 100 and 120 mV/s, and the CV curves were used to fit 

the calculation of the bilayer capacitance (Cdl). The equation Tof =jA/2nf was applied 

to calculate the amount of hydrogen converted per unit time at each active site of the 

catalyst [45]. j is the current density, obtained by LSV test. A is the electrode surface 

area (1 cm*1 cm). 2 is the transfer of 2 mol of electrons per 1 mol of H2 produced in 

the hydrogen precipitation reaction. n is the molar fraction of active centers 

(calculated by ICP test), and F is the Faraday constant (96485 C mol-1). 

Computational Methods 

All the DFT calculations were performed using the Vienna ab initio Simulation 

Package (VASP) [55-57]. The projector augmented wave (PAW) pseudopotential with 

a cutoff energy of 600 eV was adopted to describe the core electrons , and the 

Perdew-Burke-Ernzerhof (PBE) exchange-correction functional treated by 

generalized gradient approximation (GGA) was employed to deal with the electron 

interactions [58-60]. Partial occupancies of the Kohn−Sham orbitals were allowed 

using the Gaussian smearing method and a width of 0.05 eV. The electronic energy 

was considered self-consistent when the energy change was smaller than 10−6 eV. A 

geometry optimization was considered convergent when the energy change was 

smaller than 0.05 eV/Å. The brillouin zone is sampled with 4 × 4 × 3 Monkhorst mesh 

[61]. 

For acidic HER in the Volmer-Tafel mechanism, the elementary reactions include 

two processes as follows [62]: 
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HଷOା + eି+∗→ H∗ + HଶO (S1) H∗ + H∗ → Hଶ + 2∗ (S2) 

For alkaline HER in the Volmer-Tafel mechanism, the elementary reactions 

include four processes as follows [63]: HଶO+∗→ HଶO∗ (S3) HଶO∗ → H∗ + OH∗ (S4) H∗ + OH∗ + eି → H∗ + OHି (S5) H∗ → +∗ 1/2Hଶ (S6) 

The reaction free energy of each elementary step can be calculated using the 

following equation: ∆𝐺 = ∆𝐸 + ∆𝑍𝑃𝐸 − 𝑇∆𝑆 (S7) 

where ΔE is the electronic energy difference directly available from DFT 

computation, ΔZPE is the correction in zero-point energies (ZPE), T is the room 

temperature (here T = 298.15 K), ΔS is the entropy change. 
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Figure S1. Characterization of the structure of TiC-NiSA. (a) SEM image and TEM images at low 

(b,c) and high (d) magnifications of TiC-NiSA. (e) Corresponding EDS element mappings. (f) Dark 

field images of TiC-NiSA. 

 

Figure S2. SEM images of TiC-FeSA. 
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Figure S3. SEM images of TiC-CoSA. 

 

 

Figure S4. SEM images of TiC-NiSA. 

 

 

Figure S5. SEM images of initial TiC. 
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Figure S6. XRD spectra of Ti2AlC, Ti2ZnC and TiC. 

 

Figure S7. Deconvoluted Fe 2p(a), Co 2p(b) and Ni 2p (c) XPS spectra. 
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Table S1. XPS peak fitting of results of sample. 

  TiC TiC-FeSA TiC-CoSA TiC-NiSA 

Ti 2p3/2 
(2p1/2) 

Ti-C 454.5 eV 
(460.5 eV) 

454.6 eV 
(460.6 eV) 

454.7 eV 
(460.7 eV) 

454.8 eV 
(460.8 eV) 

Ti-C 455.7 eV 
(461.8 eV) 

455.8 eV 
(461.9 eV) 

455.9 eV 
(462.0 eV) 

456.2 eV 
(462.3 eV) 

Ti-O 458.5 eV 
(464.2 eV) 

458.5 eV 
(464.3 eV) 

458.6 eV 
(464.4 eV) 

458.6 eV 
(464.3 eV) 

C 1s 

Ti-C 281.5 eV 281.6 eV 281.7 eV 281.7 eV 

C-C 284.8 eV 284.8 eV 284.8 eV 284.8 eV 

C-O 286.2 eV 286.2 eV 286.2 eV 286.2 eV 

COO 288.5 eV 288.5 eV 288.5 eV 288.5 eV 

 
 
 

Table S2. The comparison of HER performance upon the as-prepared samples in 0.5 

M H2SO4 and 1 M KOH. 

Electrocatalysts Overpotential at 10 mA cm-2 
(mV, 0.5 M H2SO4) 

Overpotential at 10 mA cm-2 
(mV, 1 M KOH) 

TiC 264.7 321.8 

TiC-FeSA 123.4 184.2 

TiC-CoSA 128.6 241.0 

TiC-NiSA 149.8 201.7 

 



S9 
 

 

Figure S8. Plots of mass activity of TiC samples loaded with different transition metal single 

atoms in 0.5 M H2SO4 (a) and 1 M KOH (b). 

 

Figure S9. Tafel slope plots of TiC samples loaded with different transition metal single-atoms 

under acidic (a) and alkaline (b) conditions. 
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Figure S10. CV curves from different scan rates from 20 to 140 mV s-1 in 0.5 M H2SO4 for HER. 

(a) TiC-FeSA, (b) TiC-CoSA, (c) TiC-NiSA, and (d) TiC. 

 

Figure S11. Polarization curves of LSV of TiC loaded with different transition metal single-atoms 

before and after 2000 CV cycles under acidic conditions. 
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Figure S12. TEM images of TiC with different monoatomic loadings after 10 hours of constant 

current electrolysis at 10 mA cm-2 current density under acidic (a-c) and alkaline (d-f) conditions. 

 

Figure S13. CV curves from different scan rates from 20 to 140 mV s-1 in 1 M KOH for HER. (a) 

TiC-FeSA, (b) TiC-CoSA, (c) TiC-NiSA, and (d) TiC. 
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Figure S14. Polarization curves of LSV of TiC loaded with different transition metal single-atoms 

before and after 2000 CV cycles under alkaline conditions. 
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