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Abstract: Ag nanoparticles (AgNPs) were biosynthesized using sage (Salvia officinalis L.) extract. The
obtained nanoparticles were supported on SBA-15 mesoporous silica (S), before and after immobiliza-
tion of 10% TiO2 (Degussa-P25, STp; commercial rutile, STr; and silica synthesized from Ti butoxide,
STb). The formation of AgNPs was confirmed by X-ray diffraction. The plasmon resonance effect,
evidenced by UV-Vis spectra, was preserved after immobilization only for the sample supported
on STb. The immobilization and dispersion properties of AgNPs on supports were evidenced by
TEM microscopy, energy-dispersive X-rays, dynamic light scattering, photoluminescence and FT-IR
spectroscopy. The antioxidant activity of the supported samples significantly exceeded that of the
sage extract or AgNPs. Antimicrobial tests were carried out, in conditions of darkness and white
light, on Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Candida albicans. Higher
antimicrobial activity was evident for SAg and STbAg samples. White light increased antibacterial
activity in the case of Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa). In the first
case, antibacterial activity increased for both supported and unsupported AgNPs, while in the second
one, the activity increased only for SAg and STbAg samples. The proposed antibacterial mechanism
shows the effect of AgNPs and Ag+ ions on bacteria in dark and light conditions.

Keywords: supported AgNPs; biosynthesized colloids; hybrid materials; Salvia officinalis extract;
TiO2-SBA-15; surface plasmon resonance; antioxidant activity; antimicrobial activity; visible light effect

1. Introduction

Bionanotechnology has developed as a new field, in the last decade, due to the appli-
cation potential of nanosized materials with specific functions [1–5]. The use of plants and
especially plant extracts in nanoparticle synthesis has proven to have advantages such as
fast preparation and non-toxicity [2,6,7]. Thus, through a green synthesis method mediated
by plants, nanoparticles with various shapes and sizes have been stabilized. The biolog-
ical reduction method is one of the most extensively discussed eco-friendly techniques
developed for producing silver nanoparticles. The advantages of this method are its low
cost, speed, eco-friendliness, sustainability and suitability for biological applications [8–16].
Previous studies have shown that the size, morphology, stability and biological properties
of metallic nanoparticles are strongly influenced by the types of molecules found in plant
extracts and by the experimental conditions. The activity of silver nanoparticles depends
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on the bioavailability of silver ions and is enhanced by the presence of plant extract bio-
compounds. Previous researchers have shown that the shape, size and surface coating of
AgNPs greatly influence their physical interactions with plant cells [17], and researchers
have emphasized the importance of the surface coating used for AgNP stabilization.

The green synthesis of AgNPs using plant extracts is based on the capacity of phy-
tochemicals present in these extracts to reduce Ag+1 ions to Ag0 and further to stabilize
the new silver species by surrounding them. It has been reported that flavonoids, alka-
loids, polyphenols, terpenoids, heterocyclic compounds and polysaccharides are generally
responsible for obtaining metallic nanoparticles since they act as bio-reductant, capping
and stabilizing agents [18]. The extant results demonstrate that in conditions of biological
synthesis of green AgNPs, phytonanotechnology has the advantage of safe synthesis and
applications. Furthermore, the benefits of biosynthesized silver nanoparticles for biocide
purposes could be increased by using medicinal plant extracts that contain biomolecules
with therapeutic activity. Furthermore, the immobilization of bioactive compounds in
inorganic silica matrices can make them more effective and stable [19]. There are several
studies regarding hybrid materials based on silica matrices as delivery systems for different
natural biocompounds with excellent biological applications [20–22]. Medicinal plants
provide pharmacologically active substances, and silver nanoparticles have a large surface
with reactivity towards these compounds, making them effective antimicrobial agents.
Salvia officinalis (family Lamiaceae) has exhibited a variety of medicinal effects, including
antioxidant, inhibitory, anti-hyperglycemic and anti-inflammatory properties, due to its
contents of bioactive compounds such as terpenoids, phenolic acids, flavonoids, tannins,
volatile oils and steroids [23]. Sage extracts also have strong antibacterial and antifungal
activity and are promising agents for the green synthesis of AgNPs [24–26]. There is great
interest among researchers in the use of silver nanoparticles due to their broad antibac-
terial properties against many antibiotic-resistant microbial strains, high availability and
low toxicity against human cells [11,27–29]. Although Ag is considered to have the best
plasmonic characteristics among the noble metals, its stability remains a challenge due
to its high surface reactivity [30]. This problem can be solved by stabilizing the surface
using plant extracts. An increase was noted in the antibacterial properties of AgNPs under
visible light irradiation, correlated with a higher reactive oxygen species (ROS) content
due to local surface plasmon resonance stimulation [31]. In these conditions, electrons
are generated that interact with substrates, giving rise to ROS. In the absence of light
irradiation, the antibacterial activity of silver nanoparticles was attributed to Ag+1 species
that could be released into the system by an oxidative dissolution process [32,33]. Thus,
positively charged silver ions will interact with negatively charged components found in
the structure of a microorganism, leading to metabolic damage that ultimately causes cell
death [27]. Previously, plasmonic AgNPs were deposited onto Degussa (P25) titanium diox-
ide to improve the photocatalytic properties under visible light irradiation by lowering the
activation energy [34,35]. However, there are few papers that have evaluated the plasmonic
effect of AgNPs, standalone and with TiO2 support, on antibacterial properties [34,36].
Among these, some have shown the effect of light on antibacterial activity [37,38]. Immo-
bilization caused an increase in photocatalytic performance and the heterogenization of
photocatalytic reactions, allowing for the reuse of AgNPs/Degussa nanocomposites.

The increase in antibiotic resistance among bacteria has generated a need for new
materials with antimicrobial activity [39,40]. Special interest has been directed toward
inorganic materials that can be activated by various stimuli and can be combined with
various other component properties, thus allowing composite materials with new and
synergistic properties to be obtained. For instance, photocatalytic nanoparticles, such as
those of titanium dioxide, are strongly antimicrobial upon irradiation due to the generation
of highly reactive oxygen species, which, in turn, destabilize bacterial membrane compo-
nents, such as phospholipids and lipopolysaccharides [41,42]. The physical interaction
between nanomaterials and the cell wall membrane and their toxicity to bacteria determine
the antibacterial effect. In the published studies the antibacterial activity of materials was
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attributed to their size, oxidation capacity, surface defects, dispersibility, composition and
the synergetic effects of their components. Nanoparticles with antibacterial activity can
induce spontaneous ROS generation on their surface because of their chemical and surface
characteristics. Various ways for the generation of ROS by nanoparticles such as graphite,
graphite oxide, graphene oxide, reduced graphene oxide, ZnO, TiO2, Ag-graphene oxide
and zinc oxide/graphene oxide composites have been proposed [43–47]. Based on these
observations a hypothetical mechanism for cellular toxicity could be through the gener-
ation of OH•, O2− and H2O2 in bacterial cells, leading to oxidation of polyunsaturated
phospholipids. Also, ROS generation was correlated with DNA damage and cell death as
an important pathway of oxidative stress. For graphene-based materials, it was suggested
that the antibacterial mechanism is the result of a synergic effect of membrane stress and
oxidative stress [43,44]. In addition, the antibacterial activity of the ZnO/GO composites
was attributed to the synergistic effect of ZnO and GO. Thus, the intimate contact of E. coli
cells and ZnO NPs on GO sheets enhanced the permeability of the bacterial membrane and
the local free zinc concentration around bacteria. In the case of zinc oxide and dark con-
ditions, the mechanism of antibacterial activity was attributed mainly to ROS originating
from the interaction of water/moisture with superoxide species which are facilitated by
surface defects [47].

The incorporation of TiO2 in mesoporous silica nanoparticles induced effects com-
parable with those of free titanium dioxide on supported lipid membranes, including
membrane thinning, removal of lipids and formation of a partially disordered membrane
outer shell [41]. The effects of ROS generated by TiO2 and of mesoporous silica surface mor-
phology (smooth or spiky) on membrane destabilization were thus highlighted. Membrane
destabilization was found to be minor in the absence of light and significantly increased
under UV light irradiation. The antibacterial activity of TiO2 has been correlated in many
studies with its photocatalytic properties [48,49], highlighting the effects of the dioxide
nanoparticles’ size, morphology and structure. Thus, it was proven that the anatase form
of TiO2 has the highest antimicrobial activity [48,50,51]. A high antibacterial activity, even
in the absence of light, was also highlighted for the rutile form of TiO2 modified with other
cations (Ca, Cu) [52].

Here, AgNPs were biosynthesized using sage (Salviaofficinalis) extract. Although there
is an increased interest in the biosynthesis of silver nanoparticles [2,5–14,23–26,34], there
are not enough studies regarding their immobilization on various materials and their effects
on biological activity. Therefore, the current study aims to evaluate the antibacterial and
antioxidant behavior of the hybrid samples obtained by immobilization of biosynthesized
AgNPs on SBA-15 mesoporous silica modified with TiO2 10 wt.% from different sources
(impregnated titanium butoxide, commercial P25, industrial TiO2 rutile), compared to
non-immobilized silver nanoparticles. Silica was selected as a support in order to decrease
the allergic tendency of silver nanoparticles, as has been reported in the literature [53]. The
properties of AgNPs and the effect of supports on them were evaluated by X-ray diffraction,
UV-Vis, photoluminescence, FT-IR spectroscopy and TEM microscopy. Also, the physical
properties of the synthesized materials, such as size (hydrodynamic diameter) and zeta
potential, were investigated. The antioxidant activity of AgNPs was spectrophotometrically
determined. The antimicrobial properties were assessed, in conditions of darkness and
white light, on three standard strains: Gram-positive (Staphylococcus aureus ATCC 25923),
Gram-negative (Pseudomonas aeruginosa ATCC 27853 and Escherichia coli ATCC 25922)
and yeast (Candida albicans ATCC 10231) strains. The novelty of this study consists in
the synthesis of new hybrid nanostructures and their antimicrobial properties evaluated
comparatively in dark and light conditions.

2. Results and Discussion
2.1. X-ray Diffraction

The crystalline nature of AgNPs was evidenced by powder X-ray diffraction. Figure 1
shows high diffraction peaks at 2θ ~ 38◦, 45◦, 65◦, and 78◦, indexing the Bragg reflection
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planes (111), (200), (220) and (311). These results confirm the presence of a face-centered
cubic structure of crystalline silver nanoparticles.
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2.2. UV-Vis Absorption Analysis

The formation of biosynthesized AgNPs was demonstrated by the appearance of a
surface plasmon resonance (SPR) band at around 450 nm (Figure 2a). UV-Vis spectra were
recorded for AgNPs obtained in conditions of different concentrations of AgNO3 solution
(1 × 10−2 M and 1.5 × 10−4 M and 24 h of solution aging).
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The primary observation of silver ion reduction and AgNPs formation was supported
by the color change of the reaction mixture from light brown to gray (the inset of Figure 2a).

After the immobilization of AgNPs, a decrease and a shift to a lower wavelength
were recorded for the SPR absorption band. This may be the effect of the significant
decrease in AgNPs concentration and the interaction with titanium dioxide from the
support. Unfortunately, the characteristic peak of the plasmonic effect is only visible for
the sample obtained on the support modified with TiO2 by titanium butoxide solution
impregnation (post-synthesis method) (Figure 2b). These results show that the interaction
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is stronger with titanium dioxide obtained on the silica surface (STb support) compared to
P25 (STp support) or rutile (STr support). For the first support, previous studies showed,
by Raman spectra, a highly dispersed state of titania and the presence of Ti–O–Si bonds,
while P25 is a mixture of anatase and rutile [54]. The high values of the absorption bands
recorded between 250 and 400 nm for the samples with supported TiO2 are assigned to
titania, as can also be seen in the case of supports before AgNPs immobilization (the inset
spectra of Figure 2b). A decrease in the band gap energy was obtained by immobilizing the
biosynthesized silver nanoparticles, as shown in Table 1.

Table 1. The optical band gap energy value of samples.

Sample Eg (eV)

STp 3.11

STpAg 3.08

STr 2.95

STrAg 2.91

STb 3.45

STbAg 3.20

2.3. TEM/EDX Analysis

TEM analysis was used to evidence the silver nanoparticles’ morphology and disper-
sion on the SBA-15 mesoporous silica support modified with TiO2 (Figure 3). The TEM
images suggested that most of the biosynthesized AgNPs have circular shapes and that only
a few are elongated (Figure 3a,b). In the case of the STrAg sample, larger rutile particles
can be observed, and the Ag species have elongated shapes and appear to be inside the
mesoporous silica pores. In addition, the presence of spherical Ag species dispersed on the
surface of the silica, similar to the other supports, can also be observed (image inserted in
Figure 3c).

Figure 4 shows the effect of the support on the size distribution of silver nanoparticles.
It is thus observed that in the case of TiO2 supports, most nanoparticles have sizes between
5 and 10 nm. The number of these particles is slightly higher for the STb support obtained
by immobilizing TiO2 by impregnating a titanium (IV) butoxide solution in ethanol. In
the absence of TiO2, the size of the nanoparticles increases, the maximum number having
dimensions between 10 and 15 nm. For unsupported AgNPs, the size distribution is
narrower, so the vast majority of them have sizes up to 15 nm.

TEM image (Figure S1) indicated that TiO2 is not observed as a separate phase in
STb sample, which is in agreement with previous studies [54,55]. The commercial TiO2
particles (rutile and P25 Degussa) present in the STr and STp supports were dispersed
among the particles of SBA-15. These TiO2 materials were already characterized [52,56]. It
was observed that these titanium oxides contain mixtures of particles with variable and
much larger sizes (50–250 nm) with spherical (P25) or ovoid (rutile) morphology. A TEM
image of the STrAg sample area (Figure S2) shows the presence of large particles next to
those typical of SBA-15, which can be attributed to TiO2. The presence of Ti was evidenced
in all SBA-15 supports modified with TiO2 (Figures 5 and S4). EDX has also confirmed the
presence of Ag species in all the samples.
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2.4. FT-IR Analysis

The biosynthesis of silver nanoparticles using an S. officinalis alcoholic extract was
also analyzed by FTIR spectroscopy in order to follow the transformations that occur
after the reduction of Ag+ to Ag0 and then the stabilization of metallic silver species by
the phytochemicals present in the extract (5558.7 µg CAE/mL, as spectrophotometrically
determined). FTIR spectra of the S. officinalis alcoholic extract and of the biosynthesized
silver nanoparticles before and after immobilization on the three TiO2-SBA-15 supports are
shown in Figure 6.

The major vibration bands in the FTIR spectrum of the S. officinalis extract are recorded
at the following wavelengths: 3450 cm−1 (assigned to stretching vibration of hydroxyl
group of phenols); 2932 cm−1, 1604 cm−1 and 1518 cm−1 (can be attributed to C=C groups
in the aromatic nucleus); 1387 cm−1 (assigned to carbohydrates); 1263 cm−1 (assigned
to hydroxyl groups on the aromatic nucleus) and 1048 cm−1 (can be attributed to the
C-N group in primary amines). The bands recorded in the range 3000–2800 cm−1 can be
attributed to the C-H and O-H groups present in carbohydrates and carboxylic acids.

Looking comparatively at the FTIR spectrum of the alcoholic sage extract and that of
the biosynthesized silver nanoparticles, the preservation of the main vibration bands of
the sage extract was observed, but with a lower intensity, which suggests the consumption
of biomolecules during the biosynthesis of silver nanoparticles. This observation is in
agreement with other reports in the literature [26] and suggests the importance of the
bioactive compounds present in the used extract, acting as reducing and capping agents, in
order to obtain stable silver nanoparticles. The sharp peak recorded at 1387 cm−1 for silver
nanoparticles can be assigned to the unreacted Ag precursor (AgNO3) (Figure S3) and also
to C-H bonding [57].



Int. J. Mol. Sci. 2024, 25, 4003 8 of 23

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 9 of 24 
 

 

 

Figure 6. FT-IR spectra of sage extract, biosynthesized AgNPs and hybrid nanostructures (black 
line for AgNPs, red line for sage extract, blue line for SAg, green line for STpAg, red line from the 
inset image for STrAg and magenta line for STbAg; green dashed circle highlights the sharp peak 
recorded at 1387 cm−1 for AgNPs). 

Looking comparatively at the FTIR spectrum of the alcoholic sage extract and that 
of the biosynthesized silver nanoparticles, the preservation of the main vibration bands 
of the sage extract was observed, but with a lower intensity, which suggests the con-
sumption of biomolecules during the biosynthesis of silver nanoparticles. This observa-
tion is in agreement with other reports in the literature [26] and suggests the importance 
of the bioactive compounds present in the used extract, acting as reducing and capping 
agents, in order to obtain stable silver nanoparticles. The sharp peak recorded at 1387 
cm−1 for silver nanoparticles can be assigned to the unreacted Ag precursor (AgNO3) 
(Figure S3) and also to C-H bonding [57]. 

2.5. Photoluminescence Analysis 
The photoluminescence (PL) spectra of hybrid samples are shown in Figure 7. Ex-

cited at a wavelength of 320 nm, the samples present four major PL emission peaks at 
around 408, 420, 435 and 484 nm. The emission bands recorded at 408 and 435 nm are 
most likely due to oxygen vacancies and neutral oxygen vacancy defects’ triplet to 
ground transition, while the emission band recorded at 484 nm is due to surface defects 
[58]. The emission peaks are determined both by the phenomena that occur at the level 
of TiO2 supported on SBA-15 and by the presence of polyphenols that have a high elec-
tron density that most likely contribute to the increase in photoluminescence intensity. 
The slightest photoluminescent intensity recorded for the STbAg sample means the 
lowest recombination capacity of the photogenerated charges (e−/h+), thus suggesting the 
greatest number of existing defects in its structure. They were most likely created due to 
the synthesis method, the sample being thermally treated at 550°C after impregnation 
with titanium butoxide. 

Figure 6. FT-IR spectra of sage extract, biosynthesized AgNPs and hybrid nanostructures (black line
for AgNPs, red line for sage extract, blue line for SAg, green line for STpAg, red line from the inset
image for STrAg and magenta line for STbAg; green dashed circle highlights the sharp peak recorded
at 1387 cm−1 for AgNPs).

2.5. Photoluminescence Analysis

The photoluminescence (PL) spectra of hybrid samples are shown in Figure 7. Excited
at a wavelength of 320 nm, the samples present four major PL emission peaks at around 408,
420, 435 and 484 nm. The emission bands recorded at 408 and 435 nm are most likely due
to oxygen vacancies and neutral oxygen vacancy defects’ triplet to ground transition, while
the emission band recorded at 484 nm is due to surface defects [58]. The emission peaks are
determined both by the phenomena that occur at the level of TiO2 supported on SBA-15
and by the presence of polyphenols that have a high electron density that most likely
contribute to the increase in photoluminescence intensity. The slightest photoluminescent
intensity recorded for the STbAg sample means the lowest recombination capacity of the
photogenerated charges (e−/h+), thus suggesting the greatest number of existing defects in
its structure. They were most likely created due to the synthesis method, the sample being
thermally treated at 550 ◦C after impregnation with titanium butoxide.
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2.6. Dynamic Light Scattering Analysis

Figure 8 comparatively presents the zeta potential (ζ) of the plant extract, AgNPs and
supports (S, STp, STr, and STb) in the absence and in the presence of AgNPs.

Using the same method (dynamic light scattering, DLS), the hydrodynamic diameter
of AgNPs was also measured (Figure 9). The average size obtained for Ag colloidal particles
is 47.74 nm. It could be observed the larger negative ζ values for the plant extract strongly
increased after the reduction of Ag+1 ions into Ag0. For the supports, ζ data confirmed
the poor influence of AgNPs. The variation in zeta potential is due to the modifications
of the SBA-15 support with different species of TiO2. In addition, the STb sample was
obtained by impregnation of silica with a titanium precursor (titanium butoxide) which
was transformed into anatase by calcination. The impregnation of the Ti precursor solution
results in a higher dispersion of it on the surface of a support compared to mechanical
mixing. This explains the more negative value of the zeta potential for the STb sample.
The values of the zeta potential are similar for the samples obtained by mechanical mixing.
Although the STp and STr samples contain different ratios of anatase and rutile, the effect
is insignificant due to the close values of the zeta potential for them. The potential value of
hybrid materials is significantly influenced by the silica support. If titanium is immobilized
on the support by direct synthesis, it is observed that the zeta potential becomes more
negative. This could be the effect of the substitution of Si with Ti in the SBA-15 silica
network [54].

Zeta potential is an indicator of nanoparticles’ stability in a suspension. Thus, the
low electric charge of AgNPs explains the reduced stability of colloidal Ag particles. The
stability of the obtained samples in a solution was increased by the immobilization of
AgNPs on a support. The mechanism by which nanometals interact with biological systems
depends on the properties of the nanometals. Among these, zeta potential is a characteristic
electric charge of metal nanoparticles that governs their biological activity and their inter-
action with bacterial cell surfaces. Usually, the surface charge of bacteria is negative as a
result of the various groups from the surface (carboxyl, phosphate, amino), the adsorption
of various ions from the medium and the contribution of macromolecules from the cell
wall and membrane. The interaction of bacteria with nanoparticles changes the potential
of bacteria and their zeta potential. The interaction with positively charged AgNPs has
the effect of changing the potential of bacteria. Although the interaction of bacteria with
negatively charged surfaces is repulsive, a connection can be made through other surface
mechanisms such as hydrogen bond, van der Walls, ionic and receptor–ligand interac-
tions [53]. These interactions modify the electrical and hydrophobic properties of bacterial
cells, with adverse effects on their viability. Under light irradiation, the agglomeration of
AgNPs was highlighted by TEM microscopy, which led both to the modification of their
zeta potential and to a decrease in antimicrobial activity [59]. These Ag nanoparticles were
obtained by reduction with NaBH4 and stabilization with adenosine triphosphates. In the
case of the biosynthesis of Ag nanoparticles, the plant extract not only achieves the reduc-
tion of silver but also prevents their agglomeration by surrounding them. Their stability
and activity can be influenced by light, but the effects are specific, and immobilization on
a support generates synergistic systems that can influence both their stability and their
antibacterial activity.
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2.7. Antioxidant Activity

An evaluation of antioxidant activity with the 2,2-diphenyl-1-picrylhydrazyl (DPPH)
radical scavenging assay (Figure 10) proved that STrAg and STbAg had the highest scav-
enging activity, whereas AgNPs and STpAg showed low DPPH inhibition. The higher
antioxidant activity of STb and STr supports is a result of the interaction between Ag and
anatase, highly dispersed on the silica surface [54], and of rutile activity, respectively. The
antioxidant activity of silica-coated TiO2 was previously reported [60]. The increase in
antioxidant activity with time for the supported AgNPs is a result of the effect of mass
transfer into the support. The increase in antioxidant activity is due to the synergistic
activities of the sage extract, AgNPs and support (especially supported TiO2 species).
The antioxidant capacity of STrAg and STbAg can be attributed to the redox potential
of phenolic compounds (flavonoids and phenolic acids) from sage extract which act as
reducing agents.
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The high antioxidant potential of STbAg and STrAg nanocomposites can also be cred-
ited to the diverse polyphenolic compounds present in the sage extract. The interaction
of polyphenolic compounds with metal ions during nanoparticle formation may result
in improved antioxidant activity. Although the exact mechanism of silver nanoparticles’
antibacterial effects has not been entirely clarified, one of these mechanisms is oxidative
stress which can cause damage to the cell wall of bacteria and the release of intracellular
components. The antibacterial activity of silver nanoparticles is associated with ROS gener-
ation and the induction of endogenous oxidative stress in the intracellular environment [44].
Polyphenolic compounds have membrane-active properties against bacteria, which can
cause leakage of cell constituents, including nucleic acids, proteins and inorganic ions
such as potassium or phosphate and also act as pro-oxidants in the systems that utilize
redox-active metals, such as iron and copper, thereby participating in the Fenton reaction
and resulting in ROS generation [61,62].

These Ag nanoparticles synthesized with the help of plant extracts are capable of
exerting antimicrobial activity through various mechanisms of action. Also, polyphenols
such as flavonoids, which are known as powerful antioxidants, can suppress nucleic acid
synthesis, cytoplasmic membrane function and energy metabolism [63]. On the other
hand, AgNPs exhibit antimicrobial properties through multifaceted mechanisms: (1) silver
nanoparticles continually release silver ions, which adhere to or pass through the cell wall
and cytoplasmic membrane and lead to disruption of the cell wall and cytoplasmic mem-
brane; (2) denaturation of ribosomes and inhibition of protein synthesis; (3) interruption of
ATP production with deactivation of respiratory enzymes on the cytoplasmic membrane;
(4) membrane disruption by reactive oxygen species which cause membrane disruption;
(5) interference of deoxyribonucleic acid replication and prevention of cell multiplication.
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2.8. Antimicrobial Properties

The qualitative screening of antimicrobial effects was performed by observing the
growth inhibition zone obtained after placing a sample spot on a solid medium inoculated
with different microbial strains (Figures S5–S8). The results presented in Figure 11 show
that although the supported samples have a significantly reduced amount of Ag compared
to that of standalone AgNPs (see EDX images from Figure 5 and Figure S1b–d), they show
significant antibacterial properties. The STbAg and SAg samples induced visible inhibition
of microbial growth toward all tested strains, with the best results on Gram-negative strains
E. coli ATCC 25922 and P. aeruginosa ATCC 27853. For these two samples, incubation in
light conditions induced a more intense inhibitory effect, with the diameter of the inhibition
zone increased by 25% (average) compared to the diameter obtained in dark incubation
conditions (Figure 11).
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Results for the antibacterial effect of the supports (STp, STb, Str, S) and solvent
(ethanol 50%) indicated zero inhibition zone. At the same time, we specify that in the
case of samples with supported silver nanoparticles, for which the inhibitory effect was
evaluated, the amount of AgNPs was 20 times lower than that in the unsupported sample.
Thus, the results presented in Figure 11 indicate a much higher activity of the supported
samples. This behavior is due to the synergistic effect given by the biosynthesized silver
species and the charged carriers resulting from the photo-activation of the support used
for AgNPs immobilization (TiO2 supported on mesoporous silica SBA-15). The high
number of available photogenerated species recorded for the STbAg sample, as suggested
by photoluminescence analysis (Figure 7), led to a most pronounced inhibitory effect on
microbial growth of the hybrid nanostructure tested under irradiation.

The effect of light on the inhibition zone diameter is more significant in the case
of Gram-negative (Pseudomonas aeruginosa and Escherichia coli) bacteria. In the case of
Escherichia coli, an increase in antibacterial activity under light can be observed for all
samples. More significant is the increase for the AgNPs sample and samples of AgNPs
immobilized on SBA-15 without and with TiO2 dispersed on silica by impregnation of
an alcoholic TBOT solution. Unlike the other TiO2 samples (STrAg, STpAg), the STbAg
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sample has titanium oxide in the form of well-dispersed nanoparticles on the SBA-15
surface [64]. In the case of the other samples, the SBA-15 and oxide particles were dispersed
by mixing them in the solution. Therefore, the difference between the three supports with
TiO2 is given not only by the crystalline structure of TiO2 but also by the particle sizes
and their dispersion. In the case of Pseudomonas aeruginosa, the significant effect of light
can be observed only in the case of samples SAg and STbAg. In conclusion, the TiO2
immobilization method determines the antibacterial properties of supported AgNPs. Also,
the advanced dispersion on the surface of TiO2 significantly influences the properties of Ag
nanoparticles such as the antibacterial activity and the plasmonic effect evident only for
the AgNPs and STbAg samples.

Besides this, the activation of the plasmonic effect of AgNPs occurs under irradiation,
as evidenced by UV-Vis spectroscopy (Figure 2b) only for the STbAg sample. The stimu-
lation of the local surface plasmon resonance (LSPR) effect of AgNPs under visible light
irradiation leads to an increase in antimicrobial activity, as reported in the literature [31].
This behavior was noticed only in the case of the simultaneous presence of TiO2 and biosyn-
thesized AgNPs, while for the supports containing TiO2-modified SBA-15 mesoporous
silica (STb, STr, STp), no inhibitory effect was observed, even under light irradiation.

The presence in the synthesized nanohybrid systems of Ag+ ions (from AgNO3 pre-
cursor) that can bind via the polyphenolic compounds of the sage extract to the surface
of the silver nanoparticles formed during biosynthesis cannot be excluded, as reported
in the case of using sodium citrate as reducing agent [33]. Thus, the possible release of
Ag+ ions bound to the AgNPs surface could be associated with the inhibitory effect of all
synthesized materials, evidenced even in dark conditions (Figure 10, Table 2). Silver ion
release was investigated for a Ag/TiO2/Ag/a-TiO2 nanocomposite film [65]. The results
evidenced a long saturation time for silver ions due to their protection by a very thin titania
layer. Therefore, the protection of Ag nanoparticles and their immobilization is a solution
for increasing the durability of the obtained materials. Here, AgNPs are covered with a
stabilizing layer of sage extract components and immobilized on a support. Obviously,
the presence of bioactive compounds from sage extract that act as reducing and capping
agents also makes a real contribution to the inhibitory effect of hybrid nanostructures
toward all tested strains in darkness, clearly proving the antibacterial effect of the sage
extract itself (Figure 11). Also, various other properties of inorganic nanoparticles such as
size distribution, morphology and surface charge influence the biological activity of the
samples [53,66,67].

Table 2. Quantitative results of antimicrobial activity (minimal inhibitory concentration, µg/mL)
(STD Dev = 0) (the bolded words in the first column are the samples tested).

Staphylococcus
aureus

ATCC 25923

Escherichia
coli

ATCC 25922

Pseudomonas
aeruginosa

ATCC 27853

Candida
albicans

ATCC 10231

Darkness Light Darkness Light Darkness Light Darkness Light

STpAg 54.99 27.49 27.49 27.49 13.74 13.74 3.43 1.71
STbAg 6.87 6.87 13.74 6.87 13.74 6.87 13.74 0.84

SAg 27.49 27.49 13.74 13.74 27.49 13.74 1.71 1.71
STrAg 13.74 27.49 13.74 13.74 13.74 13.74 1.71 1.71
Sage

extract 139 139 2780 139 556 556 278 278

AgNPs 47 23 23.4 23.4 23.4 23.4 23.4 23.4
Gentamicin 2 2 4 4 4 4 - -
Fluconazole - - - - - - 4 4

The study of Radzikowska-Büchner (2023) showed that the antimicrobial activity
of synthesized AgNPs is mediated by a nanoparticle core of appropriate size and shape
and the surface modification by extract components, the strongest activity of synthe-
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sized AgNPs being observed against yeast strains [68]. In their study hypothesis, the
negative charge of AgNPs does not seem to be favorable from the point of view of the
contact-killing mechanism.

The relationship between ZP and the physiological state of bacteria was used to
characterize their structural damage as a result of different environmental factors such
as the zeta potential of a surface. Thus, the results presented in Figure 11 agree with the
zeta potential values (Figure 8). It is observed that the antibacterial effect of AgNPs is
almost constant in the light and in the dark for all bacteria except Escherichia coli, which is
Gram-negative. This is more strongly influenced by the weak positive potential of AgNPs.
The effect of light on the activity is significant in this case. In the case of Staphylococcus
aureus, which is Gram-positive, the antibacterial activity is higher in the dark for the STbAg
and STpAg samples, the first having the highest negative potential and both containing
anatase. In the presence of light, the activity decreases slightly. These results support the
effect of the interaction of bacteria with the surface of the solid with antibacterial activity in
the dark.

A significant inhibitory activity can be observed in the case of the STrAg sample against
Pseudomonas aeruginosa. However, the activity is not influenced under light conditions. An
increase in activity in the light was observed only for Escherichia coli. Figure 12 shows the
proposed mechanism for the antibacterial activity of both colloidal Ag particles (here called
AgNPs) and Ag ions.

According to existing theories [69–71], Ag ions can destabilize the cell membrane, even
creating holes through which they penetrate into the cell. They interact with the thiol (-SH)
groups of proteins and enzymes. At the same time, AgNPs can adhere to the cell membrane
and generate voids through which they penetrate into the cell and then interact with its
components. These processes take place in the dark, which explains the inactivation of the
bacteria. The proposed mechanism is in accord with previous studies [72] which suggested
two effects of AgNPs’ action: inhibition of cell multiplication by membrane damage and
cell destruction by ROS effects. In addition, TiO2 nanoparticles can increase peroxidation
of the lipid membrane, disrupting cell respiration.
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The quantitative results expressed by minimal inhibitory concentration (MIC) values
allowed the quantitative evaluation of the tested compound, in the same two inhibitory
conditions. The MIC values of the supported samples presented in Table 2 were reported
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to the amount of AgNPs from each sample. The differences between the obtained MIC
values obtained in the two incubatory conditions (dark and light) confirmed the qualitative
results, with lower values in light conditions for the samples STbAg and SAg (Table 2).

An effect of light on MIC values can also be observed for the STpAg sample, but it
is selective for Staphylococcus aureus and Candida albicans. The results presented in Table 2
evidence a decrease in MCI values for immobilized samples for almost the majority of
the experiments. The antibacterial properties of the obtained hybrid nanomaterials are
the result of a synergistic effect of the Ag and TiO2 species, the sage extract and the
mesostructured silica support.

Compared to the MIC values obtained for the standard antibiotics (according to CLSI
2023), most of the MIC values of the tested samples were 3–4 times higher, especially for
bacterial strains. Instead, samples SAg and STrAg demonstrated a very good efficiency
against the yeast strain C. albicans ATCC 10231 (MIC = 1.71 µg/mL), compared to flucona-
zole (MIC = 4 µg/mL), in both incubation conditions. Fluconazole is a fungistatic antibiotic
and one of the most commonly prescribed antifungal drugs for Candida infections; it acts as
an inhibitor of the cytochrome P450 enzyme lanosterol demethylase (14α-demethylase),
generating cell membrane damage [73]. As a consequence of its fervent clinical recommen-
dation, many C. albicans isolates have gained resistance to fluconazole, based on different
molecular mechanisms (drug target gene erg11 alteration, efflux pump overexpression) [74].
By comparing the fluconazole mechanism of action and the inhibitory effect expressed
by SAg and STrAg, we can also explain the antifungal mechanism of Ag ions through
destabilization of the yeast cell wall structure and permeability, including surface shrinkage,
cell aggregation, pit and pore formation, and general deformation [75].

The results of the control tests of the antibacterial activity of the Ag nanoparticles
isolated from the supernatant (AgNPs i) indicated (Table 3, Figure S9) a small decrease
ofcrease in the inhibition zone diameters compared to the initially obtained Ag nanoparti-
cles (AgNPs).

Table 3. Inhibition zone diameters (mm) (expressed as average of the three values obtained for each
fraction).

Bacterial Strain AgNPs AgNPs i

E. coli ATCC 25922 12 10.6

S. aureus ATCC 25923 14.5 12

This indicates the stability of the AgNPs due to the strong interaction between Ag and
the templates from the sage extract.

3. Materials and Methods
3.1. Material Preparation
3.1.1. Chemicals

Tetraethyl orthosilicate (TEOS), Pluronic P123 (PEO20PPO70PEO20, average molecular
weight 5800) and hydrochloric acid (HCl) used for the synthesis of SBA-15 were purchased
from Sigma-Aldrich (St. Louis, MO, USA). Silica was modified using titanium (IV) butoxide,
n-propanol from Sigma-Aldrich, Tytanopol TiO2 microparticles and commercial P25. Silver
nitrate (AgNO3) used for the biosynthesis of AgNPs, ethanol (96.3% v/v) used for obtaining
the sage extract, Folin–Ciocalteu reagent, aluminum chloride (AlCl3) and 2,2-diphenyl-1-
picrylhydrazyl (DPPH•) were also obtained from Sigma-Aldrich.

The medicinal plant was acquired from a national producer (SC STEF MAR SRL,
Valcea, Romania) of herbal teas in dry form. The plants were collected from Valcea
County (Romania).
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3.1.2. Synthesis of TiO2-Modified SBA-15 Supports

Siliceous SBA-15 was synthesized as we reported before [54], using an amphiphilic
triblock copolymer (Pluronic P123), HCl aqueous solution and TEOS as a silica precursor.
SBA-15 mesoporous silica was further modified with TiO2 10 wt.% from different sources
(titanium butoxide, commercial TiO2 P25 and industrial TiO2 rutile).

SBA-15 mesoporous silica was impregnated with TiO2 from an alcoholic solution of ti-
tanium (IV) n-butoxide by the incipient wetness impregnation method. After impregnation,
the resulting material was kept for 24 h at room temperature, dried at 80 ◦C and calcinated
in air at 550 ◦C. The sample thus obtained was named STb. Modification of SBA-15 with
commercial P25 and industrial TiO2 rutile was performed by homogeneously mixing the
2 powders in an aqueous medium. After 1 h, the resulting mixtures were kept for 24 h at
room temperature and then dried at 40 ◦C. The powders thus obtained were named STp
and STr.

STb, STp and STr were further used as supports for the immobilization of biosynthe-
sized AgNPs, described below.

3.1.3. Preparation of Concentrated Extract by Nanofiltration

The ethanol extract was obtained as follows: 10 g of the dry plant (flowers, leaves,
and stems) finely ground was mixed with 100 mL of 50% (v/v) ethanol (EtOH) and then
introduced into a sonication bath at a frequency of 35 kHz and 25 ◦C for 90 min. After
filtration through Whatman filter paper, the extracts were processed by microfiltration
(MF) through a 0.45 µm pore size membrane (Merck Millipore, Darmstadt, Germany) and
nanofiltration (NF) through a 1000 MWCO membrane (Merck Millipore, Darmstadt, Ger-
many). Membrane filtration experiments were performed using a lab cross-flow membrane
filtration unit (KMS Laboratory Cell CF-1, Koch Membranen GmbH, Rimsting, Germany).

3.1.4. Biosynthesis and Immobilization of AgNPs

In a typical experiment, the obtained extract was added under stirring to a 0.025 g/mL
aqueous solution (1.5 × 10−4 M) of silver nitrate (AgNO3) in a 1:1 volumetric ratio. The
obtained mixture was left under stirring for 24 h at room temperature. The silver nanopar-
ticles thus prepared were tested as such (sample named AgNPs) but also immobilized by
incipient wetness impregnation method (1 wt.%) on the TiO2-modified SBA-15 supports.
The hybrid samples were named STbAg, STpAg and STrAg. In order to compare the
effect of TiO2 on the properties of the obtained hybrid nanostructures, only SBA-15 silica
was used as a support for AgNPs immobilization. This sample was named SAg. The
composition of each sample is summarized in Table 4. For the control test, AgNPs without
organic templates were obtained by separation using a centrifuge (10,000 rpm, 10 min).
The obtained solid was dispersed in distilled water and again separated by centrifugation
(sample named AgNPs i).

Table 4. Summary information about synthesized samples.

Sample Support TiO2 Phase AgNPs

STp SBA-15 Anatase + Rutile
10 wt.% -

STb SBA-15 Anatase
10 wt.% -

STr SBA-15 Rutile
10 wt.% -

SAg SBA-15 - Biosynthesized AgNPs
1 wt.%

STpAg SBA-15 Anatase + Rutile
10 wt.%

Biosynthesized AgNPs
1 wt.%
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Table 4. Cont.

Sample Support TiO2 Phase AgNPs

STbAg SBA-15 Anatase
10 wt.%

Biosynthesized AgNPs
1 wt.%

STrAg SBA-15 Rutile
10 wt.%

Biosynthesized AgNPs
1 wt.%

3.2. Characterization Methods
3.2.1. Characterization of Salvia officinalis Extract

UV-Vis diffuse reflectance spectra of sage extract were recorded on a Jasco V-570
spectrophotometer (Jasco, Tokyo, Japan).

The phenolic content was spectrophotometrically determined using a Folin–Ciocalteu
assay [76] and expressed as chlorogenic acid equivalents (CAE) mg/mL.

The flavonoid content was calculated using the AlCl3 colorimetric method as described
by Lin [77] and was expressed as quercetin equivalents (QE) µg/mL.

The antioxidant activity was measured with a UV-Vis spectrophotometer (Jasco V-630),
using the DPPH radical scavenging activity [78]. The decrease in the DPPH radical absorp-
tion by the antioxidant action is used to evaluate the antioxidative activity. The antiradical
activity was calculated using the following equation:

% Inhibition of DPPH activity = [(A0 − As)/A0] × 100

where A0 = blank absorbance and As = sample absorbance.

3.2.2. Characterization of AgNPs before and after Immobilization

The X-ray diffraction (XRD) pattern of AgNPs was recorded using a Rigaku Ultima IV
diffractometer, Tokyo, Japan, with Cu Kα (λ = 0.15406 nm) with a scanning speed of 1◦/min.
Phase identification was performed using Rigaku PDXL (version no 1.8, Rigaku, Tokyo,
Japan) with a Whole Powder Pattern Fitting (WPPF) module, connected to the ICDD-PDF-2
database. UV-Vis diffuse reflectance spectra were recorded on the same JASCO V570 spec-
trophotometer. The band gap energy of samples was obtained using the Kubelka–Munk
function by plotting [F(R)·hυ]1/2 versus photon energy (eV). The fluorescence spectra of
powders were recorded with an FLSP 920 spectrofluorimeter (Edinburgh Instruments, Liv-
ingston, UK). The excitation source was a Xe lamp, the excitation wavelength was 320 nm
and spectra were recorded between 350 and 600 nm. The excitation and emission slits were
10 nm for all measurements. TEM images were obtained using a TECNAI 10 G2-F30 and
F20 G2 TWIN Cryo-TEM–FEI microscope with EDX (FEI, Eindhoven, The Netherlands).
The hydrodynamic diameter (Z-average) and polydispersity index (PdI) of AgNPs and the
zeta potential (ζ) of the supports and support–Ag formulation nanoparticles were studied
by dynamic light scattering (DLS) using a Malvern ZetaSizer Nano-ZS instrument (Malvern
Instruments, Malvern, United Kingdom). The nanodispersions were equilibrated prior to
the measurements; the measurements were performed with 10 runs at 298 K, and the results
are reported as ζ ± S.D. The measurements for AgNPs were performed considering the
properties of ethanol used in solutions preparations, standard viscosity of 1.04 cP, refractive
index of 1.36 and dielectric constant of 24.3. For supports and support–Ag formulations,
the dispersant chosen for measurements was water, which at 298 K has a fixed viscosity of
0.8872 cP, a refraction index of 1.330 and a dielectric constant of 78.5. Fourier transform
infrared (FT-IR) spectroscopy was used to identify the characteristic functional groups in
the samples. A Tensor 27 Brucker FT-IR spectrometer (Bruker Co., Karlsruhe, Germany)
was used to record IR spectra. A potassium bromide micro-disk was prepared from finely
ground powder of a 1 mg sample with 100 mg of KBr. The scanning wavelength of in-
frared was at 4000–400 cm−1 at a resolution of 4. For antioxidant activity evaluation of
hybrid nanostructures, the powders were immersed in methanol (10 mg/mL), vortexed for
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15 min, and then filtered and analyzed for DPPH inhibition. The method is based on the
discoloration of the stable radical DPPH (2,2-diphenyl-1-picrylhydrazyl), purple colored.
In a typical experiment, 100 µL of filtrate is mixed with methanol and DPPH solution and
spectrophotometrically analyzed (λ = 517 nm) after 30 min and 1 h. Rutin was used as the
reference, while the methanolic solution of DPPH without nanoparticles was used for the
negative control.

3.2.3. Characterization of Antimicrobial Test

The antimicrobial assay was performed using standard strains, from the collection
of the University of Bucharest, Microbiology Department: Staphylococcus aureus ATCC
25923 (Gram-positive), Pseudomonas aeruginosa ATCC 27853 and Escherichia coli ATCC
25922 (Gram-negative), and Candida albicans ATCC 10231 (yeast strain). For the qualitative
screening of the antimicrobial activity of tested compounds, an adapted spot diffusion
method was followed (according to CLSI 2022 standard) in order to determine the diameter
of the inhibition zone. An amount of 20 µL solution of each compound of 30 mg/mL
concentration was double-spotted on the surface of the agar medium seeded with microbial
inocula. The diameter of the inhibition zone was measured and expressed as the average of
the two values obtained/sample, expressed in mm.

Also, for establishing the MIC (minimum inhibitory concentration) values for the
tested compounds, a binary microdilution method performed in 96-well plates was utilized.
The sterile nutrient broth and Sabouraud broth medium were added into sterile 96-well
plates, and binary dilutions of each tested sample were performed in a final volume
of 150 µL, followed by the addition of 15 µL microbial suspension adjusted to an optical
density 1.5 × 108 CFU/mL to each well. Gentamicin and fluconazole were used as standard
antibiotics for comparative controls, considering CMI values in accordance with the CLSI
2022 standard. The MIC values were established after 24 h of incubation at 37 ◦C, in two
conditions (darkness and light), by visual analysis and spectrophotometric measurement
(absorbance reading at 620 nm), using a BIOTEK SYNERGY-HTX ELISA multi-mode
reader (BioTek, Winooski, VT, USA). Each experiment was performed in triplicate and
repeated on at least three separate occasions. The schematic figure illustrating the proposed
antimicrobial mechanisms of the samples was made using BioRender: Scientific Image and
Illustation Software.

3.2.4. Statistical Analysis

The antimicrobial activity values were statistically analyzed with GraphPad Prism
10.1 from GraphPad Software (San Diego, CA, USA). The results were expressed as ±SD
(standard deviation) and analyzed using a one-way analysis of variance (one-way ANOVA).
The differences between groups were considered statistically significant when the p-value
was <0.05.

4. Conclusions

AgNPs were biosynthesized using sage (Salvia officinalis) extract, and new hybrid
materials with antioxidant activity and antimicrobial properties against a broad spectrum
of microorganisms (Gram-positive, Gram-negative and yeast strains) were obtained. The
surface plasmon resonance effect specific to metallic silver nanoparticles was evidenced
after the immobilization of biosynthesized AgNPs on silica modified with TiO2 using tita-
nium butoxide as a precursor. This optical property led to obtaining the most pronounced
inhibitory effect on microbial growth under irradiation. A higher antibacterial property
under irradiation was evidenced for all the synthesized hybrid nanostructures and is a
result of the synergistic effect of photo-activated AgNPs and TiO2, biocomponents from the
sage extracts with antibacterial properties, and last but not least, the use of mesoporous
silica to support all three active components. In these conditions, reactive oxygen species
are generated and induce high oxidative stress on cells which finally leads to microbial
death. A synergistic effect of AgNPs and the support was highlighted in the case of both
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antioxidant and antibacterial properties. The inactivation of bacteria in dark conditions
was explained by the effect of zeta potential on their interaction with the surface of particles
containing AgNPs. Thus, the interaction of a Gram-positive bacterium such as Staphylo-
coccus aureus with the surface of a sample with a strongly negative value of zeta potential
resulted in a higher activity in the dark than in the light. This can be explained by the effect
of zeta potential which may have a slightly greater influence on Gram-positive bacteria
activity than the reactive oxygen species formed in the light. These results suggest future
directions such as the effect of light on the materials’ zeta potential as well as the stability
of their antibacterial effect.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/ijms25074003/s1.
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