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Abstract: In this study, gilthead sea bream (Sparus aurata) fast muscle myoblasts were stimulated with
two pro-growth treatments, amino acids (AA) and insulin-like growth factor 1 (Igf-1), to analyze the
transcriptional response of mRNAs, microRNAs (miRNAs) and long non-coding RNAs (lncRNAs)
and to explore their possible regulatory network using bioinformatic approaches. AA had a higher
impact on transcription (1795 mRNAs changed) compared to Igf-1 (385 mRNAs changed). Both
treatments stimulated the transcription of mRNAs related to muscle differentiation (GO:0042692)
and sarcomere (GO:0030017), while AA strongly stimulated DNA replication and cell division
(GO:0007049). Both pro-growth treatments altered the transcription of over 100 miRNAs, including
muscle-specific miRNAs (myomiRs), such as miR-133a/b, miR-206, miR-499, miR-1, and miR-27a.
Among 111 detected lncRNAs (>1 FPKM), only 30 were significantly changed by AA and 11 by Igf-1.
Eight lncRNAs exhibited strong negative correlations with several mRNAs, suggesting a possible
regulation, while 30 lncRNAs showed strong correlations and interactions with several miRNAs,
suggesting a role as sponges. This work is the first step in the identification of the ncRNAs network
controlling muscle development and growth in gilthead sea bream, pointing out potential regulatory
mechanisms in response to pro-growth signals.

Keywords: microRNAome; transcriptome; omics; RNA interactions; bioinformatics; fish; muscle
growth; amino acids; Igf-1

1. Introduction

The skeletal muscle of teleost fish is a very plastic tissue that integrates external and
internal inputs to adapt to a changing environment. Most teleost can form new muscle
fibers (hyperplasia) long after the end of metamorphosis well into adulthood (until about
44% of the maximal length of the species), overlapping with the growth of pre-existent
fibers (hypertrophy) [1–3]. Muscle growth includes the activation of the satellite cells, their
proliferation, fusion, differentiation, and maturation in a process known as myogenesis.
The molecular regulation of myogenesis involves the coordinated work of transcription
factors, growth factors, activation of different pathways, and fusion proteins [2,4–8].

Furthermore, muscle growth and development also depend on the balance between
protein synthesis and degradation, which are controlled by various cellular signaling path-
ways, including the nutrient-sensitive mechanistic target of rapamycin (mTOR) network.
mTOR is a protein kinase that acts as a central regulator of cellular metabolism, prolifera-
tion, and growth and is activated in response to various signals, including nutrients (e.g.,
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amino acids (AA)) and growth factors (e.g., insulin-like growth factor 1 (Igf-1)). When AA
are present in sufficient quantities, they activate mTOR at the lysosome membrane [9–12],
which then stimulates protein synthesis by phosphorylating and activating downstream
targets such as P70 ribosomal S6 kinase (P70S6K) and eukaryotic translation initiation factor
4e binding protein 1 (4EBP1). Studies with fish muscle showed that AA reduce transcrip-
tion of muscle-specific ubiquitin ligases [13] and autophagy-related genes [14], leading
to reduced protein breakdown [15,16]. Likewise, Igf-1 also activates mTOR throughout
the induction of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway. It
has been shown in different fish species and experimental setups that Igfs increase muscle
growth by promoting myoblast proliferation and differentiation [17–20]. Thus, given the
importance of the Igf system and AA in promoting protein synthesis and in the myogenesis
process, studying their effects would help to better understand the potential regulation of
muscle growth and development in fish, including aquaculture species like the gilthead
sea bream (Sparus aurata).

In the last decades, research in mammalian models has demonstrated that the non-
coding RNAs (ncRNAs) also play a key role in regulating myogenesis [21–23], but little is
known about their role in fish muscle development [24–27]. The ncRNAs are a group of
RNAs that, generally, do not codify for proteins but perform various regulatory functions
in cellular processes. The ncRNAs include ribosomal RNAs (rRNAs), transfer RNAs
(tRNAs), small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNA), microRNAs
(miRNAs), small interfering RNA (siRNAs), piwi-interacting RNAs (piRNAs), circular
RNAs (circRNAs) and long non-coding RNAs (lncRNAs). The miRNAs regulate gene
expression by recognition of the complementary sequence present in the target mRNAs.
When an mRNA is recognized by a specific miRNA, its degeneration, deadenylation,
or impaired translation into a protein can be triggered, usually leading to a negative
correlation between the expression of miRNAs and their target mRNAs [28–30]. Therefore,
the miRNAs expand the complexity of transcriptomic regulation and are key players in
the control of cellular functions [31]. Many miRNAs are ubiquitously expressed in most
cell types and tissues, but some are tissue-specific like the myomiRs, muscle enriched,
or striated muscle-specific miRNAs. MyomiRs are involved in myoblast proliferation,
differentiation, or muscle regeneration, and each one is expressed differently throughout
the myogenesis process [22,32,33]. It has been shown in C2C12 myoblasts that miR-1 and
miR-206 promote myogenic differentiation by repressing the expression of Pax7 and histone
deacetylase 4 (HDAC4) [34–37]; and also that miR-206 is involved in muscle regeneration
and it is markedly upregulated in satellite cells following muscle injury [38,39]. On the other
hand, miR-133a is known to have an important role in muscle cell proliferation, repressing
serum response factor (SRF) [40]. However, miR-133b also participates in the promotion of
myoblast differentiation and fusion [41,42]. In the case of miR-499 and miR-208b, they are
involved in the specification and maintenance of slow-twitch phenotype [43–45]. The roles
of these miRNAs were also investigated in fish skeletal muscle, with miR-1/206 and miR-133
families regulating myogenesis and development [46–48], sarcomeric organization [49],
and protein balance [50–52]; and miR-499 inducing the establishment and maintenance of
slow-twitch muscle fibers [48,53,54].

On the other hand, lncRNAs can increase or decrease the transcription and function
of genes through different strategies, such as direct interaction with the DNA, RNA, or
even proteins. Some lncRNAs can interact with the DNA and change the chromatin struc-
ture, modulating the access of transcription factors to the gene promotors or allowing
the physical proximity to enhancers [55–57]. In addition, the lncRNAs can also interact
directly with mRNAs, showing opposite functions that could induce mRNA degradation
or prevent it by acting as sponges of miRNAs [26,58], or even regulate the gene function
by direct interaction with proteins [59]. The number of lncRNAs characterized in human
skeletal muscle has increased in recent years and now includes lncRNAs such as Neat1 [60],
MUNC [61,62], linc-RAM [63], Irm [64], or H19 [65]. Recent research in fish has indicated
that lncRNAs participate in many biological processes, including lipid metabolism [66],
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intestinal homeostasis [67], immune response [68], sex differentiation [69], and the smoltifi-
cation process [70]. However, our knowledge of lncRNAs in fish skeletal muscle is very
limited [24,26,27,71]. One of the major problems is the apparent low conservation of lncR-
NAs [72], which makes it very difficult to identify relevant lncRNAs in species other than
humans, having to start from scratch the work in different species.

To our knowledge, the role of miRNAs and lncRNAs in regulating the transcriptional
response of fish skeletal muscle to pro-growth signals such as AA and Igf-1 has not yet
been investigated in fish. Hence, this work uses an RNA-Seq approach to address the
present lack of knowledge by generating a transcriptome and microRNAome from gilthead
sea bream myoblasts stimulated with AA or Igf-1, and study the interactions between
mRNAs, miRNAs, and lncRNAs to better understand the role of ncRNAs in the myoblast’s
transcriptional response to pro-growth signals.

2. Results
2.1. Identification of miRNAs and lncRNAs in Gilthead Sea Bream Myoblasts

Myoblasts from gilthead sea bream fast skeletal muscle were extracted and seeded on
6-well culture plates at a density of 1.5 × 106 cells/well and let to develop for 8 days
(Figure 1). At day 8, myoblasts were still proliferating, but a significant proportion of
them started to fuse and form myotubes, allowing us to investigate miRNAs and lncR-
NAs present during proliferation and differentiation in response to pro-growth signals.
We detected 403 miRNAs expressed in the gilthead sea bream myoblasts, with 8.58%
showing a high expression (over 10,000 normalized reads), 20% showing low expres-
sion (under 10 normalized reads), and 70% showing intermediate expression (between
10 and 10,000 normalized reads) (Figure 2A). We also identified more than 870 lncRNAs
(over 0.001 FPKM), but only 111 had over 1 FPKM average expression, while 25 had over
10 FPKM (Figure 2B). It is interesting to notice that in both lncRNAs and miRNAs the tran-
scriptomic landscape is dominated by a few of them (Figure 2). For instance, four miRNAs
(miR-21, miR-146, miR-22, and miR-206) were found to have over 500,000 normalized reads
(Figure 2A; Supplementary File S1). Other miRNAs known to be important in mammalian
skeletal muscle (miR-26a, miR-27, miR-133a/b, miR-221/222, miR-1, or miR-499) were also
relatively abundant but not at the same level (Figure 2A; Supplementary File S1). In the
case of lncRNAs, one of them, ENSSAUG00010015132, showed ten times more expression
(>900 average FPKM) than the second more expressed lncRNA (ENSSAUG00010022378;
>80 average FPKM), which rapidly decreased to very low levels of expression for the others
lncRNAs (Figure 2B; Supplementary File S1). The majority of lncRNAs were predicted
to be either located in the cytoplasm (70%) or nucleus (28%) (Supplementary File S1). A
BLAST search of the lncRNAs > 1 FPKM from gilthead sea bream against the human and
mouse genome did not show any significant ortholog.

2.2. Transcriptomic Changes of mRNAs in Response to AA and Igf-1

To determine the effects of the treatments, a principal components analysis (PCA)
was performed. The PCA analysis showed that the samples from each condition clustered
together in three distinct groups. It is interesting to notice that the Igf-1 cluster was closer
to the CTR cluster than the AA cluster, suggesting that the global transcriptomic profile
of the myoblasts treated with Igf-1 was more similar to the CTR profile than to that of
AA (Figure 3). Also, the replicates of the Igf-1 and CTR groups were closer to each other
compared to the AA groups, indicating lower variability in the response to the treatments
(Figure 3).

The transcriptional response of the gilthead sea bream myoblasts to AA was more
intense than the response to only Igf-1 (Supplementary File S2). In response to AA, we
found a total of 1184 upregulated and 611 downregulated mRNAs compared to the CTR
myoblasts (Figures 4 and 5). When Igf-1 was added, only 253 genes were upregulated
and 132 downregulated compared to CTR myoblasts (Figures 4 and 5). We also found
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182 and 92 genes commonly upregulated and downregulated in response to AA and Igf-1,
respectively (Figure 5).
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Figure 5. Venn diagrams of mRNAs, miRNAs, and lncRNAs significantly modified by AA and Igf-1.
Venn diagrams showing the number of mRNAs, miRNAs, and lncRNAs upregulated (A–C) and
downregulated (D–F) in response to the treatments. The numbers inside the blue bubbles and red
bubbles represent the number of mRNAs (A,D), miRNAs (B,E), and lncRNAs (C,F) uniquely changed
in response to AA and Igf-1, respectively. The number in the intersection of the two bubbles indicates
the mRNAs, miRNAs, and lncRNAs that commonly changed in response to both treatments.

The Gene Ontology analysis of the up and downregulated genes in response to the
different treatments showed differences between the processes affected and their intensity.
Several GO terms related to DNA replication and cell cycle (0007049; 0006260; 0003688),
muscle differentiation (0042692; 0003012), and sarcomere and muscle cytoskeleton (0007010;
0045214; 0008092; 0043292; 0030017) were upregulated in response to AA; while GO terms
such as transport activity (0034219; 0015293) or growth factor and cytokine activity (0008083;
0005125) were downregulated in this condition (Table 1). The addition of Igf-1 increased
the expression of genes related to muscle development (0042692; 0055001; 0061061) and
muscle cytoskeleton (0030016; 0030017; 0015629) (Table 1). Some GO terms were shared
between AA and Igf-1, but the number of genes involved was significantly different, with
many more genes modified by AA (Table 1; Figure 6).

Table 1. Gene Ontology analysis of the up and downregulated genes in response to AA and Igf-1.

AA vs. CTR

GO Term Description FDR

U
pr

eg
ul

at
ed

Biological Process

0007049 Cell cycle 5.87 × 10−45

0006260 DNA replication 2.12 × 10−19

0007010 Cytoskeleton organization 4.82 × 10−08

0003012 Muscle system process 1.87 × 10−07

0042692 Muscle cell differentiation 3.52 × 10−05

0045214 Sarcomere organization 4.19 × 10−07

Molecular Function

0008092 Cytoskeletal protein binding 1.61 × 10−10

0003688 DNA replication origin binding 3.47 × 10−07

0005515 Protein binding 8.75 × 10−06

0005524 ATP binding 0.0074
0016787 Hydrolase activity 0.026

Cellular Component

0043232 Intracellular non-membrane-bounded organelle 2.53 × 10−30

0043292 Contractile fiber 2.15 × 10−18

0030017 Sarcomere 6.87 × 10−17

0005654 Nucleoplasm 0.0279
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Table 1. Cont.

AA vs. CTR

GO Term Description FDR

D
ow

nr
eg

ul
at

ed

Biological Process
0032870 Cellular response to hormone 0.0043
0043473 Pigmentation 0.008
0034219 Carbohydrate transmembrane transport 0.0215

Molecular Function 0015293 Symporter activity 0.0088
0008083 Growth factor activity 0.0430
0005125 Cytokine activity 0.0430
0005539 Glycosaminoglycan binding 0.0430

Cellular Component 0005576 Extracellular region 0.0110
0110165 Cellular anatomical entity 0.0110
0031082 BLOC complex 0.0416

Igf-1 vs. CTR

U
pr

eg
ul

at
ed

Biological Process

0042692 Muscle cell differentiation 0.0026
0055001 Muscle cell development 0.0120
0061061 Muscle structure development 0.0120
0009987 Cellular process 0.0120

Cellular component

0030016 Myofibril 0.00029
0030017 Sarcomere 0.00029
0099512 Supramolecular fiber 0.00029
0015629 Actin cytoskeleton 0.0074

D
ow

nr
eg

ul
at

ed

Molecular Function 0005539 Glycosaminoglycan binding 0.0250

Cellular Component 0005576 Extracellular region 0.0003

FDR: False discovery rate.
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Figure 6. Global Gene Ontology (GO) enrichment analysis of the genes that significantly changed
their transcription in response to AA (A) or Igf-1 (B). The size of the dots represents the number of
genes present in each GO term, while the color indicates the p-value associated with each GO term
identified. The name of the enriched GO term is indicated on the left side of the panel, whereas the
GO Rich Factor (ratio of the number of differentially expressed genes in the pathway to the total
number of genes in the pathway) is indicated in the lower part of each panel.
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2.3. Transcriptomic Analysis of ncRNAs

The total number of ncRNAs affected by the treatments was significantly smaller
compared to the mRNAs. A total of 54 miRNAs were significantly upregulated in response
to AA, such as miR-1 (log2FC = 2.62), miR-133a/b (log2FC = 2.54), miR-181b (log2FC = 1.80),
miR-499 (log2FC = 1.54) or miR-206 (log2FC = 1.48); and 26 miRNAs were downregulated
in response to AA, including miR-29d (log2FC = −2.79), miR-203a/b (log2FC = −1.38) or
miR-122 (log2FC = −0.77) (Figures 4 and 5; Supplementary File S3). Gene Ontology anal-
ysis based on human miRNA–mRNA interactions showed that miRNA modified by the
presence of AA might control mRNA involved in protein and ATP binding and regulation
of transcription (Figure 7). On the other hand, in response to Igf-1, only 20 miRNAs signifi-
cantly increased their expression in response to Igf-1, such as miR-27c (log2FC = 1.67), miR-1
(log2FC = 1.56), miR-19a/b (log2FC = 1.06), or miR-133a/b (log2FC = 0.77); and a total of
26 miRNA appeared downregulated but most of them with a change log2FC < −1, such as
miR-203a/b (log2FC = −0.83), miR-128 (log2FC = −0.83); miR-122 (log2FC = −0.71), miR-206
(log2FC = −0.72), miR-27a (log2FC = −0.48) and miR-221 (log2FC = −0.23) (Figures 4 and 5;
Supplementary File S3). Gene Ontology analysis based on human data predicted that those
miRNAs controlled mRNAs involved in transmembrane transport, protein phosphoryla-
tion, signal transduction, and ATP binding (Figure 7).
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The number of lncRNAs significantly modified was also small compared to mRNAs
and miRNAs. In response to AA, only 17 lncRNAs appeared to be significantly upregulated
with a log2FC between 1 and 2 (Figures 4 and 5; Supplementary File S1). We also found
13 lncRNAs significantly downregulated in response to the presence of AA, showing a
log2FC between −1 and −5. In response to Igf-1, only 4 lncRNAs were significantly
increased with log2FC between 1.05 and 1.70. Similarly, only 7 lncRNAs appeared to be
significantly downregulated in response to Igf-1 with log2FC between −1.20 and −12.40
(Figures 4 and 5; Supplementary File S1). Due to the lack of information about GO terms
associated with fish lncRNAs, no GO enrichment analysis was performed.

2.4. Predicted Interactions of miRNAs and lncRNAs with mRNAs Based on Transcriptomic
Correlations and Bioinformatics Analysis

To better understand the changes in response to AA and Igf-1, correlation and bind-
ing analyses were performed between miRNAs, lncRNAs, and mRNAs. Significantly
modified miRNAs, lncRNAs, and mRNAs were considered candidates for further consid-
eration when correlations had a negative Pearson index lower than −0.80. We found up
to 14,658 negative correlations between miRNAs and mRNAs and a total of 7488 negative
correlations between significantly modified lncRNAs and mRNAs using all treatments
(Supplementary File S4), indicating the possibility of co-regulation. To further investigate
how miRNAs and lncRNAs might be involved in the variations of transcription observed
in mRNAs, we estimated the probability of direct interaction between miRNAs or lncRNAs
and mRNAs with a correlation lower than −0.80 using bioinformatic tools. While several
strong interactions (<−25 kcal/mol) were found in response to AA (Supplementary File S5),
only a handful of miRNAs dominate the majority of interactions observed, such as miR-17a,
miR-128, miR-133a/b and miR-206. Similarly, in response to Igf-1, we found some miR-
NAs predicted to interact with multiple mRNAs, such as miR-34, miR-221, and miR-338
(Supplementary File S5). Gene Ontology enrichment analysis of the mRNAs predicted
to both possibly correlate and interact with miRNAs was performed to determine the
biological processes regulated by them. In the case of the AA treatment, miRNAs were
involved in the downregulation of genes related to Igf binding, development, protein
catabolism, sarcomere production, and DNA replication (Table 2). In the Igf-1 treatment,
miRNAs were involved in the possible regulation of mRNAs related to the extracellular
region and upregulation of genes related to development, DNA metabolic process, and
cytoskeleton (Table 2).

We also found strong negative correlations between lncRNAs and those mRNAs
significantly modified by treatments (Supplementary File S4), but only 8 lncRNAs simul-
taneously showed strong negative correlations (ρ < −0.80) and significant interactions
(ndG < −0.10 kcal/mol) with some of the mRNAs identified to change in response to
treatments such as acta1, rbm24b, h2az1, pin1, tcima, psmb3, tnni2, nupr1a, rgcc, and igfbp6a
(Supplementary Table S1, Supplementary File S6).

The possibility of lncRNAs regulating mRNAs abundance by acting as miRNAs
sponges was also investigated. Correlations of <−0.80 between lncRNAs and miRNAs
were considered possible candidates (Table 3). From those, we found 30 lncRNAs with
strong predicted interactions with miRNAs, which in turn possibly regulate multiple
mRNAs, such as ENSSAUG00010001802 (interacting with miR-27a, miR-29d and miR-29b),
ENSSAUG00010012228 (interacting with miR-338, miR-133a/b, miR-17a, miR-125a, miR-
106, miR-217, and miR-206) or ENSSAUG00010017089 (interacting with miR-206, miR-106,
miR-128, and miR-17a) (Table 3).
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Table 2. Gene Ontology enrichment analysis of the up and downregulated genes that were predicted
to correlate and interact with miRNAs.

GO Term Description FDR

AA vs. CTR

U
pr

eg
ul

at
ed Biological Process

0009888 Tissue development 0.034
0030163 Protein catabolic process 0.034
0097435 Actin cytoskeleton organization 0.034
0006260 DNA replication 0.034

Molecular Function 0004298 Threonine-type endopeptidase activity 0.001

Cellular Component 0005622 Intracellular 0.0007
0032991 Protein-containing complex 0.0086

D
ow

nr
eg

ul
at

ed

Biological Process 0043473 Pigmentation 0.0002
0019262 N-acetylneuraminate catabolic process 0.026

Molecular Function
0016798 Hydrolase activity, acting on glycosyl bonds 0.031
0005520 Insulin-like growth factor binding 0.041

Cellular Component
0110165 Cellular anatomical entity 0.010
0012505 Endomembrane system 0.039
0005773 Vacuole 0.000

Igf-1 vs. CTR

U
pr

eg
ul

at
ed

Biological Process
0048731 System development 0.045
0006259 DNA metabolic process 0.045
0055001 Muscle cell development 0.008

Cellular Component 0005856 Cytoskeleton 0.019
0030017 Sarcomere 0.000

D
ow

nr
eg

ul
at

ed

Cellular Component 0005576 Extracellular regions 0.000

FDR: False discovery rate.

Table 3. Potential lncRNAs acting as miRNAs sponges. Predicted interactions between lncRNAs and
miRNAs significantly modified in response to AA and Igf-1.

lncRNAs ID miRNAs Correlation Index Energy (ndG)

ENSSAUG00010001802 miR-27a; miR-29d; miR-29b −0.88; −0.86; −0.87 −29.1; −26.2; −27.1

ENSSAUG00010017848 miR-122; miR-92a; miR-29a; miR-29d;
miR-29b; miR-203a; miR-25; miR-31

−0.88; −0.80; −0.86; −0.92;
−0.84; −0.91; −0.84; −0.81

−26.7; −32.5; −32.2; −32.2;
−26.6; −28.1; −27.7; −28.6

ENSSAUG00010024948 miR-122; miR-92a; miR-10c; miR-10d;
miR-27a; miR-29b; miR-31

−0.92; −0.89; −0.87; −0.87;
−0.82; −0.90; −0.93

−26.0; −27.6; −25.5; −25.5;
−30.6; −32.3; −26.0

ENSSAUG00010012228
miR-338; miR-133a; miR-133b;
miR-206; miR-17a; miR-125a;
miR-106; mir-217

−0.80; −0.92; −0.91; −0.87;
−0.80; −0.82; −0.90; −0.91

−27.1; −26.1; −26.1; −28.6;
−27.8; −28.6; −28.1; −29.0

ENSSAUG00010000237 miR-125b −0.83 −28.5

ENSSAUG00010012182
miR-7a; miR-338; miR-133a;
miR-133b; miR-206; miR-106;
miR-17a; miR-125a

−0.93; −0.80; −0.92; −0.91;
−0.87; −0.90; −0.80; −0.82

−29.0; −27.1; −26.1; −26.1;
−28.6; −28.6; −27.8; −28.6

ENSSAUG00010012549 miR-17a −0.80 −26.5

ENSSAUG00010015941 miR-206; miR-17a; miR-125b; mir-145;
miR-454

−0.86; −0.83; −0.84; −0.83;
−0.86

−26.4; −30.2; −30.2; −25.6;
−29.7
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Table 3. Cont.

lncRNAs ID miRNAs Correlation Index Energy (ndG)

ENSSAUG00010016074 miR-15a; miR-19b; miR-217; miR-34 −0.89; −0.81; −0.85; −0.81 −27; −25.3; −27.6; −27.5

ENSSAUG00010016143 miR-133a −0.82 −25.1

ENSSAUG00010017089 miR-206; miR-106; miR-128; miR-17a −0.95; −0.82; −0.88; −0.91 −28.6; −26.8; −30.7; −27.8

ENSSAUG00010016280 miR-122; miR-92a; miR-25 −0.86; −0.81; −0.80 −29.6; −27.8; −25.1

ENSSAUG00010002983 miR-15a −0.90 −31.2

ENSSAUG00010008657 miR-338; miR-15a; miR-34; miR-7147 −0.88; −0.85; −0.88; −0.90 −33.3; −29.4; −25.6; −25.8

ENSSAUG00010022074 miR-128; miR-365; miR-454; miR-19a;
miR-15a; miR-34; miR-7147

−0.83; −0.83; −0.82; −0.82;
−0.80; −0.83; −0.86

−31.3; −29.7; −25.9; −27.5;
−32.9; −28.6; −27.2

ENSSAUG00010013187 miR-30e; miR-29a; miR-29d; miR-22b;
miR-30a

−0.91; −0.90; −0.83; −0.80;
−0.90

−26.8; −28.8; −28.8; −28.3;
−29.5

ENSSAUG00010013622 miR-30e; miR-29d; miR-8160ba;
miR-30a −0.85; −0.84; −0.90; −0.82 −27.0; −27.3; −25.2; −26.5;

ENSSAUG00010015504 miR-27d; miR-30a −0.85; −0.81 −29.1; −30.1

ENSSAUG00010016109 miR-30e; miR-25; miR-27d; miR-27a −0.81; −0.82; −0.84; −0.85 −31.7; −25.8; −25.5; −26.0

ENSSAUG00010001416 miR-29b −0.83 −25.2

ENSSAUG00010017066 let-7g −0.81 −28.0

ENSSAUG00010002786 miR-10926; miR-29d; miR-8160ba −0.80; −0.83; −0.97 −28.1; −28.7; −26.3

ENSSAUG00010004711 miR-8160ba −0.89 −27.1

ENSSAUG00010026349 miR-10926; miR-22b; miR-29a;
miR-29d; miR-551; miR-8160ba

−0.81; −0.82; −0.82; −0.82;
−0.81; −0.82

−29.4; −27; −26.2; −26.2;
−25.6; −25.6

ENSSAUG00010009596 miR-128; mir-365; miR-7550 −0.95; −0.90; −0.83 −27.7; −27.3; −25.5

ENSSAUG00010015789 miR-128; miR-365; miR-125b −0.89; −0.82; −0.81 −28.9; −32.7; −25.2

ENSSAUG00010020704 miR-128; miR-365; miR-26b; miR-454;
miR-19a; miR-15a; miR-34; miR-7147

−0.83; −0.83; −0.86; −0.82;
−0.82; −0.80; −0.83; −0.85

−31.3; −29.2; −26.3; −25.9;
−27.5; −32.9; −28.6; −27.2

ENSSAUG00010010920 miR-139; miR-27d; miR-8160ba −0.81; −0.85; −0.83 −28.5; −26.1; −25.9

ENSSAUG00010003663 miR-15a; miR-301b; miR-33b; miR-34;
miR-7147

−0.91; −0.81; −0.81; −0.84;
−0.85

−29.1; −25.3; −26.1; −33.2;
−28.1

ENSSAUG00010016209 miR-27a; miR-122; miR-92a −0.85; −0.86; −0.81 −26.0; −29.6; −27.8

The predicted interactions between lncRNAs and miRNAs shown are based on transcriptional correlations and
bioinformatics analysis. Interactions with Pearson correlations lower than −0.80 and with predicted interaction
energies lower than −25.0 kcal/mol are shown.

3. Discussion

Understanding the regulation of fish muscle development and growth is necessary
to optimize aquaculture production because it is the most valuable part of the fish for the
aquaculture industry. To thoroughly study the mechanisms orchestrating the myogenesis
process, it is necessary to consider the complex networks integrating not only the transcrip-
tion of genes but also of ncRNAs like miRNAs and lncRNAs [23,73]. For this purpose, fish
myoblast cell culture is a very useful and powerful tool that allows the analysis of many
signaling pathways and molecular networks under controlled conditions [74]. In this study,
a cell culture of gilthead sea bream myoblasts was used to explore for the first time in fish
the transcriptional response of mRNAs, miRNAs, and lncRNAs in response to AA and
Igf-1, as well as their possible regulatory network.

Both pro-growth signals induced many transcriptional changes compared to untreated
cells, but the AA group showed a higher number of transcriptionally modified mRNAs
compared to Igf-1 (Figure 4). These results are in agreement with previous studies in pacu
(Piaractus mesopotamicus) [25] and Atlantic salmon (Salmo salar) [75] that showed a better
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capacity of AA compared to Igf-1 alone to boost myoblast response, suggesting that the
Igf-1 might need the assistance of AA to perform its function. Studies in L6 murine muscle
cell lines have shown that blocking Igf-1 expression did not decrease the protein synthesis
rate when induced by AA, indicating that Igf-1 transcription is a covariate to AA initiation
of protein synthesis through an unknown process [76]. It is well known that Igf-1 performs
its functions through the phosphorylation of Akt, which leads to the promotion of cell
proliferation and protein synthesis by activating the mTOR complex 1 (mTORC1) [17,77,78].
The activation of mTORC1 can also be triggered by AA, but in this case is done through the
Ragulator complex, a system believed to act independently of the Akt pathway [11,79,80].
Although it is presumed that the activation of mTORC1 by AA and Igf-1 occurs in an
independent way, it might be possible that the lack of AA impairs the activation of this
complex by the Igf-1/Akt pathway through a not yet described mechanism that needs
further investigation.

Furthermore, there was a clear difference in the magnitude of transcriptional changes
induced by both treatments: the upregulation of genes such as myoz1b, stac3, tnnt2c, igfbp2a,
or usp28 was much higher in response to AA than in response to Igf-1, while downregulated
genes such as plvapb, ccn5, or cav2 had their transcription less reduced in response to Igf-1
compared to AA. It is important to highlight that all these genes participate in the regulation
of muscle growth by modulating mechanisms related to myogenesis and protein balance
in the muscle fiber [8,81–83]. For instance, the upregulation of myoz1b, stac3, and tnnt2c
at day 9 of culture with AA and Igf-1 confirms the correct development of myogenesis
under these treatments because they are genes that encode for proteins involved in muscle
contraction and are expected to increase their expression when myoblasts are fusing to
form myotubes [82].

It is interesting to highlight that despite the big differences in the number of mRNAs
modified and the magnitude of the changes, when GO analysis was performed for up
and downregulated genes, both treatments regulated common processes related to muscle
growth, differentiation, and sarcomere formation. This fact suggests that both AA and Igf-1
were able to promote the transcription of components of the molecular network controlling
protein synthesis and sarcomere development. Moreover, it seemed that both treatments
were able to increase DNA replication and cell proliferation (Figure 6).

Regarding the ncRNAs, we identified a comprehensive repertoire of miRNAs and
lncRNAs present in gilthead seabream myoblasts with potential roles in regulating muscle
growth. We found that the most expressed miRNAs in the gilthead sea bream myoblasts
were miR-21, miR-146, miR-22b, and miR-206, with only the last one being a canonical
myomiR [43,84], although the rest are also known to have roles on the control of skeletal
muscle growth. For instance, in mammalian models, miR-21 is known to downregulate
the transcription of pten [85,86], a component of the mTOR network, but also col1a1, col6a,
and tgf-ß, components of the extracellular matrix [87]. On the other hand, miR-146 is
known to promote myoblast differentiation through the regulation of smad4, notch1, and
hmga2 [88], and miR-22b is also involved in myoblast differentiation by targeting tgfßr1 [89].
It is not surprising that these miRNAs promoting differentiation were highly expressed,
considering that we used myoblasts developed for 8 days when myoblasts are slowing
down proliferation and entering into the differentiation program, where TGF-ß is known
to inhibit differentiation [90,91]. We only found a significant decrease in tgfb3 expression
(FDR = 0) in response to AA (log2FC = −1.55), and less modulated in response to Igf-1
(log2FC = −0.90). Other components of the TGF-ß pathway, such as tgfb2, tgfb5, tgfb3, and
tgfb1a, were non-significantly downregulated in response to both treatments.

Like mRNAs, more miRNAs changed their transcription in response to AA compared
to Igf-1 (Figure 4). Not many miRNAs were downregulated by the pro-growth treatments,
but we found low expression of miR-22b (when upregulated promotes differentiation) [89],
miR-206 (promotes differentiation) [92], miR-221 (involved in proliferation and differen-
tiation) [93] and miR-338 (function not known, but is differentially expressed in skeletal
muscle of different species under different growth conditions) [25,94,95] in response to Igf-1.
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The fact that some differentiation-inducing miRNAs identified in mammals [21,22,43] ap-
peared to be downregulated in the present experiment seems to be at odds with the results
obtained, which suggests that both proliferation and differentiation were stimulated (as
indicated by the GO enrichment analysis). However, we also found a significant increase of
miRNAs that promote differentiation such as miR-1 (log2FC > 1.5; increased in response to
both treatments), miR-206 (log2FC = 1.48; increased with AA), miR-499 (log2FC = 1.54; pro-
motes differentiation toward slow phenotype, increased with AA), miR-181 (log2FC = 1.8
increased with AA) and miR-34 (log2FC = 1, inhibits proliferation, increased with Igf-1). At
the same time, an upregulation of miRNAs generally associated with myoblast proliferation
was also observed in response to AA, such as miR-128 (log2FC ≥ 0.78), or in response
to both treatments, like the miR-133a/b (log2FC ≥ 0.66). The transcriptional changes of
miRNAs and mRNAs involved in both myogenic proliferation and differentiation are likely
due to the fact that the cell cultures used in the present study contain a mixture of cells at
different stages, with still proliferative myoblasts but most cells differentiating.

Our analysis showed strong correlations between miRNAs and mRNAs differentially
expressed in response to the treatments. However, many of the identified correlations
(<−0.80) had relatively low predicted interactions (<−25 kcal/mol), suggesting that the
mRNAs and miRNAs might be part of the same networks but not directly regulating each
other. The strong correlations and significant interactions found were dominated by a small
number of miRNAs: miR-133, miR-128 or miR-206 (upregulated) and miR-27a, miR-92a
or miR-29d (downregulated) in the AA treatment; miR-128, miR-125, miR-338, miR-206 or
miR-27a (downregulated) and miR-34 or miR-7147 (upregulated) in the Igf-1 treatment. The
percentage of genes whose transcription seems to be potentially regulated by miRNAs
was relatively low. However, we must take into consideration that in the present study,
we have used quite stringent conditions, reducing the number of interactions identified.
Likewise, the correlations were performed with only nine samples, and the strength of such
correlations must be considered cautiously.

Unraveling the roles of lncRNAs in fish skeletal muscle based on transcriptomic data is
quite challenging, and we can only hypothesize their possible functions using bioinformatic
approaches. The study of lncRNAs in mammals has revealed their importance in the
transcriptomic regulation of muscle development, and some lncRNAs have been shown
to be critical in the control of muscle gene expression, including the linc-RAM (enhances
myogenic differentiation by interacting with MyoD) [63], MUNC (increases MyoD, Myo-
genin, and Myh3 mRNAs and facilitates the function of MyoD) [61,62], OIP5-AS1 (interacts
with MEF2C mRNA and promotes myogenic gene expression) [96], or Lnc-31 (binds to
Rock1 mRNA and sustains myoblast proliferation) [97]. Similarly, lncRNAs can also exert
their functions directly interacting with miRNAs, such as linc-MD1 and MDNCR (inter-
act with miR-133) [98,99], Sirt1 AS (interacts with miR-34a) [100] or linc-smad7 (interacts
with miR-125b) [101], acting as miRNAs sponges [102]. However, it is very difficult to
translate the research done in mammalian models to other species due to the low degree
of conservation found between lncRNAs [72]. Our data indicates that only a small frac-
tion of the lncRNAs identified responded to the pro-growth signals, with most of them
showing low expression, as previously observed in other studies [55,103]. It is interesting
to notice that many of the lncRNAs previously identified in gilthead sea bream skeletal
muscle [24] had very low levels of expression in myoblasts developed for 8 days, although
one of them, the ENSSAUG00010020194, slightly increased transcription in response to
pro-growth signals (log2FC < 1), but not significantly. Similarly, its predicted target (myod1)
also slightly changed its transcription (log2FC < 1) in response to pro-growth signals, but
not significantly.

Furthermore, our analysis revealed that a higher number of lncRNAs simultaneously
exhibit strong negative correlations and interactions with miRNAs (Table 3) compared to
mRNAs (Supplementary Table S1), which changed in response to the treatments. This
fact may suggest that the contribution of lncRNAs to the modulation of transcription
might be done mainly as miRNAs sponges rather than through direct interactions with
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mRNAs. Among the miRNAs that negatively correlate and interact with lncRNAs are those
associated with multiple mRNAs modified by treatments: miR-338, miR-92, miR-34 miR-206,
miR-133, miR-7147, miR-27, miR-29, miR-125 and miR-128 (Table 3). This indicates that highly
expressed lncRNAs bind to the miRNAs, preventing the degradation of target mRNAs,
which appear increased (and vice versa). Supplementary Figures S1 to S3 show examples of
possible networks of mRNAs, miRNAs, and lncRNAs controlling some biological processes
in response to AA and Igf-1. For example, Supplementary Figure S2A exposes a group
of genes involved in muscle development that were upregulated with AA and could be
affected by some miRNAs (miR-27a, miR-29d, miR-92a) that, in turn, might be sequestered
by specific lncRNAs acting as sponges. These figures show part of the distinct levels in the
transcriptional regulation and illustrate the complexity behind the interactions between
different molecules.

Moreover, it is interesting to note that some of the interactions found in our study
are also predicted for some human lncRNAs, such as linc-MD1 (miR-133) [98], Sirt1 AS
(miR-34) [100], or lnc-mg (miR-125) [104]. The results suggest that some roles as sponges
of lncRNAs in muscle might be conserved in teleost fish. However, it is important to
highlight that we have found a relatively low conservation between lncRNAs with similar
interactions in fish and mammals. For instance, ENSSAUG00010016143 (which interacts
with acta1; Supplementary Table S1) had a 44% similarity with Myolinc [105] and not quite
a good alignment, and the majority of lncRNAs identified to interact with miR-133 have
less than 30% similarity with linc-MD1. Similarly, we did not find any clear conservation
of the synteny between mammalian and fish lncRNAs with conserved targets, suggesting
that while lncRNA interactions might be conserved, their evolution history is not clear.

Overall, this work is the first step in the identification of the network of mRNAs,
miRNAs, and lncRNAs controlling muscle development and growth in gilthead sea bream,
pointing out potential candidates with a high confidence value that might be of great interest
for further experimental work. Moreover, this study contributes to a better understanding
of the modulation of mRNAs and ncRNAs transcription by AA and Igf-1, along with
their potential regulatory mechanisms in this species, and establishes the basis for future
research focusing on the possible dose-dependent response of these pro-growth signals
and exploring their synergistic effects.

4. Materials and Methods
4.1. Gilthead Sea Bream Primary Myoblast Cell Culture and Treatments

Myoblasts were isolated and cultured according to the protocol described by Fau-
conneau and Paboeuf (2000) [106] and adapted to gilthead sea bream by Montserrat et al.
(2007) [107]. Briefly, fast-twitch muscles were collected from the epaxial region of gilthead
sea bream fingerlings (≈ 5 g) and mechanically dissociated with scalpels, enzymatically
digested with 0.2% collagenase type IA (Ref. C9891) and 0.1% trypsin (Ref. T4799), filtered
with cell strainers (Ref. CLS431752 and CLS431750), centrifuged, resuspended and plated
in poly-L-lysine/laminin (Ref. P6282 and L2020) pre-treated 6-well plates (Ref. 140675)
with complete growth medium [DMEM (Ref. D7777), 9 mM NaHCO3 (Ref. S5761), 20 mM
HEPES (Ref. H3375), 1.1 g/L NaCl (Ref. S5886), 1% antibiotic/antimycotic (Ref. A5955),
and 10% fetal bovine serum (FBS; Ref. F7524), pH 7.4], at a density of 1.5 × 106 cells/well.
All media, reagents, and cell strainers were obtained from Sigma-Aldrich (Tres Cantos,
Madrid, Spain), and the culture plates were obtained from Thermo Fisher Scientific (Sant
Cugat del Vallès, Barcelona, Spain). Myoblasts were incubated at 22 ◦C, with a full replace-
ment of the culture medium every day. Myoblasts morphology was monitored regularly
under an inverted microscope (Carl Zeiss, Oberkochen, Germany) and let to develop until
the first myoblast fusion events were visible (around day 8 of culture). The present work
was based on 3 independent cell cultures.

On day 8 of culture, myoblasts were incubated for 12 h in a free AA medium [Earle’s
balanced salt solution 1× (Ref. E7510), 9 mM NaHCO3, 20 mM HEPES, 1.1 g/L NaCl, Vita-
min Mix 1× (Ref. M6895), 1% antibiotic/antimycotic, and 4 g/L D-glucose (Ref. G8270)]
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to reduce gene expression to basal levels. Cells were incubated for additional 24 h in
free AA medium (CTR group), medium with AA (AA group; DMEM, 9 mM NaHCO3,
20 mM HEPES, 1.1 g/L NaCl, and 1% antibiotic/antimycotic), or medium with recom-
binant Igf-1 (Igf-1 group) [free AA medium supplemented with Igf-1 from gilthead sea
bream at 100 ng/mL (Ref. CYT-295, ProSpec, Rehovot, Israel), and 0.1 mg/mL of RIA grade
bovine serum albumin (Ref. A7030, Sigma-Aldrich) as carrier protein]. The treatments
were performed according to the protocol described by Bower and Johnston (2010) [75] and
Garcia de la serrana and Johnston (2013) [108].

4.2. RNA Extraction, Sequencing, and Bioinformatic Analyses

After the treatments, gilthead sea bream myoblasts were washed thrice with PBS
following medium removal. Total RNA was extracted using Trizol (Ref. 15596026, Thermo
Fisher Scientific), followed by chloroform, isopropanol, and ethanol extraction as recom-
mended by the manufacturer. Total RNA was resuspended in RNase-free water, and its
concentration and integrity were estimated by spectrophotometry using Nanodrop 2200TM

(Thermo Fisher Scientific) and a 1% (w/v) agarose gel, respectively.
The generation of DNA libraries and sequencing of mRNAs and miRNAs were per-

formed by LC Sciences (Houston, TX, USA). Transcriptome was obtained through the
NovaSeq 6000 platform (Illumina, San Diego, CA, USA) with 150 base pairs, paired-end,
and 6 GB data per sample (40–50 million reads). microRNAome was obtained through
the HiSeq 4000 platform (Illumina, San Diego, CA, USA) with 50 base pairs, single-end,
and 10 million reads per sample. For transcriptome analysis, adapters and low-quality
reads were removed using an in-house perl script and then mapped against the latest
gilthead sea bream genome available (www.ensembl.org/index.html; accessed on 15 Jan-
uary 2023) using HISAT2 software v.2.2.1 [109]. Transcripts were assembled, followed
by mRNA expression profiling analysis using StringTie v.2.2.0 [110] and expressing the
results as FPKM (fragments per kilobase of exon per million fragments mapped). For
the microRNAome, adapters and low-quality reads were removed using in-house perl
scripts. Subsequently, unique sequences with length in 18–26 nucleotides were mapped to
specific species precursors in miRBase 22.0 (www.mirbase.org, accessed on 18 December
2022) by BLAST search to identify known miRNAs and novel 5p- and 3p- derived miRNAs
candidates. The remaining sequences were mapped to other selected species precursors
(with the exclusion of specific species) in miRBase v.22.1 by BLAST search, and the mapped
pre-miRNAs were further BLASTed against the specific species genomes to determine their
genomic locations.

Gene Ontology (GO) analysis was performed using the STRING online tool against
the zebrafish (Danio rerio) database (https://string-db.org/, accessed on 18 December
2022). Venn diagrams were obtained using plotting software (https://pnnl-comp-mass-
spec.github.io/Venn-Diagram-Plotter/, v.1.6.7458, accessed on 20 July 2023).

Pearson correlation analysis was carried out using RStudio v.1.1.419 [111] to detect
correlations between mRNAs-miRNAs and lncRNAs-miRNAs differentially expressed in
response to the treatments. Sequences’ interactions were predicted using RNAhybrid v.2.2.1
(https://bibiserv.cebitec.uni-bielefeld.de/rnahybrid, accessed on 15 January 2023) [112],
with a minimum free energy (MFE) threshold of <−25 kcal/mol. Possible interactions
between lncRNAs and mRNAs were explored using LncTar software (www.cuilab.cn/
lnctar, accessed on 15 January 2023), with a threshold of normalized binding free energy
(ndG) < −0.10.

4.3. Validation of RNA-Seq Results by qPCR

To validate the expression profiles from the RNA-Seq analysis using qPCR, we se-
lected mRNAs, miRNAs, and lncRNAs that showed significant differences between the
experimental groups in the RNA-Seq analysis. We used samples of the three experimental
conditions (CTR, AA, and Igf-1, explained in Section 4.1) from six independent cell cul-
tures. Total RNA was extracted as previously described (Section 4.2). The qPCR analyses

www.ensembl.org/index.html
www.mirbase.org
https://string-db.org/
https://pnnl-comp-mass-spec.github.io/Venn-Diagram-Plotter/
https://pnnl-comp-mass-spec.github.io/Venn-Diagram-Plotter/
https://bibiserv.cebitec.uni-bielefeld.de/rnahybrid
www.cuilab.cn/lnctar
www.cuilab.cn/lnctar


Int. J. Mol. Sci. 2024, 25, 3894 16 of 21

were carried out following the MIQE guidelines [113] in a CFX384™ Real-Time System
(Bio-Rad, El Prat de Llobregat, Barcelona, Spain). The analysis was performed in tripli-
cate, using for each well: 2.5 µL of iTAQ Universal SYBR® Green Supermix (Ref: 1725125,
Bio-Rad), 1 µL of cDNA, 250 nM (final concentration) of forward and reverse primers and
1.25 µL of DEPC water. The reaction protocol was: 3 min at 95 ◦C, 40 × (10 s at 95 ◦C,
30 s at the annealing temperature of the primers, and fluorescence detection), followed
by an amplicon dissociation analysis. In the case of the miRNAs, we designed primers
to amplify pri-miRNAs sequences, to distinguish between the expression of different par-
alogs that have similar mature sequences. The genes analyzed were igfbp6, cav3, trim63,
acta1, stac3, usp28, myoz1b, cpt1b, wnt4, and two reference genes, rps18 and tomm20b. The
pri-miRNAs were pri-miR-1-2, pri-miR-133a-1, pri-miR-133a-2, pri-miR-133b, pri-miR-29a,
pri-miR-206, pri-miR-221, and pri-miR-222. The lncRNAs were ENSSAUG00010012549, EN-
SSAUG00010001802, ENSSAUG00010004711, and ENSSAUG00010020194. The transcript
abundance was calculated using the Bio-Rad CFX Manager™ 3.1 software, relative to the
geometric mean of the reference genes [114]. Statistical analyses were performed using IBM
SPSS Statistics v. 25 (IBM Corp., Armonk, NY, USA). The normality and homoscedasticity
of the data were checked with a Shapiro–Wilk test and a Levene’s test, respectively. Groups
were compared using one-way ANOVA followed by a Tukey’s post hoc test (significant
differences considered at p-value < 0.05). All raw and processed data from these analyses
and the primers used for the qPCRs are shown in Supplementary File S7. Transcript levels
of genes, pri-miRNAs, and lncRNAs showed concordance between RNA-Seq and qPCR
results, revealing similar expression patterns in both cases.

4.4. Statistics of RNA-Seq Data

Differences in transcription levels between treatments obtained from RNA-Seq data
were biologically relevant when log2-fold change (log2FC) was ≤−1 and ≥1 and the
corrected p-value (False Discovery Rate, FDR) was ≤0.05. In the case of miRNA-Seq data,
only the FDR threshold was considered. For Gene Ontology analysis, differences between
categories were compared against the zebrafish database and considered significant when
FDR < 0.05. All graphs were generated using ggplot2 [115].

5. Conclusions

In summary, both AA and Igf-1 treatments induced the transcription of components
related to myogenesis (proliferation and differentiation), sarcomere formation, and protein
synthesis, but AA appeared to have a greater impact on the transcriptional response of
genes and ncRNAs compared to Igf-1. Some of the miRNAs most regulated by the pro-
growth signals were canonical myomiRs with known roles in myogenic mechanisms, such
as miR-1, miR-133a/b, and miR-206, but also other miRNAs with more unknown functions
in muscle, such as miR-203a/b or miR-122. In contrast, few lncRNAs responded to the
treatments, with most of them showing very low expression, but interestingly, our study
suggests that the lncRNAs act mainly as miRNAs sponges in response to AA and Igf-1.
Furthermore, the results of the correlations and predicted interactions between mRNAs,
miRNAs, and lncRNAs point out the importance and complexity of the network controlling
muscle development and growth in response to pro-growth signals in gilthead sea bream
fast muscle myoblasts. These results will serve as significant resources for future studies
that further investigate the role of ncRNAs in the myogenesis processes of teleost.
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