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Abstract: KH-type splicing regulatory protein (KSRP) is a single-stranded nucleic acid-binding
protein with multiple functions. It is known to bind AU-rich motifs within the 3′-untranslated region
of mRNA species, which in many cases encode dynamically regulated proteins like cytokines. In
the present study, we investigated the role of KSRP for the immunophenotype of macrophages
using bone marrow-derived macrophages (BMDM) from wild-type (WT) and KSRP−/− mice. RNA
sequencing revealed that KSRP−/− BMDM displayed significantly higher mRNA expression levels
of genes involved in inflammatory and immune responses, particularly type I interferon responses,
following LPS stimulation. In line, time kinetics studies revealed increased levels of interferon-γ
(IFN-γ), interleukin (IL)-1β and IL-6 mRNA in KSRP−/− macrophages after 6 h subsequent to LPS
stimulation as compared to WT cultures. At the protein level, KSRP−/− BMDM displayed higher
levels of these cytokines after overnight stimulation. Matching results were observed for primary
peritoneal macrophages of KSRP−/− mice. These showed higher IL-6, tumor necrosis factor-α
(TNF-α), C-X-C motif chemokine 1 (CXCL1) and CC-chemokine ligand 5 (CCL5) protein levels in
response to LPS stimulation than the WT controls. As macrophages play a key role in sepsis, the
in vivo relevance of KSRP deficiency for cytokine/chemokine production was analyzed in an acute
inflammation model. In agreement with our in vitro findings, KSRP-deficient animals showed higher
cytokine production upon LPS administration in comparison to WT mice. Taken together, these
findings demonstrate that KSRP constitutes an important negative regulator of cytokine expression
in macrophages.
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1. Introduction

Macrophages are present in all tissues of the body. When activated by pathogens or in-
flammation, macrophages exert various cytotoxic functions such as phagocytosis and attract
immune cells to the site of inflammation by releasing cytokines and chemokines [1]. These
properties make them a crucial component of the immune system. Activated macrophages
secrete pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin
(IL)-1β, and IL-6, as well as other pro-inflammatory mediators like nitric oxide (NO) and
prostaglandins [2]. Moreover, macrophages serve as antigen-presenting cells and activate
antigen-specific T cells [3].

Gene expression is orchestrated at the transcriptional level by transcription factors
and long non-coding RNAs (lncRNA) that bind to cognate recognition sites within the
gene promoter and enhancer/silencer regions, thereby regulating gene transcription [4]. In
addition, genes which require dynamic regulation in response to stimuli are regulated at the
post-transcriptional level [5]. In this regard, micro(mi)RNAs bind sequence-complementary
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sequence stretches within their target mRNA to limit mRNA stability and translational
efficacy, respectively [6]. In addition to miRNA, RNA-binding proteins (RBP) also exert
post-transcriptional gene regulation [7]. One class of RBP preferably engages AU-rich
elements (ARE), which are mainly located in the 3′ untranslated region (UTR) of mRNA
species [8]. AREs are the most prevalent recruiting motifs for RBP [9] and contain one or
more core pentamers (e.g., AUUUA), often arranged in tandem repeats, and preferably
located in a U-rich region [10]. Generally, AREs are characteristic of mRNAs encoding short-
lived proteins, such as pro-inflammatory cytokines, transcription or growth factors [11].
Upon binding to their target sequences, ARE-RBPs either enhance (e.g., human antigen
R, HuR) or limit (e.g., Tristetraprolin, TTP) mRNA stability and translation efficacy (e.g.,
T-Cell-Restricted Intracellular Antigen-1, TIA-1), respectively [9,12]. By now, an increasing
number of studies have revealed the important role of RBP regarding the regulation of
immune cell phenotypes [13,14].

KSRP (K homology [KH]-type splicing protein) is a ubiquitously expressed single-
stranded nucleic acid-binding protein that has been reported to act as an mRNA stability-
limiting RBP [15]. Additionally, it functions as a transcription factor and a maturation factor
for various miRNA species [12]. So far, little is known about the cell type-specific function
of KSRP in the immune system. In accordance with its central role in ARE-mediated decay
of pro-inflammatory mediators, KSRP-deficient mice displaying a complete knockout
in all tissues have been shown to present stronger anti-viral responses upon infection
accompanied by elevated production of type I interferons [16]. Accordingly, KSRP has been
considered an important negative regulator of inflammatory immune responses. In this
regard, KSRP has been reported to limit cytokine production of activated immune cells,
since it promoted decay of the according mRNA, as observed in cell culture experiments [17]
and when assaying primary cells isolated from KSRP−/− mice [13,18,19]. Further, we
reported an increased production of Th2-associated cytokines by polyclonal stimulated
KSRP-deficient T cells [20].

This study aimed to delineate the role of KSRP as a regulator of the immune pheno-
type of macrophages. We show that KSRP-deficient macrophages are characterized by a
stronger inflammatory response to LPS stimulation in vitro and in vivo, suggesting that
KSRP is an important negative regulator for pro-inflammatory cytokine expression under
disease conditions.

2. Results

To date, little is known about the role of the RNA-binding protein KSRP on the gene
regulation of innate immune cells, such as macrophages. Since KSRP seems to play a crucial
role by regulating the mRNA expression of pro-inflammatory cytokines, we hypothesized
that KSRP-deficient macrophages may show a stronger inflammatory response in response
to LPS stimulation.

2.1. KSRP−/− Mice Displayed Higher mRNA Expression Levels of Stimulation-Induced Cytokines

First, we analyzed bone marrow-derived macrophages (BMDM) under basal condi-
tions and in response to LPS stimulation by flow cytometry. No differences were observed
between WT and KSRP−/− BMDM under basal conditions or in response to LPS stimula-
tion with regard to BMDM cell numbers and activation marker expression (CD80, CD86,
MHCII) (Figure S1). Furthermore, no genotype-dependent differences in metabolism were
found in either condition (Figure S2).

To obtain a broader view on KSRP-mediated transcriptional changes we subjected
BMDM to RNA sequencing. Under basal conditions, KSRP-deficient BMDM were char-
acterized by differential regulation of a total of 142 genes (up: 86; down: 56) compared
to the WT group, the top 10 regulated genes are shown in Figure S3. For instance, the
transcription factor Zfp384 (zinc finger protein 384), limiting cytokine/chemokine gene tran-
scription in macrophages in response to viral infection [21], or Zbtb2 (zinc finger and BTB
domain containing 2) inhibiting NF-κB activation [22] were upregulated in KSRP-deficient
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BMDM (Table S1). To assess the impact of KSRP on gene expression of pre-stimulated
macrophages, BMDMs were treated with LPS as the most potent TLR4 ligand [23]. After
6 h of stimulation, BMDMs lacking KSRP expressed 951 genes to higher and 652 genes
to lower extent compared to the corresponding control group (WT). Figure 1A shows
the top 50 up- or downregulated genes. Interestingly, protein interaction analysis using
STRING Database revealed that the top 15 upregulated genes in KSRP−/− mice (Figure 1B),
are interlinked and contribute to the regulation of innate immune response, particularly
with regard to the cellular response to type I interferons (Figure 1C). Gene set enrichment
analysis (GESA) indicated higher expression of many genes involved in the inflammatory
response in KSRP-deficient BMDM (Figure 1D).
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Figure 1. KSRP deficiency in BMDM results in upregulation of genes involved in inflammatory
response, like IFN-α, IFN-γ, IL-6 and TNF-α signaling. LPS-stimulated BMDMs (WT and KSRP−/−,
each n = 3) were subjected to RNA-seq analysis. (A) Heatmap representation of the top 50 significantly
upregulated (left panel) and significantly downregulated (right panel) genes in WT versus KSRP−/−

BMDM (hierarchical clustering). The color legend denotes the level of gene expression (low: blue;
high: red). (B) Volcano plot of significant (p < 0.1) quantified mRNA species. Significantly regulated
genes (BH-adjusted p < 0.05 and log2 (fold-change) > 2) are given in red. The top 15 genes are named.
(C) Results from analysis using STRING Database with the Top 15 upregulated gene in KSRP−/−

mice. (D) Gene set enrichment plots of significantly regulated pathways (BH-adjusted p < 0.05).
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2.2. KSRP−/− Mice Show Higher Protein Expression of IFN-γ, IL-1β and IL-6 in Response
to Stimulation

Time kinetics studies confirmed higher levels of IFN-γ and IL-6 mRNA in KSRP−/−

versus WT macrophages after 6 h and of IL-1β mRNA after 6 h and 16 h (Figure 2A). In
agreement, KSRP−/− BMDM displayed higher IFN-γ levels after 12 h and 16 h, while IL-1β
and IL-6 showed higher protein levels after 16 h (Figure 2B).
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Figure 2. BMDM of KSRP−/− animals display higher mRNA expression and protein expression of
IFN-γ, IL-1β and IL-6 in response to stimulation. (A) To analyze the mRNA expression of different
immune relevant genes in cells of KSRP−/− or WT animals, BMDM were left untreated or were
stimulated with 1 µg/µL LPS for different time periods (0.5 h, 1 h, 3 h, 6 h and 16 h). Subsequently,
we prepared total RNA by homogenizing the sample in RLT plus lysis buffer and isolated the RNA
using the RNeasy Plus Mini Kit. cDNA was synthesized by applying the iScript kit. Specific mRNA
expression was measured using the qRT-PCR method and normalized to β2M mRNA expression.
Shown are the mean ± SEM of n = 3–4 analyses (** p < 0.01, * p < 0.05; versus untreated WT cells;
two-tailed Mann–Whitney test). (B) To analyze the protein expression of different immune-relevant
genes in cells of KSRP−/− or WT animals, BMDM were left untreated or were stimulated with
1 µg/µL LPS for different time periods (6 h, 8 h, 10 h, 12 h and 16 h). Supernatants of BMDM were
collected and cytokine levels were determined using the Anti-Virus-Response LegendPlex Kit from
BioLegend (San Diego, CA, USA). Shown are the means ± SEM of n = 7–8 analyses (* p < 0.05; versus
untreated cells; two-tailed Mann–Whitney test).
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2.3. KSRP Binds Directly to IL-1β mRNA

To consider whether KSRP directly binds to the mRNAs of genes identified as stronger
upregulated in stimulated KSRP-deficient versus WT BMDM, we used RNA immuno-
precipitation. As KSRP is a multifunctional protein involved in various levels of gene
regulation, this approach allowed us to investigate its role in mRNA regulation. KSRP
directly binds to the mRNA of IL-1β, while the other examined mRNAs (IL-6, IFN-α,
IFN-β, TNF-α, Ifit1, Gpb2) may not exhibit such binding (Figure 3). This indicates that
IL-1b mRNA may directly regulated by KSRP.
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Figure 3. KSRP may regulates IL-1β mRNA stability by direct binding to its mRNA. WT BMDM
were incubated with LPS (1 µg/mL) to induce pro-inflammatory chemo/cytokines for 6 h. After
lysis of the cells, RNAs that bound to KSRP were immunoprecipitated with a specific antibody. To
standardize the RNAs for the subsequent analyses, 1 ng of in vitro transcribed luciferase RNA was
added to each sample. The RNA was purified, transcribed into cDNA and mRNA real time-PCR was
used to determine the mRNA quantity of IL-1β, IL-6, IFN-α, IFN-β, TNF-α, Ifit1, Gbp2 and luciferase
serving as a control for normalization. Shown are the means ± SEM and individual data points for
each animal (n = 2–3 analyses) of the relative mRNA amounts bound to KSRP in relation to IgG
controls (100%) (** p < 0.01; one-sample t-test).

2.4. KSRP−/− Primary Macrophages from the Peritoneum Produce Higher Levels of
Pro-Inflammatory Cytokines in Response to Stimulation

Bollmann et al. observed higher mRNA expression of chemokine (C-X-C motif) ligand
(CXCL)1, inducible nitric oxide synthase and TNF-α in response to stimulation with LPS
in adherent primary KSRP−/− peritoneal cells compared to WT cells [18]. Therefore, we
asked if expression of other (pro-inflammatory) cytokines was affected by KSRP deficiency
as well. Hence, we also assessed primary macrophage-enriched cell suspensions obtained
by peritoneal lavage and analyzed protein production of these cells. Regarding KSRP−/−

peritoneal cells we detected an enhanced production of pro-inflammatory cytokines, such
as CXCL1, CCL5, TNF-α and IL-6 (Figure 4), whereas expression levels of other mediator
remained unaltered.



Int. J. Mol. Sci. 2024, 25, 3884 6 of 13

Int. J. Mol. Sci. 2024, 25, 3884 6 of 14 
 

 

 
Figure 4. Inactivation of the KSRP gene enhances CXCL1, CCL5 (RANTES), TNF-α and IL-6 protein 
expression in murine peritoneal cells. Peritoneal cells were isolated from WT and KSRP−/− mice. Ad-
herent cells (mostly monocytes/macrophages) were used for the experiments. Adherent peritoneal 
cells were incubated with LPS (1 µg/mL) to induce pro-inflammatory chemo/cytokines. After 6 h 
supernatant was used for analysis using the Anti-Virus-Response LegendPlex- Kit from BioLegend. 
Shown are the means ± SEM of n = 6–8 analyses (* p < 0.05; ** p < 0.01 versus untreated cells; two-
tailed Mann–Whitney test). 

2.5. KSRP−/− Display Tendencies to Higher Proinflammatory Cytokine Production in LPS-
Induced Sepsis 

Our results indicate, that KSRP may act as an important negative regulator of inflam-
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acute inflammation model focusing on early KSRP-dependent effects. To this end, mice 
were injected intraperitoneally (i.p.) with LPS at sub-lethal doses to stimulate pro-inflam-
matory cytokine expression [24] (Figure 5A). 12 h after injecting 5 mg/kg LPS i.p., we ob-
tained some effects for IL-1β in KSRP-deficient mice, however below significance. After 
injection of high dose LPS (20 mg/kg), sera analyses revealed a significant increase in IL-
1β production in KSRP-deficient mice compared to WT mice (Figure 5B). A similar trend 
was found for the chemokines CXCL1 and CCL5 in response to the higher LPS dose (Fig-
ure 5B). 

Figure 4. Inactivation of the KSRP gene enhances CXCL1, CCL5 (RANTES), TNF-α and IL-6 protein
expression in murine peritoneal cells. Peritoneal cells were isolated from WT and KSRP−/− mice.
Adherent cells (mostly monocytes/macrophages) were used for the experiments. Adherent peritoneal
cells were incubated with LPS (1 µg/mL) to induce pro-inflammatory chemo/cytokines. After 6 h
supernatant was used for analysis using the Anti-Virus-Response LegendPlex- Kit from BioLegend.
Shown are the means ± SEM of n = 6–8 analyses (* p < 0.05; ** p < 0.01 versus untreated cells;
two-tailed Mann–Whitney test).

2.5. KSRP−/− Display Tendencies to Higher Proinflammatory Cytokine Production in
LPS-Induced Sepsis

Our results indicate, that KSRP may act as an important negative regulator of inflam-
matory responses of macrophages in vitro. Due to the pronounced role of macrophages in
sepsis, we further analyzed the effect of KSRP deficiency in an in vivo LPS-induced acute
inflammation model focusing on early KSRP-dependent effects. To this end, mice were
injected intraperitoneally (i.p.) with LPS at sub-lethal doses to stimulate pro-inflammatory
cytokine expression [24] (Figure 5A). 12 h after injecting 5 mg/kg LPS i.p., we obtained
some effects for IL-1β in KSRP-deficient mice, however below significance. After injection
of high dose LPS (20 mg/kg), sera analyses revealed a significant increase in IL-1β produc-
tion in KSRP-deficient mice compared to WT mice (Figure 5B). A similar trend was found
for the chemokines CXCL1 and CCL5 in response to the higher LPS dose (Figure 5B).
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Figure 5. Inactivation of the KSRP gene increased cytokine production after treatment with 5 or
20 mg/kg LPS. (A) WT or KSRP−/− mice were treated with 5 or 20 mg/kg LPS i.p. for 12h. Created
with BioRender.com. (B) Analysis of different pro-inflammatory cytokines involved in sepsis pro-
gression. Shown are the means ± SEM of n = 4–6 analyses (* p < 0.05 versus WT cytokine expression;
two-tailed Mann–Whitney test).

In summary, these findings demonstrate that a deficiency of the RNA-binding protein
KSRP in macrophages leads to a more rapid and increased production of pro-inflammatory
cytokines in response to LPS stimulation. Therefore, KSRP constitutes an important nega-
tive regulator of cytokine production.

3. Discussion

Macrophages are innate immune cells that reside throughout the body. On the one
hand they exert potent pathogen-killing activity by various mechanisms and on the other
hand act as antigen-presenting cells, thereby inducing antigen-specific T cell responses [25].
To date, several RBPs like TTP, HuR, TIAR have been shown to influence the immunophe-
notype of macrophages [26–29]. By now, the multifunctional RBP KSRP has been identified
as a general negative regulator of inflammatory immune responses by limiting cytokine
production of activated immune cells via promoting decay [17,19,30] or inhibiting transla-
tion [31] of target mRNAs. Both functions are conferred by direct binding of KSRP to ARE
within its target mRNA. However, KSRP may also act in an indirect manner by mediating
the maturation of miRNA species, which in turn inhibit gene expression [32,33]. Due to
the pronounced role of macrophages in innate and adaptive immune responses, we asked
for the role of KSRP in shaping the immunophenotype of primary macrophages. We show
that KSRP limits the inflammatory response of macrophages as evidenced by increased
expression of inflammatory mediators in KSRP-deficient macrophages in response to stim-
ulation in vitro. In line, KSRP−/− mice displayed elevated cytokine production in an acute
inflammation model known to be mediated in large part by activated macrophages.

No major differences in the frequency of macrophages in the spleen and liver of
KSRP−/− versus WT mice under homeostatic conditions were observed. Further, we
noted no genotype-dependent differences in the expression of surface activation mark-
ers of macrophages under basal conditions or in response to LPS stimulation (Figure
S1). Similarly, KSRP deficiency did not affect the glycolytic activity of unstimulated and
stimulated macrophages, respectively (Figure S2). However, RNA sequencing analysis
of KSRP-deficient BMDM under basal conditions showed, e.g., upregulation of Zfp384,
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which limits cytokine responses at the transcriptional level [21] or Zbtb2 (zinc finger and
BTB domain containing 2) inhibiting NF-κB activation [22]. These findings suggest that
KSRP-deficiency under basal conditions may be balanced in part by the upregulation of
other immune response limiting genes. However, this assumption needs to be verified in
further experiments.

RNA sequencing after 6 h of LPS stimulation revealed higher mRNA expression
levels of genes involved in inflammatory responses related to IL-6 or TNF-α signaling in
KSRP-deficient BMDM. Interestingly, the top 15 upregulated genes in KSRP−/− BMDM
are interlinked and contribute to the cellular response of type I interferons. In line, Lin et al.
demonstrated that KSRP is a crucial negative regulator of type I IFN gene expression at
the post-transcriptional level by interacting with the 3′-UTRs of these mRNAs, as shown
for mouse embryonic fibroblasts of KSRP−/− mice [16]. In our study, time kinetics studies
revealed higher mRNA and protein levels of IFN-γ, IL-1β, and IL-6 after LPS stimulation of
KSRP-deficient BMDM. To evaluate our observations, we analyzed also primary peritoneal
cells that are enriched in macrophages. In accordance with our findings on BMDM, LPS
stimulation resulted in a significant upregulation of IL6, TNF-α, CXCL1 (KC) and CCL5
(RANTES) expression in KSRP−/− peritoneal macrophages.

In agreement, previous studies have shown that KSRP regulates the expression of
several pro-inflammatory mediators, including IL-1β [33,34], IL-6 [31,35], CCL5 [33], and
TNF-α [31,34,35]. The results of our IP studies suggest direct binding of KSRP to LPS-
induced IL-1β mRNA in BMDM, while IL-6, TNF-α, IFN-γ, IFN-α and IFN-β mRNAs were
most probably regulated by KSRP in an indirect manner.

As outlined above, KSRP may regulate gene expression both in a direct and in an
indirect manner. For instance, Li et al. observed stabilization of both IL-1β and TNF-
α mRNA transcripts in LPS-stimulated astrocytes from KSRP−/− mice [34]. Showing
binding of KSRP to according mRNAs, suggesting a direct manner of KSRP regulation.
As mentioned, Lin and coworkers already revealed regulation of IFNA4 and IFNB mRNA
stability by KSRP through interaction with the 3′-UTR [16]. Interestingly, Winzen et al.,
identified ~100 target mRNAs of KSRP, including IL-6, IL-8 and cyclooxygenase-2, whose
expression levels were higher in KSRP-deficient cells [35]. However, mRNA degradation
was only detected in 10% of all KSRP targets, which may be explained in part by the
additional function of KSRP to inhibit mRNA translation. Dhamija and colleagues assessed
the polysome profiles of cells with siRNA-mediated KSRP deficiency. Thereby KSRP was
found to interact with the ARE of IL-6 mRNA and mediate its translational silencing [31].

In addition to direct interaction with mRNA resulting in decay or translational inhibi-
tion, KSRP may also regulate gene expression in an indirect manner. KSRP plays a crucial
role in processing of a subset of miRNAs, particularly those containing a GC-rich stem-
loop structure in their immature precursor transcript [36]. Among those are miR-155 [37],
let-7a [38] and miR-129 [39], which exert important functions in the regulation of immune
processes. Ruggiero and colleagues demonstrated miRNA-mediated degradation of IL-1β
and CCL5 mRNA in a mouse macrophage cell line [33]. Also miRNA let-7a was reported
to inhibit IL-6 expression in macrophages [40]. Taken together, KSRP regulates gene expres-
sion on various levels. In the nucleus, it acts as a transcription and splicing factor, while
in the cytoplasm it mediates rapid decay of ARE-containing mRNAs or silences transla-
tion of mRNA. In addition to direct regulation of gene expression via post-transcriptional
mechanisms, KSRP also acts in an indirect manner by promoting the maturation of a
subset of miRNA species, which in turn affect expression of multiple genes. With regard
to our data, these results suggest that KSRP may regulate expression of a given genes in a
direct or indirect manner, depending on the cell type and experimental conditions. Further
studies are necessary to elucidate the mode of KSRP-mediated regulation of its target genes
in macrophages.

Sepsis is a multilayered disturbance of systemic immunologic homeostasis of inflam-
mation and anti-inflammation [41]. In the course of sepsis, there is a systemic release
of pro-inflammatory cytokines [42]. The increased expression of these factors is in part
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due to elevated activity of various transcription factors (e.g., NF-κB, STATs, AP-1) that
confer enhanced gene expression. However, especially pro-inflammatory and immune cell
function-modulating genes are also regulated at the post-transcriptional level by RBP [7].

In agreement with our in vitro findings, we demonstrate that KSRP−/− mice displayed
higher IL-1β levels in sera derived from LPS-treated mice and observed similar effects for
other proinflammatory mediators albeit below statistical significance. This finding suggests
that KSRP contributes to limit the extent of the cytokine storm in macrophages in the course
of sepsis. Likewise, Liu et al. showed that the RBP AUF1 protected animals from endotoxic
shock by reducing the expression of the pro-inflammatory cytokines TNF-α and IL-1β
through mRNA degradation [24]. Similar to KSRP also deficiency of AUF1 under steady
state conditions did not influence mouse development [24].

Our observations suggest that KSRP may be part of an immunological negative
feedback loop limiting immune responses to prevent excessive damages of the host’s
tissues both by direct mRNA binding but also via yet unknown indirect mechanisms.
With regard to therapeutic approaches, KSRP activity could be temporarily enhanced to
attenuate unwanted inflammatory immune responses, including sepsis. In this regard, we
have already shown that resveratrol modulates KSRP mRNA-binding activity and thereby
enhanced mRNA degradation, leading to anti-inflammatory effects [18]. Further studies
are dedicated to elucidate the role of KSRP in this regard.

4. Materials and Methods
4.1. Mice

KSRP+/− mice on C57BL/6 background [16] were bred and maintained in the Central
Animal Facility of the Johannes Gutenberg University Mainz under specific pathogen-
free conditions. KSRP−/− (KO) and KSRP+/+ (WT) animals were obtained by mating
KSRP+/− animals. Genotyping of the animals was performed by polymerase chain reaction
using the following primers: KSRP-wt-for GCGGGGAGAATGTGAAGG, KSRP−/−-for
CTCCGCCTCCTCAGCTTG, and KSRP-wt/−/− -rev GAGGCCCCTGGTTGAAGG. All
animal procedures were performed in accordance with the institutional guidelines and
have been approved by the National Investigation Office of Rhineland-Palatinate (approval
ID: G17-1-061). Mice (8–14 weeks) of both sexes were used throughout all experiments.

4.2. Bone Marrow-Derived Macrophages (BMDM)

Bone marrow cells (4 × 105/mL) were seeded in 12-well cell cluster plates (1 mL)
(Greiner Bio-One, Kremsmünster, Austria) in IMDM-based culture medium containing
5% FCS (PAN-Biotech, Aidenbach, Germany), 2 mM L-glutamine, 100 U/mL penicillin,
100 µg/mL streptomycin, 50 µM ß-mercaptoethanol (all from Sigma-Aldrich, Deisenhofen,
Germany), and supplemented with 10 ng/mL recombinant murine M-CSF (Miltenyi Biotec,
Bergisch Gladbach, Germany). Culture media was replenished every 3 days of culture.
BMDM were subjected to experiments on days 7–9 of culture unless indicated otherwise.

4.3. Isolation of Peritoenal Cells

Peritoneal cells were isolated from WT and KSRP−/− mice using a 27G needle and ice-
cold PBS supplemented with 3% FCS. Afterwards, cells were seeded in 24-well cell cluster
plates (500 µL, 10 × 105/mL) (Greiner Bio-One, Kremsmünster, Austria) in IMDM-base
culture medium (see above) for 3 h at 5% CO2, 37 ◦C. Non-adherent cells were removed
by gentle washing with pre-warmed PBS to enrich adherent monocytes/macrophages.
Replicate wells were treated with LPS (1 µg/mL). After 6 h cell supernatant was collected
and analyzed for cytokine contents (see Section 4.4).

4.4. Cytometric Bead Array

The cytokine secretion of cultivated and pretreated cells as well as cytokine levels in
murine sera were quantified using a multiplex bead-based immunoassay (LEGENDplex
Mouse Anti-Virus Response Panel; 13-plex, BioLegend, San Diego, CA, USA) in accordance
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with manufacturer’s instructions. Samples were measured in an Attune NxT flow cytome-
ter (Thermo Fisher Scientific, Waltham, MA, USA). Data analysis was performed using
LEGENDplex Qognit software (v8.0, BioLegend, San Diego, CA, USA).

4.5. Immunoprecipitation-qRT-PCR Assay

Immunoprecipitation-qRT-PCR assay was performed as described [19] with slight
modifications. WT BMDM (d7) were treated with LPS (1 µg/mL) for 6 h to induce pro-
inflammatory chemokines and cytokines. KSRP/RNA complexes were isolated using
KSRP-specific antibody (pAB anti-KSRP, Novus Biologicals, Centennial, CO, USA) and
a corresponding isotype control antibody (anti-mouse IgG, Sigma-Aldrich, Deisenhofen,
Germany) in parallel reactions. Total RNA was purified using the GeneJET RNA Cleanup
and Concentration Micro Kits (Qiagen, Hilden, Germany), transcribed into cDNA and
qRT-PCR was used to determine quantities of IL-1β, IL-6, IFN-α, IFN-β, TNF-α, Ifit1 and
Gbp2 mRNA.

4.6. Analysis of mRNA Expression in Cells or Tissues of KSRP−/− or WT Animals

To analyze the mRNA expression of different immunorelevant genes in cells of
KSRP−/− or WT animals total RNA was isolated using the RNeasy Plus Mini Kit (Qi-
agen, Hilden, Germany). Total RNA was subjected to RNA sequencing (see Section 4.7)
and real-time PCR (see Section 4.8) For real-time PCR cDNA was synthesized by applying
the iScript kit (Bio-Rad, Munich, Germany).

4.7. RNA-Sequencing and Bioinformatical Analysis

A total of 4 × 105 BMDM of WT and KSRP−/− mice were cultured with LPS
(1 µg/mL) for 6 h. RNA was purified with the RNeasy Plus Mini Kit according to the
manufacturer’s protocol (Qiagen Hilden, Germany). NGS library prep was performed
with Lexogen’s QuantSeq 3′mRNA-Seq Library Prep Kit FWD (Lexogen, Vienna, Austria)
following Lexogen’s standard protocol with modifications for low Input RNA (≤10 ng)
(015UG009V0260). Libraries were prepared with a starting amount of 6.9 ng and am-
plified in 22 PCR cycles. Libraries were profiled in a High Sensitivity DNA chip on a
2100 Bioanalyzer (Agilent technologies, Santa Clara, CA, USA) and quantified using the
Qubit dsDNA HS Assay Kit, in a Qubit Flex Fluorometer (Life technologies, Carlsbad,
CA, USA). All 12 samples were pooled together with 12 samples from another project
in equimolar ratio and sequenced on 1 NextSeq 500 Highoutput Flowcell, SR (Illumina,
Inc, San Diego, CA, USA)for 1 × 85 cycles plus 6 cycles for the index read. RNA-Seq
reads were aligned with STAR aligner (v2.7.3a; [43]) to the GRCm39 genome with the
parameters—outStd SAM—outMultimapperOrder Random—outSAMattributes NH HI AS
nM MD—outFilterMismatchNmax 999—outFilterMismatchNoverReadLmax 0.04. Using
the featureCounts program of subread software (v2.0.0; [44]) the primary alignments were
assigned to exons with default parameters. The GENCODE mouse annotation release
M26 was used in all the steps. Further, with only the uniquely mapped reads differential
expression analysis was performed using the bioconductor release 3.14 ([45]) and DESeq2
(v1.34.0; [46]) where genes showing a Benjamini–Hochberg-adjusted FDR < 0.1 were con-
sidered differentially expressed. Results were illustrated using the R heatmap package.
GraphPad Prism 9 (GraphPad Software Inc., San Diego, CA, USA) was used to create
volcano plots of differentially expressed genes. The gene set enrichment analysis of normal-
ized gene counts was performed using the GSEA 4.2.3 software (standard settings, gene set
database: h.all.v7.5.1 [47,48]). A false discovery rate (FDR) q-value < 0.05 was considered
statistically significant. STRING database (v12) was used to analyze protein-protein inter-
action networks. Transcriptome data have been deposited in the GEO database, accession
number GSE261444.
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4.8. Real-Time PCR

cDNA of differentially pretreated macrophages was used for real-time PCR using
the following primers: IL-1β (5′-GCCCATCCTCTGTGACTCAT-3′, 5′-AGGCCACAGGT
ATTTTGTCG-3′), IL-6 (5′-CCGGAGAGGAGACTTCACAG-3′, 5′-CAGAATTGCCATTGC
ACAAC-3′), IFN-γ (5′-GCTTGCAGCTCTTCCTCAT-3′, 5′-GTCACCATCCTTTTGCCAGT-
3′) and β2-Mikroglobulin (β2M) (5′-CGGCCTGTATGCTATCCAGA-3′, 5′-GGGTGAATT
CAGTGTGAGCC-3′). All primers were obtained from Eurofins Scientific (Luxembourg
City, Luxembourg). Reaction mixtures had a final volume of 20 µL and included 200 ng
cDNA, 70 nM of each primer, and 12.5 µL of 2× primaQUANT Master Mix high ROX
(Steinbrenner Laborsysteme, Wiesenbach, Germany). Each sample was tested in duplicate.
Thermal cycling conditions were 95 ◦C for 10 min, 40 cycles of 95 ◦C for 15 s, and 60 ◦C for
1 min, followed by a melting curve stage of 95 ◦C for 15 s and 60 ◦C for 1 min using an ABI
7300 real-time PCR cycler (Applied Biosystems, Waltham, MA, USA). mRNA expression
was normalized to β2M mRNA expression.

4.9. The LPS-Induced Sepsis Model

WT and KSRP−/− mice were injected with LPS (5 or 20 mg/kg bodyweight). After
12 h, blood samples were collected, centrifuged at 10,000× g for 8 min and sera were used
for cytokine detection (see Section 4.4).

4.10. Statistical Analysis

Statistical analysis was performed using GraphPad Prism Software v9.0 (GraphPad
Software Inc., San Diego, CA, USA). Results were expressed as the mean ± standard error
of the mean (SEM).
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