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Abstract: Endometriosis is a complex gynecological disease that affects more than 10% of women in
their reproductive years. While surgery can provide temporary relief from women’s pain, symptoms
often return in as many as 75% of cases within two years. Previous literature has contributed to
theories about the development of endometriosis; however, the exact pathogenesis and etiology
remain elusive. We conducted a preliminary investigation into the influence of primary endometrial
cells (ECs) on the development and progression of endometriosis. In vitro studies, they were involved
in inducing Lipopolysaccharide (LPS) in rat-isolated primary endometrial cells, which resulted in
increased nuclear factor-kappa B (NF-κB) and vascular endothelial growth factor (VEGF) mRNA gene
expression (quantitative polymerase chain reaction analysis, qPCR) and protein expression (western
blot analysis). Additionally, in vivo studies utilized autogenic and allogeneic transplantations (rat
to rat) to investigate endometriosis-like lesion cyst size, body weight, protein levels (immunohisto-
chemistry), and mRNA gene expression. These studies demonstrated that estrogen upregulates the
gene and protein regulation of cytoskeletal (CK)-18, transforming growth factor-β (TGF-β), VEGF,
and tumor necrosis factor (TNF)-α, particularly in the peritoneum. These findings may influence cell
proliferation, angiogenesis, fibrosis, and inflammation markers. Consequently, this could exacerbate
the occurrence and progression of endometriosis.

Keywords: endometriosis; ECs; LPS; estrogen; NF-κB; VEGF; CK-18; TGF-β; TNF-α

1. Introduction

Endometriosis is a gynecological disorder caused by estrogen-promoted growth of
endometrial cells (ECs) in abnormal locations (ectopic), such as the peritoneum, ovaries,
and rectovaginal septum. It is estimated to affect up to 2–17% of females during their
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reproductive years, leading to significant morbidity [1,2]. The clinical symptoms of en-
dometriosis include chronic pelvic pain, chronic inflammation, dyspareunia, dysmenorrhea,
and infertility, which negatively impact the quality of life, productivity, social interactions,
and emotional well-being of the patients [3]. Epidemiological studies have indicated an
average endometriosis prevalence of 10% in the premenopausal population worldwide [4].
Although surgery offers temporary relief from pain, the symptoms tend to recur in as many
as 75% of affected cases within 2 years [5]. Several factors are involved in the development
and spread of endometriotic lesions. Several factors contribute to the development of
endometriosis, including coelomic metaplasia [6], dysfunctional cellular immunity [7–9],
genetic factors [10], and a multifactorial mode of inheritance involving specific genes and
aberrant environmental factors [11]. However, the exact pathogenesis and etiology of
endometriosis remain elusive. Given its complex nature, it is challenging to attribute the
pathogenesis of endometriosis to a single factor.

The development of endometriosis is significantly influenced by both cellular inflam-
mation and hormonal factors [12–14]. Lipopolysaccharide (LPS), a crucial endotoxin in
the outer membrane of gram-negative bacteria, is remarkably stable, serving as a primary
biological response modifier and regulating various cell–cell adhesion molecules [15,16].
Moreover, LPS triggers specific symptoms and pathologies associated with various dis-
eases, such as the promotion of cellular inflammatory reactions [17,18] and regulation
of cell growth [19,20]. The mRNA and protein expression levels of transforming growth
factor (TGF)-β1 are markedly elevated in LPS-induced rabbits, indicating the initiation
of epithelial–mesenchymal transition, which leads to severe inflammation and sensiti-
zation of endometrial epithelial cells; this process is crucial for fibrotic diseases [21,22].
LPS-induced fibronectin binds to its receptors and facilitates cellular attachment to the
peritoneal mesothelium, particularly when ECs are degraded in the pelvis during menstrua-
tion [16]. Khan et al. reported that LPS derived from Escherichia coli increases colony forma-
tion in menstrual blood. They observed higher endotoxin levels in the menstrual fluid and
peritoneal fluids (PFs) of women with endometriosis than in the controls. Additionally, pro-
tein and mRNA levels of cell proliferation-inducing and pro-inflammatory cytokines, such
as hepatocyte growth factor, vascular endothelial cell growth factor (VEGF), interleukin-6
(IL-6), and tumor necrosis factor-α (TNF-α), in the culture media of macrophages are signif-
icantly higher in the E. coli LPS-treated macrophages than in the untreated macrophages.
Furthermore, levels of these molecules are elevated in women with endometriosis com-
pared with those in control women [23]. LPS levels are also elevated in the retained placenta
cows, with an average of 2.24 × 104 endotoxin units (EU)/mL, compared with those in the
dystocia and healthy postpartum cows [24]. Iba et al. reported that LPS-induced murine
endometriosis-like lesions exhibit an increased percentage of Ki67-positive cells and el-
evated total numbers and sizes of endometrial lesions. Highly expressed LPS-induced
fibronectin facilitates the attachment of cells to the peritoneal mesothelium by binding to
specific receptors, particularly in the degraded functional ECs of the pelvis during men-
struation [16]. mRNA expression levels of VEGF and IL-6 are increased via the nuclear
factor (NF)-κB pathway [18]. Although many studies have indicated the additive effects of
LPS in the pelvic environment of women, the available information for its application in
endometriosis treatment is limited.

Notably, 17β-estradiol (E2) is a crucial steroid hormone in the ovaries. It plays key
roles in the growth and persistence of endometrial tissue and affects immunomodulation,
inflammation, and the pain associated with endometriosis [19,25]. Aberrant estrogen
expression contributes to various gynecological diseases, such as endometriosis [26] and
endometrial cancer [27], by binding to different estrogen receptors (ERs). These conditions
affect many women of reproductive age. Tomio Iwabe et al. revealed that the levels of
TNF-α and IL-6 in PF significantly increased with the scores of active-endometriosis lesions,
surpassing those observed in patients without endometriosis, via a two-step sandwich
enzyme-linked immunosorbent assay. IL-6 levels are elevated in the PF of patients with
active red-colored endometriosis, indicating a correlation with endometriosis-associated
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infertility [28]. Increased production of TGF-β and VEGF promotes inflammation and
enhances endometrial angiogenesis in patients with endometriosis, further contributing to
endometriosis pathogenesis. Furthermore, NF-κB expression is increased in patients with
endometriosis, consistent with reports that NF-κB transcriptional activity is involved in the
onset and progression of endometriosis [29–31].

Concentrations of LPS and E2 vary throughout the menstrual cycle in the pelvis
of women with and without endometriosis [19]. Ethical constraints on the continuous
monitoring of endometriosis development and progression necessitate the establishment of
experimental animal models to understand the molecular mechanisms underlying ectopic
endometriosis. Therefore, in this study, we aimed to investigate the involvement and
action mechanisms of LPS induction in endometriosis by triggering the secretion of various
growth factors and cytokines in isolated primary rat ECs in vitro. Moreover, we explored
the differences between two endometriosis rat models in an in vivo study and compared
them with the findings of the in vitro study.

2. Results
2.1. Characterization of Isolated Primary ECs

To understand the progression and pathology of endometriosis, we isolated primary
ECs from rat uteri, as previously described [32]. Briefly, ECs were isolated via density
gradient centrifugation, revealing a round and small spindle-shaped morphology distinct
from that of the uterine endometrial tissue obtained via enzymatic digestion (Figure 1A).
The specific region of interest was identified based on the forward and side scattering
values in the forward scatter–side scatter dot plot, representing the cell size and granularity,
respectively (Figure 1B). A gate (P1) was established to select the primary pool for single-
cell events. Fluorescence peaks in the histograms of ECs stained with antibodies against
CK-18 and vimentin showed noticeable shifts. These shifts were quantified using flow
cytometry to assess the characteristics of ECs (Figure 1C, red curve). Interestingly, 98% of
the cells were positive for vimentin, whereas only 16% were positive for CK-18.

2.2. Effects of LPS Stimulation on Proliferation, Inflammation, and Fibrosis in Rat ECs In Vitro

We assessed the effects of LPS induction on ECs by determining the expression levels
of key markers of EC proliferation, inflammation, and fibrosis using western blotting and
RT-qPCR analysis (Figure 1D–O). No significant changes were observed in the protein and
mRNA levels of the proliferation-related marker, Ki-67, between the LPS-stimulated ECs
and control ECs (0.6 vs. 0.6; p = 0.63221; 1.0 vs. 1.1; p = 0.7919; Figure 1D,J).

Next, markers associated with fibrosis, such as TGF-β (0.9 vs. 1.0; p = 0.4335; 1.0 vs. 1.1;
p = 0.2872; Figure 1E,K), fibronectin (0.3 vs. 0.3; p = 0.1476; 1.0 vs. 1.3; p = 0.1725;
Figure 1G,M), and vimentin (1.1 vs. 0.9; p = 0.2846; 1.0 vs. 0.9; p = 0.1108; Figure 1H,N), also
showed no significant changes at the protein and mRNA levels. However, in the in vitro
study, LPS significantly increased both the protein and mRNA levels of NF-κB (0.8 vs. 1.4;
p = 0.0374; 1.0 vs. 1.9; p < 0.0001; Figure 1F,L) and VEGF (0.6 vs. 1.6; p = 0.0364; 1.0 vs. 1.5;
p = 0.0006; Figure 1I,O) compared with those in the control group. Although LPS stimu-
lation did not affect the proliferation and fibrosis of rat ECs, it promoted inflammation,
indicating its potential association with the development of endometriosis symptoms.

2.3. Characteristics and Size of Lesions in the Peritoneal Cavity and Peritoneum of the Rat
Endometriosis Models

After observing the cellular inflammatory responses in LPS-induced ECs in vitro, we
further investigated whether estrogen influences the molecular and biological mechanisms
in rats with endometriosis in vivo via injection of minced uterine tissue and suturing of
endometrial fragments. Macroscopic images of endometriotic lesions were implanted
into SD rats using an established surgical procedure (Figures 2 and 3). The recipient
mice were euthanized four weeks after uterine fragment transplantation and estrogen
stimulation, and the intraperitoneal cavity was examined. Cyst formation in endometriosis-
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like lesions in the peritoneal cavity was confirmed in all rats receiving the uterine fragments.
The fluid in the cysts appeared transparent and slightly yellowish (indicated by black
circles) compared with that in the control group (Figure 2B). Additionally, the induction of
endometriosis-like lesions in the peritoneum of rats by uterine fragment suturing led to
severe adhesion and enlargement of the cystic lesions (Figure 3B,C). The mean surface area
of the cyst in the endometriosis-like lesion group was approximately 45.1 mm2, significantly
larger than 13.8 mm2 in the control group (on day 28 after estrogen injection; p < 0.0001;
Figure 3D). However, the mean surface area of the cyst within the peritoneal cavity in the
endometriosis-like lesion group was not significantly different from that in the control
group (after day 28 of estrogen injection; p = 0.0508; Figure 2D). These findings suggest
that estrogen promotes the progression of ectopic endometriosis lesions. Moreover, cyst
formation is more prominent in the peritoneum than in the peritoneal cavity in ectopic
endometriosis-like lesion rat models.
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Figure 1. In vitro studies to isolate primary endometrial cells (ECs) and determine the protein
and mRNA expression levels in lipopolysaccharide (LPS)-induced rat primary ECs and control
ECs. (A) Images of rat primary ECs captured seven days after isolation, exhibiting a diameter of
100 µm. (B,C) Flow cytometry analysis revealed representative histograms of EC markers, indicating
the percentages of positive staining for CK−18 and vimentin. Supernatants were collected from
primary ECs (3 × 103) for western blotting and real-time polymerase chain reaction (PCR) analysis to
determine the expression levels of Ki−67 (D,J), transforming growth factor (TGF)-β (E,K), nuclear
factor (NF)-κB (F,L), fibronectin (G,M), vimentin (H,N), and vascular endothelial cell growth factor
(VEGF) (I,O) in rat primary ECs after 48 h of LPS stimulation. Bar graphs represent the standard
error of the mean (SE) of 3–6 samples pooled from the experiment. * p < 0.05, LPS-induced ECs vs.
control ECs. TGF-β, transforming growth factor-β; NF-κB, nuclear factor-kappa B; VEGF, vascular
endothelial growth factor. Unpaired, two-tailed Student t tests were used to evaluate the statistical
differences between (LPS)-induced rat primary ECs and control ECs.
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Figure 2. Investigation and characterization of the peritoneal cavity in the endometriosis-like lesion rat
model. (A) A schematic diagram of the experimental setup to establish a rat model with endometriosis
in the peritoneal cavity. (B) Representative images of the endometriotic tissues in the peritoneal
cavity were recorded before the sacrifice. The upper panel displays the normal peritoneal cavity of a
control rat. The lower panel exhibits the presence of endometriosis-like lesions and adhesion of the
gastrointestinal tract. The endometriosis-like lesions are indicated by black circles. (C) Comparison
of the number and size of endometriosis-like lesions on the right side with those on the left side of
the control group. (D) Comparison of the cyst size of endometriosis-like lesions in the peritoneal
cavity with that in the normal control group in vivo. The data are expressed as the mean ± SE
of 7–13 samples pooled from the experiments. Unpaired, two-tailed Student t tests were used to
evaluate the statistical differences between ectopic ECs in the peritoneal cavity of the endometriosis
group compared with those in the control group.

2.4. Effect of Estradiol Solution on the Body Weight of Ectopic Endometriosis-like Lesion Rat Model

Next, we determined the safe dose of estradiol solution in vivo in rats with ectopic
endometriosis-like conditions. As presented in Table 1, the baseline body weights in the
control group were 215.5 ± 6.3 and 227.3 ± 5.8 g. Baseline body weights within the
peritoneal cavity and on the peritoneum were 221.6 ± 2.3 and 236.1 ± 3.3 g on day 0,
respectively. No significant changes in body weight were observed after the estrogen
injection. The control and ectopic endometriosis groups exhibited weights of 206.4 ± 8.2
and 197.3 ± 1.9 g on day 7 (p = 0.1244), 215.0 ± 7.3 and 204.4 ± 2.2 g on day 14 (p = 0.0949),
and 225.7 ± 11.2 and 213.6 ± 4.0 g on day 21 (p = 0.2209), and 226.4 ± 14.3 and 207.7 ± 2.0 g
on day 28 (p = 0.0709), respectively, within the peritoneal cavity. In the other model of
ectopic endometriosis, the control and ectopic endometriosis groups exhibited weights of
222.7 ± 8.8 and 231.6 ± 3.7 g on day 7 (p = 0.3147), 238.6 ± 9.0 and 242.0 ± 3.9 g on day 14
(p = 0.6971), and 252.1 ± 10.9 and 252.4 ± 5.0 g on day 21 (p = 0.9782), and 261.5 ± 11.5 and
257.2 ± 5.4 g on day 28 (p = 0.7139), respectively, on the peritoneum. Overall, the dosage of
estradiol solution used for the development of the two endometriosis-like lesion models
did not have any impact on their body weights.
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Figure 3. Establishment, characterization, and analysis of the peritoneum in an ectopic endometriosis-
like lesion rat model. (A) A schematic diagram illustrates the experimental setup used to establish a rat
model with ectopic endometriosis in the peritoneum. (B) Representative images of the endometriotic
tissues in the peritoneum were recorded before the sacrifice. The upper panel shows the normal
peritoneum of a control rat, and the lower panel indicates the presence of endometriosis-like lesions
and adhesions in the peritoneum. (The endometriosis-like lesions are highlighted by black circles.)
(C) Comparison of the number and size of endometriosis-like lesions on the right side with those
on the left side of the control group. (D) Comparison of the cyst size of endometriosis-like lesions
in the peritoneum compared with that in the normal control group. The data are expressed as the
mean ± SE of 16–26 samples pooled from the experiments. Unpaired, two-tailed Student t tests
were used to evaluate the statistical differences between ectopic ECs in the peritoneal cavity of the
endometriosis group compared with those in the control group. * p < 0.05 was significant compared
with the control group.

Table 1. Estradiol solution does not exert any discernible effects on the body weights (g) of the two
ectopic endometriosis-like lesion rat models.

Control a
Ectopic Endometrial

Lesion in the Peritoneal
Cavity (Procedure 1)

p Value Control a
Ectopic Endometrial

Lesion in the Peritoneum
(Procedure 2)

p Value

Day 0 215.5 ± 6.3 221.6 ± 2.3 0.2641 227.3 ± 5.8 236.1 ± 3.3 0.2382
Day 7 206.4 ± 8.2 197.3 ± 1.9 0.1244 222.7 ± 8.8 231.6 ± 3.7 0.3147

Day 14 215.0 ± 7.3 204.4 ± 2.2 0.0949 238.6 ± 9.0 242.0 ± 3.9 0.6971
Day 21 225.7 ± 11.2 213.6 ± 4.0 0.2209 252.1 ± 10.9 252.4 ± 5.0 0.9782
Day 28 226.4 ± 14.3 207.7 ± 2.0 0.0709 261.5 ± 11.5 257.2 ± 5.4 0.7139

Notes: a Control, subcutaneous injection with normal saline. The data are expressed as the mean ± SE of
3–14 samples pooled from the experiments. Unpaired, two-tailed Student t tests were used to evaluate the
statistical differences between the estrogen-injected endometriosis and control groups.

2.5. IHC Evaluation of Endometriotic Lesions in Two Ectopic Endometriosis-like Lesion Rat Models

Next, we analyzed ectopic endometriotic tissues to determine the effects of estrogen on
rats with endometriosis by using IHC staining. Specifically, we examined the intensity of
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CK-18, an epithelial marker commonly used in endometriosis studies (Figures 4A and 5A),
and quantified the cells stained with epithelial marker CK-18 in both the peritoneal cav-
ity and peritoneum (Figures 4B and 5B). Our investigation revealed an approximately
3-fold increase in the immunoexpression staining of CK-18 in the peritoneum of the ec-
topic endometrial lesion group compared with that in the control group (16.7% vs. 50.1%;
p = 0.0303; see Figure 5A,B). However, CK-18 levels in the peritoneal cavity of the endome-
trial lesion group were not significantly different from those in the control group (4.0 vs.
3.1%; p = 0.2911; see Figure 4A,B). Then, expression levels of protein markers, VEGF and
TGF-β, were assessed in the peritoneal cavity (Figure 4C,E) and in the peritoneum in
the ectopic endometrial lesion (Figure 5C,E). The quantification results demonstrated an
approximately 2-fold increase in the expression of VEGF in the ectopic endometrium within
the peritoneal cavity and an approximately 1.7-fold increase in the peritoneum compared
with those in the control group and an approximately 1.7-fold increase in the peritoneum
compared with those in the control group. Furthermore, the protein expression of VEGF
was even higher in endometrial lesions on the peritoneum than in the peritoneal cavity
(1.5% vs. 3.3%; p = 0.0493 and 16.1% vs. 26.9%; p = 0.0212; Figures 4D and 5D). A similar
trend was observed in the expression of TGF-β in the peritoneal cavity and peritoneum
(4.1% vs. 11.6%; p = 0.0010 and 18.2% vs. 35.7%; p = 0.0302; Figures 4F and 5F). Next, we
examined the intensity of TNF-α, a highly potent pro-inflammatory cytokine, in the two ec-
topic endometrial lesions (Figures 4G and 5G) and quantified the cells stained with TNF-α
in both the peritoneal cavity and peritoneum (Figures 4H and 5H). TNF-α IHC staining
intensity showed a significant increase of approximately 3-fold within the peritoneal cavity
in the ectopic endometrial lesion group compared with that in the control group (1.0% vs.
2.9%; p = 0.0004; Figure 4H). This trend was also observed as an approximately 2.2-fold
increase in the peritoneum of the ectopic endometrial lesion group, which exhibited a 17.4%
positive TNF-α expression compared with the 7.9% (p = 0.0387) observed in the control
group (Figure 5H).

2.6. Effects of Estrogen on Cell Proliferation, Angiogenesis, Fibrosis, and Inflammation-Associated
Genes in the Ectopic Endometriosis-like Lesion Rat Models

Next, we investigated the potential mechanisms underlying ectopic endometriosis.
We performed uterine tissue mincing and endometrial fragment suturing, followed by
estrogen injection, into rat models of endometriosis. As depicted in Figure 6, we evaluated
the expression levels of genes associated with proliferation, fibrosis, angiogenesis, and
inflammation. CK-18 levels exhibited a significant increase in both the peritoneal cavity
and peritoneum of the ectopic endometrial lesion group, ranging from approximately
2-fold (1.0 vs. 2.3; p = 0.0059) to 3-fold (1.2 vs. 3.4; p = 0.0082) compared with those in the
control group (Figure 6A,B). Gene expression levels of VEGF resulted in approximately
a 2-fold increase (1.0 vs. 2.1; p = 0.0009; Figure 6C) in the peritoneal cavity and a 5-fold
increase (1.2 vs. 6.1; p < 0.0001; Figure 6D) in the peritoneum compared with those in
the control group. Similarly, gene expression levels of TGF-β were notably elevated
following uterine tissue mincing, resulting in approximately a 2-fold increase (1.0 vs. 1.5;
p = 0.0422; Figure 6E) in the peritoneal cavity. Moreover, suturing of the endometrial
fragments led to substantial increases, with a 3-fold rise (1.1 vs. 2.8; p = 0.0243; Figure 6F) in
levels in the peritoneum of the ectopic endometrial lesion. The gene expression of TNF-α
showed approximately a 4-fold increase in the peritoneal cavity-endometriosis rat lesion
models and approximately a 142-fold increase in the peritoneum-ectopic endometriosis
rat lesion models compared with those in the control group (1.0 vs. 4.2; p < 0.0001; 1.0
vs. 141.9; p = 0.0008; Figure 6G and 6H, respectively). The mRNA levels of NF-kB were
approximately 1-fold (1.0 vs. 1.4; p = 0.0091) in the peritoneal cavity-endometrial rat
lesion model (Figure 6I), and they significantly increased approximately 20-fold (1.0 vs.
20.9; p < 0.0001) in the peritoneum-endometrial rat lesion model (Figure 6J). However, the
IL-6 levels exhibited different trends between the peritoneal cavity and the peritoneum,
respectively. The mRNA expression of IL-6 was significantly upregulated (211-fold, 1.5 vs.
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317.2; p < 0.0001; Figure 6L) in the peritoneum after estrogen injection compared with those
in the control group. In contrast, IL-6 levels in the peritoneal cavity were not significantly
different (1.0 vs. 1.2; p = 0.0561; Figure 6K) between the control and ectopic endometriosis
groups. Interestingly, all of the gene expression of CK-18, VEGF, TGF-β, TNF-α, NF-κB, and
IL-6 in the endometrial lesions is significantly higher in the peritoneum compared with the
peritoneal cavity in these two models.
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Figure 4. Immunohistochemical evaluation of the ectopic endometrium of a rat model of endometrio-
sis in the peritoneal cavity. (A,C,E,G) Immunohistochemical analysis of cytokeratin (CK)-18, VEGF,
TGF-β, and tumor necrosis factor (TNF)-α in the endometrium of the control rat (left) and ectopic
endometrial tissues (right) day 28 post-surgery (brown staining). The black circle indicates the
protein-positive signaling for the primary antibody (bar: 100 µm). (B,D,F,H) Analysis of CK-18,
VEGF, TGF-β, and TNF-α-positive areas based on immunohistochemistry results. Data are expressed
as the mean ± SE. * p < 0.05 for Student t tests (unpaired, two-tailed). (n ≥ 3) to evaluate the statistical
differences between the estrogen-injected endometriosis and control groups. CK-18, cytokeratin 18;
VEGF, vascular endothelial growth factor; TGF-β, transforming growth factor β; TNF-α, tumor
necrosis factor-α.
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Figure 5. (A,C,E,G) Immunohistochemical analysis of CK-18, VEGF, TGF-β, and TNF-α expression
levels in immunohistochemically stained ectopic endometrial lesions in the peritoneum on day
28 after estrogen injection. Black arrows indicate the protein-positive expression for the primary
antibody (bar: 50–200 µm). (B,D,F,H) Immunohistochemical staining intensity of CK-18, VEGF,
TGF-β, and TNF-α-positive areas based on immunohistochemistry results. Data are expressed as
the mean ± SE. * p < 0.05 for Student t tests (unpaired, two-tailed). (n ≥ 3) difference was significant
compared with the control group. CK-18, cytokeratin 18; VEGF, vascular endothelial growth factor;
TGF-β, transforming growth factor β; TNF-α, tumor necrosis factor-α.
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Figure 6. Expression levels of CK-18, VEGF, TGF-β, TNF-α, NF-κB, and IL-6 in the ectopic endometrial
lesions of the two rat models of endometriosis. Panels illustrate the mRNA levels of CK-18 (A,B),
VEGF (C,D), TGF-β (E,F), TNF-α (G,H), NF-κB (I,J), and IL-6 (K,L) in the ectopic endometrial lesions
of the peritoneal cavity and peritoneum compared with those in the control group on day 28 after
estrogen injection. All values were normalized to β-actin. Data are expressed as the mean ± SE.
* p < 0.05 for Student t tests (unpaired, two-tailed). (n ≥ 3) to evaluate the statistical differences
between the estrogen-injected endometriosis and control groups. CK-18: cytokeratin 18; VEGF:
vascular endothelial growth factor; TGF-β: transforming growth factor β; TNF-α: tumor necrosis
factor-α; NF-κB: nuclear factor-kappa B; IL-6: interleukin-6.

3. Discussion

In this study, we conducted a preliminary investigation of the effects of ECs on the
development and progression of endometriosis. LPS induction of rat-isolated primary ECs
was performed to investigate the effects on cytokine gene and protein expression levels
in vitro. In vivo studies involved autogenic and allogeneic transplantation (from rat to
rat) in SD rat models. We created, modified, and compared two rat models simulating
ectopic endometriosis and assessed them via transplantation onto the anterior abdominal
wall and mesenteric layer to differentiate between rat allografts and autografts. To the
best of our knowledge, this study is the first to compare the cyst size of endometriosis-like
lesions, body weight, and protein and gene expression levels in the peritoneal cavity and
peritoneum between the two rat models and normal controls. Endometriosis is clinically
characterized by the presence of endometrial tissue outside the uterine cavity. It involves
the aberrant growth and development of the endometrial gland and stroma-associated
tissues outside the uterus, indicating its ectopic location. Ectopic endometriotic lesions
are occasionally found in other organs or tissues of the body, including the pleural cavity,
kidneys, liver, bladder, lungs, gluteal muscles, and brain [33]. The etiology of endometriosis
can be explained by metaplasia [34], transplantation [35], or induction [36]. However, these
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mechanisms do not sufficiently explain the diverse clinical manifestations of endometriosis,
given the complexity of the disease and the variable expression, growth, and development
of lesions leading to severe disease. Additionally, these mechanisms fail to account for the
occurrence of endometriosis in prepubertal girls or newborns.

Various genetic [37–39] and immunological factors [40–44], steroid hormones [45–47],
intrinsic abnormalities of the endometrium [48–51], and environmental factors [52–55]
collectively influence the development of endometriosis in women. Studies have sug-
gested correlations between endometriosis, chronic inflammation, and cyclic pelvic pain in
reproductive-age women [56,57]. In deep endometriosis, pain arises due to the invasion
and infiltration of ECs and pro-inflammatory factors into the nerve fibers. These phe-
nomena trigger a disruption in nociceptive modulation, intensifying the neuronal signal
toward the somatosensory cerebral cortex [58]. However, the role of inflammasomes in
the pathogenesis of endometriosis and the molecular mechanisms underlying the roles
of sex hormones in endometriosis-associated pain remain unclear. Etiological studies
have reported that infection of the female genital tract by gram-negative bacteria, such as
E. coli [23,59], Prevotella sp. [60], Fusobacterium necrophorum [61,62], Trueprella pyogenes [63],
and various anaerobic species [64], is a significant factor contributing to uterine infection
and the initiation of immune responses associated with endometriosis, early abortion,
and infertility [65]. The menstrual blood of women with endometriosis exhibits a higher
E. coli contamination level than that of control women. This contamination is related to the
elevated endotoxin levels in both menstrual fluid and PFs [23]. LPS acts as an initial inflam-
matory mediator derived from bacterial endotoxins and subsequently stimulates immune
cells to produce secondary inflammatory mediators, such as cytokines and chemokines.
Harada et al. demonstrated that the expression of TNF-α is enhanced in a dose- and
time-dependent manner via the activation of NF-κB in E. coli-derived LPS (10 ng/mL)-
stimulated endometriotic stromal cells in the ovaries of patients with endometriosis [20].
Additionally, intraperitoneal injection of LPS (50 µg/body) increased the mRNA expression
of VEGF and IL-6 in mice with surgically induced endometriosis-like lesions via the NF-κB
pathway [18]. The transcription factor NF-κB plays a crucial role in regulating innate immu-
nity and inflammation in response to bacteria-derived LPS [66]. In endometriotic lesions,
NF-κB is found to be overactive, contributing to the onset, progression, and recurrence
of endometriosis. Moreover, NF-κB is known to trigger the production of various pro-
inflammatory gene-related chemokines and cytokines, such as TNF-α, IL-6, and IL-8 [67,68].
Many studies have shown that NF-κB modulates inflammation in endometriosis in en-
dometriotic cell line cultures [69,70], endometriotic epithelial cells, and stromal cells from
ovarian endometriotic cysts in vitro [71–74], animal endometriosis models [75,76], and
peritoneal endometriotic implants and PFs in vivo [77,78]. Additionally, the p50 and p65
subunits of NF-κB are expressed in human endometrial stromal and epithelial cells [79,80],
and they modulate the transcription of numerous genes involved in the regulation of
innate immunity, inflammatory response, and cell survival [20,81,82]. Yukihiro et al. re-
ported that the intraperitoneal injection of exogenous LPS (2 mg/kg) twice weekly for four
weeks significantly enhanced VEGF and IL-6 mRNA levels and increased the percentage
of Ki67-positive endometrial gland epithelia and stromal cells in endometriosis-like im-
plants [18]. VEGF has been verified as a regulator of angiogenesis and neovascularization
in women with endometriosis [83–85], which are prerequisites for the development of
endometriosis [86]. LPS increases VEGF production and promotes angiogenesis in human
dental pulp cells through the phosphoinositide 3-kinase, p38, extracellular signal-regulated
kinase, c-Jun N-terminal kinase, and NF-κB pathways [87]. These findings suggest that
LPS derived from gram-negative bacteria may directly contribute to the inflammation
and angiogenesis of endometriosis by influencing the regulation of NF-κB and VEGF in
ECs in our in vitro study, although our results showed that Ki-67, TGF-β, fibronectin, and
vimentin exhibited no significant changes at both the mRNA and protein levels.

Ki-67 functions as a proliferation marker that specifically targets nuclear proteins
expressed exclusively in proliferating cells. Moreover, Ki-67 is expressed in the glandular
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epithelial cells of the endometrium, with a noticeable presence in the stroma of endometri-
otic cysts [88]. Nguyen et al. reported a slightly increased median labeling index for
Ki-67 in both epithelial and stromal cells of endometriotic cysts in the clinicopathological
data of patients with this condition; however, this was not significant compared with the
therapeutic group [89]. Vimentin is a marker of endometrial stromal cells and plays a
role in coordinating fibroblast proliferation and keratinocyte differentiation during wound
healing [90]. Additionally, fibroblasts have been identified as crucial etiological factors
in endometriosis [91]. TGF-β serves as a potent growth factor and monocyte chemoat-
tractant with diverse biological functions [92]. It regulates various cellular processes
crucial for endometriosis lesion development, including cell adhesion [93], invasion [94],
inflammation [95,96], fibrosis [97], and angiogenesis [98]. LPS significantly increased the
mRNA and protein expression of TGF-β and VEGF in ectopic endometrial stromal cells
isolated from patients with adenomyosis, a specific type of endometriosis. This suggests
that LPS induces the inflammatory, proliferative, and invasive growth progression of
adenomyosis [99]. Resveratrol, a nonflavonoid polyphenol, has been reported to inhibit
NF-κB to regulate the expression of several genes and cytokines, such as the profibrogenic
factor TGF-β [100]. Fibronectin, a cell–cell adhesion molecule, is highly expressed in both
glands and stromal cells. Khaleque et al. reported that the LPS-induced overexpression of
fibronectin facilitates cellular attachment to the peritoneal mesothelium after binding to
specific receptors. This phenomenon occurs when degraded functional ECs appear in the
pelvis during the menstrual period [16]. Importantly, LPS-associated molecular patterns
are recognized by the pattern recognition receptors (PRRs) in the female reproductive tract.
These receptors are expressed in various mammalian cells, including macrophages, den-
dritic cells, neutrophils, natural killer cells, and epithelial cells of the innate immune system.
Toll-like receptors are a group of PRRs [101–103]. In our in vitro study, LPS stimulation did
not affect EC proliferation or fibrosis but promoted inflammation in ECs. This suggests a
direct role of LPS stimulation in mediating inflammation and angiogenesis in isolated rat
primary ECs. However, these results do not indicate the specific cell type involved in the
regulation of molecular mechanisms in endometriosis.

To better understand the development and progression of endometriosis in vivo and
better mimic patients with endometriosis in a clinical setting, we developed and modified
two ectopic endometriosis-like lesion rat models following previously reported method-
ologies. Owing to the absence of uterine shedding (menses) in rats, the initiation of
uterine remodeling to prevent retrograde menstruation cannot fully replicate the actual en-
dometriosis phenomenon observed in human clinical settings. Two methods are commonly
employed for this purpose. The first involves pooling individual endometrial-minced
tissues from a donor dispersed into the peritoneal cavity of a recipient through intraperi-
toneal, which has demonstrated increased macrophage recruitment and production of
inflammatory cytokines [104,105]. The second method, as indicated in the existing lit-
erature, frequently involves inducing endometriosis in mice through direct suturing of
organized endometrial fragments or artificially decidualized endometrial tissue into the
peritoneal cavity or peritoneum [106–108]. Numerous rodent and non-human primate
studies have established that endometrial tissue fragments and non-dissociated epithelia,
stroma, and glands can initiate endometriosis, which resembles the process of retrograde
menstruation [109–111]. Although these two models utilize estrogen injections, there is
still a lack of comparative research evaluating the severity of endometriosis in these rat
models. Additionally, there is limited discussion regarding the similarities or differences in
the molecular mechanisms between the two.

Estrogen is a causative factor in endometriosis. Its levels are elevated in the menstrual
blood of women with endometriosis [112,113], suggesting that estrogen is formed locally
in the endometrium of patients with endometriosis [114]. Several estrogen-metabolizing
enzymes, such as aromatase and 17β-hydroxysteroid dehydrogenase-1, 2, 5, 7, and 12, are
aberrantly expressed, leading to high estrogen biosynthesis and low estrogen inactiva-
tion. This aberration results in excess local estrogen in the ectopic endometrium, causing
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proliferation of the ectopic endometrium and affecting gene and protein expression in a
paracrine manner within the local microenvironment of the ectopic endometrium [4,115].
These changes contribute to the development of different types of endometriosis, includ-
ing ovarian, peritoneal, and deep infiltrating endometriosis [113,116–121]. In addition
to the impact of estrogen and its related enzymes on the progression of endometriosis,
the levels of ERα and ERβ are affected in the ectopic endometrium of women with en-
dometriosis [122,123]. ERα and ERβ levels exhibit opposite trends and perform antagonistic
functions in endometriotic tissues [112,122,124]. The ERα gene is necessary for normal
uterine and ectopic lesion development in ERα and ERβ knockout mice [125]. The ERβ
gene plays a role in modulating the inflammasome and apoptosis complexes in the patho-
genesis of endometriosis [124,126]. Additionally, peritoneal macrophages in women with
endometriosis exhibit an overexpression of both ERα and ERβ [127], along with elevated
levels of inflammatory cytokines, including VEGF, IL-6, and TNF-α [128].

Here, estrogen injections did not have significant effects on the body weights of the
two endometriosis-like lesion rat models (Table 1). However, they did lead to an increase
in the cyst size within endometriosis-like lesions, particularly in the peritoneum, in an
ectopic endometriosis-like lesion rat model (Figure 3). This suggests that the estrogen
dose is safe and may potentially contribute to the study of the molecular mechanisms
of ectopic endometriosis following its characterization. In our subsequent analysis, we
employed immunohistochemistry procedures to assess CK-18, an epithelial cell marker,
to confirm their endometrial characterization. CK-18 is a recognized and valuable marker
for endometriosis studies [129]. In our study, the protein expression of the CK-18-positive
area and the mRNA expression of CK-18 consistently increased in the endometriosis group
compared with the control group in the peritoneum, as depicted in Figures 5B and 6B.
However, in the other endometriosis model where uterine fragments were dispersed within
the peritoneal cavity, the investigation revealed that the protein expression in the CK-18-
positive area remained unaltered, while there was an increase in the mRNA expression of
CK-18 between the endometriosis and control groups (Figures 4B and 6A). This implies
that estrogen plays a role in promoting the regeneration of endometrial epithelial cells
identified by CK-18 in endometriotic lesions in the peritoneum through suturing. More-
over, the peritoneal symptoms exhibited by the endometriosis group were stronger than
the peritoneal cavity symptoms. However, it is important to note that the endometriosis
group within the peritoneal cavity may engage in alternative signaling pathways for the
regeneration of ECs other than CK-18. We examined VEGF, recognized as the most potent
angiogenic factor, using immunohistochemistry and qPCR analysis to compare its levels
between the two rat ectopic endometriosis models. We have investigated that the protein
expression of the VEGF-positive area and the mRNA expression of VEGF increased in the
endometriosis group compared with the control group within the peritoneal cavity, as
depicted in Figures 4D and 6C. Similarly, trends were observed in the protein expression
of the VEGF-positive area and the mRNA expression of VEGF in the peritoneum, as de-
picted in Figures 5D and 6D. Li et al. suggest that VEGF-C is released by pro-inflammatory
cytokine-stimulated endometriotic stromal cells. This upregulation contributes to enhanced
lymphatic vessel infiltration into the endometriotic lesions, thereby promoting increased
lymphangiogenesis. This process is a crucial modulator of endometriosis progression by
stimulating lymphangiogenesis [106]. RNA levels of VEGF are elevated in the normal
endometrium during the secretory phase of the menstrual cycle [130,131]. Furthermore,
estradiol upregulates VEGF gene expression in normal human endometrial tissues [131], en-
dometrial carcinoma cell lines [132], and rodent uteri in vivo [133]. Therefore, angiogenesis
is crucial for the growth and survival of endometriotic lesions.

TGF-β levels are notably elevated in the PF, serum, ectopic endometrium, and peri-
toneum of women with endometriosis compared with those without endometriosis. In-
creased levels of TGF-β significantly contribute to the progression of endometriosis [134].
Our study indicated that the protein expression of the TGF-β-positive area and the mRNA
levels of TGF-β increased in the endometriosis group compared with the control group
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within the peritoneal cavity, as depicted in Figures 4F and 6E. Similarly, trends were ob-
served in the protein expression of the TGF-β-positive area and the mRNA expression of
TGF-β in the peritoneum, as depicted in Figures 5F and 6F. Elevated estradiol levels lead to
the activation of peritoneal macrophages and subsequent inflammation in the abdominal
cavity [135]. These results suggest estrogen may induce ECs to participate in fibrosis and/or
angiogenesis by increasing the mRNA and protein expression levels of TGF-β.

TNF-α is produced by neutrophils, activated macrophages, lymphocytes, and several
non-hematopoietic cells. Its major function is to initiate the factors associated with inflam-
matory responses and cytokine cascades [44]. TNF-α levels are elevated in the PFs of both
patients and rat models of endometriosis [136–138]. In this study, both the TNF-α positive
area and mRNA levels of TNF-α were elevated in the endometriosis group compared with
those in the control group. These results revealed that not only the protein expression
of TNF-α increased in the endometriotic lesions within the peritoneum but also in the
peritoneal cavity (Figure 4G,H and Figure 5G,H). Additionally, the endometriotic lesions
within the peritoneum exhibited stronger staining intensity than those within the peritoneal
cavity. We further investigated whether the elevation in TNF-α levels is accompanied by
the regulation of upstream transcription factors. NF-κB, a transcription factor, plays crucial
roles in the immune and inflammatory responses, modulating cell proliferation, apopto-
sis, adhesion, invasion, and angiogenesis in various cell types [139,140]. These cellular
processes are implicated in the early development of endometriotic lesions in vivo and
in the overall development of endometriosis [4,28], further regulating genes associated
with inflammation, including IL-6 and other pro-inflammatory cytokines [141–143]. Our
results indicate that estrogen indirectly induces immune cells to participate in inflammatory
effects by regulating the mRNA expression levels of NF-κB, TNF-α, and IL-6, particularly
in the ectopic endometrial lesion model in the peritoneum. However, gene expression
alone is not sufficient to fully explain the molecular mechanisms and signaling pathways
associated with endometriosis. We aim to conduct further comprehensive experiments to
understand these mechanisms. Future studies should isolate purified cells to determine
whether specific cells play a role in the molecular mechanisms of endometriosis. Here, we
investigated the involvement of estrogen and immune cells in the pathology and devel-
opment of endometriosis in two rat models. Further analysis of secreted cytokines from
endometriotic lesions is essential to providing valuable insights into the pathogenesis and
pathology of endometriosis.

4. Materials and Methods
4.1. Animals

Female Sprague–Dawley (SD) rats (age: 7–8 weeks; body weight: 200–250 g) ob-
tained from BioLASCO (Taipei, Taiwan) were used in this study. The rats were randomly
transferred to plastic cages filled with aspen bedding, with three rats per cage. They
were acclimatized for one week before the experiments. They were kept under a 12/12 h
light/dark cycle with controlled temperature (23 ± 1.5 ◦C) and humidity (relative humidity
40–60%). All experimental animals were handled as per the specifications of the Animal
Center of Kaohsiung Chang Gung Memorial Hospital (IACUC no. 2022120101; approval
date: 20230119) and relevant guidelines provided by the National Institutes of Health (NIH)
for the ethical use and treatment of laboratory animals.

4.2. Preparation of Primary Rat Uterine ECs

Primary rat uterine ECs were isolated as described by De Clercq et al. [32], with slight
modifications. To stimulate the proliferation of ECs for increased yield, E2 solution (E1024;
Sigma) at 40 µg/kg was subcutaneously administered to rats for three consecutive days
prior to euthanasia. Animals were euthanized under CO2-induced anesthesia, followed by
disinfection with 75% ethanol. The abdominal cavity was opened, and uterine horns were
exposed by clipping and removing the fat and connective tissue. The uterine horns were
then incised to expose the uterine cavity and washed with 1× phosphate-buffered saline
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(PBS; 10010-023; Gibco, Life Science, Grand Island, NY, USA). Subsequently, the uterine
horns were cut into small fragments and transferred to 15-mL tubes containing a solution of
0.1% collagenase (S1746501; Nordmark, Uetersen, Germany) in 0.25% trypsin-EDTA (25200-
072; Invitrogen, Carlsbad, CA, USA). The mixture was incubated at 37 ◦C and 1200 rpm
with vigorous shaking every 60 min (Thermomixer Comfort; Eppendorf AG, Hamburg,
Germany). The digested suspension of primary rat ECs was filtered through a 70-µm nylon
mesh and centrifuged at 1000 rpm for 5 min. Primary rat ECs were cultured in Dulbecco’s
modified Eagle’s medium/nutrient mixture F-12 (Thermo Fisher Scientific, Grand Island,
NY, USA) supplemented with 10% fetal bovine serum (FBS; 10437028; Invitrogen, CA,
USA), 100 U/mL penicillin/streptomycin (15140-122; Invitrogen, CA, USA), and 2 mM
l-glutamine (25030-081; Invitrogen, CA, USA) in a humidified incubator (Forma Series II
3110 Water-Jacketed CO2 Incubator; Thermo Fisher Scientific, Waltham, MA, USA) at 37 ◦C
with 5% CO2. After reaching approximately 90% confluency in the first passage, primary
rat ECs were harvested for subsequent experiments.

4.3. Flow Cytometric Analysis of ECs

After culturing ECs until the second passage, cytokeratin 18 (CK-18) and vimentin
were used to identify the purity of the epithelial and stromal cells by analyzing them
using cell surface markers via flow cytometry. Briefly, ECs were incubated with CK-18
(bs-2043R-A488; BIOSS, Woburn, MA, USA) and vimentin (ab92547; Abcam, Cambridge,
UK) for 30 min on ice. After washing with the FACS wash buffer (PBS containing 10% FBS),
ECs were incubated with the secondary goat-anti-rabbit IgG Alexa Fluor 750 antibody on
ice for 20 min and analyzed using FACSAria II (BD Biosciences, San Jose, CA, USA).

4.4. LPS Stimulation of Primary Rat Uterine ECs

Rat ECs were seeded into 10-cm plastic culture dishes at a density of 5 × 105 cells
per plate for the experiments. The cells were stimulated with 100 ng/mL LPS (L2630;
Sigma-Aldrich, Louis, MO, USA) for 48 h to induce inflammation. Then, LPS was removed,
fresh medium was added, and incubated for 1 h for subsequent experiments.

4.5. Establishment of Two Rat Endometriosis Models

Experimental procedures and tissue collection:
All rats underwent surgery under anesthesia, with zoletil 50 (20–40 mg/kg; Virbac,

Carros, France) and xylazine (5–10 mg/kg; Rompun, Bayer AG, Leverkusen, Germany) ad-
ministered via intraperitoneal injection. Once anesthetized, the rats were positioned supine,
their lower abdomens were shaved, and the area was disinfected with iodine solution and
75% ethanol. Two procedures were used to develop ectopic endometriosis models:

Procedure 1:
Procedure 1 followed the method outlined by Azuma et al. [18], with slight modifica-

tions. After anesthetization, a minor midline incision (approximately 0.5 cm) was made
below the abdomen in the recipient rats. The whole uterus from the donor rat was excised,
and any excess tissue was rinsed off using sterile saline. The whole uterus was then longi-
tudinally cut and finely minced (approximately 0.3 mm diameter) using dissecting scissors.
Minced donor tissue (endometrial tissue) was suspended in 500 µL of 0.9% normal saline
and dispersed into the peritoneal cavity of recipient rats. The peritoneum was sutured
(at a donor-to-host ratio of 1:2). Afterward, E2 solution (E1024; Sigma-Aldrich, Louis,
MO, USA) at a concentration of 2.5 mg/kg/day or normal saline was administered for
four consecutive weeks, starting from the day after the operation [144]. After four weeks,
the peritoneal cavities of the rat were meticulously examined, the endometriotic lesions
were photographed, and their sizes were recorded. Then endometriosis-like lesions were
delicately excised for subsequent studies. The detailed protocol is shown in Figure 2A.

Procedure 2:
Under Procedure 2, surgery was performed as described by Zhanfei et al. [145], with

slight modifications. Following the induction of anesthesia in recipient rats, the abdominal
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skin was shaved, and a roughly 5-cm incision was made along the midline of the abdomen
to access the abdominal cavity. The left uterine horn was ligated, excised, and immersed
in 0.9% normal saline solution. The remaining tissue was removed, and the uterus was
sectioned to a size of 5 × 5 mm2. Subsequently, the incised uterine fragments were sutured
to the inner side of the abdominal wall, with the endometrial fragments facing toward the
peritoneal cavity. Finally, abdominal muscles and skin were sutured. E2 (2.5 mg/kg/day) or
normal saline was administered for four weeks to induce endometriosis; the endometriotic
lesions were photographed, and their sizes were recorded. Then, endometriosis-like lesions
were delicately excised after the operation for subsequent studies. The detailed protocol is
shown in Figure 3A. Endometriosis-like lesions on the peritoneum of rats were collected
for further studies.

4.6. RNA Extraction, Reverse Transcription (RT), and Quantitative Polymerase Chain
Reaction (qPCR)

Total RNA was isolated using the Quick-RNA Miniprep Kit (Zymo Research, Irvine,
CA, USA), following the manufacturer’s instructions. The isolated RNA was reverse-
transcribed into cDNA and subjected to qRT-PCR using the Fast SYBR Green Master Mix
(Applied Biosystems, Vilnius, Lithuania) with the ABI 7500 Fast Real-Time PCR System
(Applied Biosystems, Singapore). β-actin served as an internal RNA control, and each
sample was normalized based on its β-actin levels. All primer sequences used in this study
are listed in Table 2.

Table 2. Primers of specific genes used for the quantitative reverse transcription-polymerase chain
reaction (qRT-PCR) analysis of endometrial cells and rat specimens.

Gene Forward Primer (5′–3′) Reverse Primer (5′–3′)

Ki-67 [146] CTGCAGAGAAGGTTGGGATAAA CTGACTTTGCCCAGAGATGAA
TGF-β [147] TAATGGTGGACCGCAACAACG GGCACTGCTTCCCGAATGTCT
NF-κB [148] CTGGCAGCTCTTCTCAAAGC CCAGGTCATAGAGAGGCTCAA
Fibronectin [149] GACTCGCTTTGACTTCACCAC GCTGAGACCCAGGAGACCAC
Vimentin [150] GCACCCTGCAGTCATTCAGA GCAAGGATTCCACTTTACGTTCA
VEGF [151] TATCTTCAAGCCGTCCTGTG GATCCGCATGATCTGCATAG
CK-18 [152] CTGGGGCCACTACTTCAAGA CCTTGCGGAGTCCATGAATG
IL-6 [153] TCAACTCCATCTGCCCTTCAG AAGGCAACTGGCTGGAAGTCT
TNF-α [154] GCCTCTTCTCATTCCTGCTT CACTTGGTGGTTTGCTACGA
β-actin [155] GACGTTGACATCCGTAAAGACC CTAGGAGCCAGGGCAGTAATCT

4.7. Western Blotting

Frozen EC samples were homogenized by incubating ECs with 200 µL of T-Pro-
RIPA-Lysis buffer (JT 89-L001M; T-Pro Biotechnology, Taipei, Taiwan) on ice for 30–60 min.
Subsequently, the samples were centrifuged at 14,000 rpm for 15 min at 4 ◦C. The col-
lected supernatant was loaded with 10 µg protein onto a 10% sodium dodecyl sulfate-
polyacrylamide gel with a 5% stacking gel and subjected to electrophoresis. Then, proteins
were transferred onto a polyvinylidene fluoride membrane (IPVH85R; Millipore, Billerica,
MA, USA). To block the non-specific binding sites, a solution of 5% skim milk powder in
TBS-T was applied at room temperature for 60 min. Primary antibodies, including Ki-67
(SAB5700770; Sigma-Aldrich, Louis, MO, USA), TGF-β (#3711; Cell Signaling Technology,
Beverly, MA, USA), total NF-κB (#8242; Cell Signaling Technology, MA, USA), phospho-
NF-κB (#3033; Cell Signaling Technology, MA, USA), fibronectin (bs-006R; BIOSS, Woburn,
MA, USA), vimentin (ab92547; Abcam, Cambridge, UK), VEGF (GTX102643; GeneTex,
Irvine, CA), and GAPDH (MA5-15738; Invitrogen, CA, USA), were incubated with the
membrane at 4 ◦C overnight. Then, the membrane was incubated with anti-mouse-IgG
horseradish peroxidase (HRP; AP124P; Millipore, MA, USA) or anti-rabbit-IgG HRP (A0545;
Sigma-Aldrich, Louis, MO, USA) secondary antibodies at room temperature for 60 min and
analyzed using the Immobilon Western Chemiluminescent HRP Substrate (WBKLS0500;
Millipore, MA, USA) for Dot/Slot Blot. Images were captured using an electronic image
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analyzer (BIO-RAD ChemiDOC MP system, Hercules, CA, USA), and signal intensity was
quantified using VisionWorks®8.18 software (Analytik Jena, Jena, Germany).

4.8. Immunohistochemical (IHC) Staining

Uterine sections were prepared as previously described [156]. Briefly, slides were dried
at 55 ◦C for 30 min, deparaffinized, cleaned using the Sub-X Cleaning Medium (Leria SUB-X
3803670, Carterville, IL, USA), and hydrated in various concentrations of ethanol. Antigen
retrieval was performed using citrate buffer (K-035; Diagnostic Biosystems, København,
Denmark) at pH 6.0 via autoclave heat treatment. After inhibiting endogenous peroxidase
(ab64218; Abcam, Cambridge, UK) for 15 min at room temperature, slides were incubated
with TGF-β (bs-4538R; BIOSS, Massachusetts, USA) at 4 ◦C overnight. The secondary anti-
body was applied using DAKO REALTM EnVision (DAKO K5007, Silkeborg, Denmark) and
incubated for 30 min at room temperature, followed by Rabbit/Mouse (DAB+) incubation
for 5 min. The slides were counterstained with hematoxylin (105175; Merck, Millipore, MA,
USA) for 10 min and mounted using CC/Mount (C9368; Sigma-Aldrich, Louis MO, USA).
Throughout the experiments, thorough washing was performed with TBS-T. Scanning was
conducted using the panoramic scanner (Sysmex Europe GmbH, Norderstedt, Germany),
and images were captured using a microscope (Sysmex TOA Medical Electronics, Europe)
GmbH, Hamburg, Germany). Finally, results were quantified using the ImageJ software
version 1.8.0. (National Institutes of Health, Bethesda, ML, USA).

4.9. Statistical Analyses

For homogeneous data, unpaired, two-tailed Student t tests were used to evaluate the
statistical differences between the LPS-treated/estrogen-injected endometriosis and control
groups. All analyses were conducted using the Prism software (version 5.0; GraphPad
Software Inc., San Diego, CA, USA). Statistical significance was set at p < 0.05. Results are
presented as the mean ± standard error.

5. Conclusions

In this study, we investigated the effects of LPS and 17β-estrogen on the development
and progression of endometriosis through in vitro and in vivo studies. Our in vitro research
revealed an increase in NF-κB and VEGF mRNA gene expression, as well as protein
expression. Furthermore, our in vivo experiments demonstrated that estrogen upregulates
the gene and protein expression of CK-18, TGF-β, VEGF, and TNF-α, particularly in the
peritoneum. Although the molecular mechanisms and associated signaling pathways were
not entirely identical, they significantly influenced EC proliferation, angiogenesis, fibrosis,
and inflammation in endometriosis models, particularly those with peritoneal involvement.
In the future, we will investigate the specific cell types involved in peritoneum-ectopic
endometriosis, such as macrophages and dendritic cells, and how to regulate the expression
of cytokine genes and their inflammatory effects. Additionally, it is crucial to understand
estrogen biosynthesis by aromatase or 17β-hydroxysteroid dehydrogenase in the local
environment of ectopic endometriosis to identify potential candidate inhibitors for treating
this characterization of endometriosis, further strengthening our findings to contribute to a
deeper understanding of ectopic endometriosis.
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