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Abstract: Huntington’s disease (HD) arises from the abnormal expansion of CAG repeats in the
huntingtin gene (HTT), resulting in the production of the mutant huntingtin protein (mHTT) with a
polyglutamine stretch in its N-terminus. The pathogenic mechanisms underlying HD are complex
and not yet fully elucidated. However, mHTT forms aggregates and accumulates abnormally in
neuronal nuclei and processes, leading to disruptions in multiple cellular functions. Although there
is currently no effective curative treatment for HD, significant progress has been made in developing
various therapeutic strategies to treat HD. In addition to drugs targeting the neuronal toxicity of
mHTT, gene therapy approaches that aim to reduce the expression of the mutant HTT gene hold
great promise for effective HD therapy. This review provides an overview of current HD treatments,
discusses different therapeutic strategies, and aims to facilitate future therapeutic advancements in
the field.

Keywords: Huntington’s disease; huntingtin; aggregates; therapy; polyglutamine

1. Introduction
1.1. Huntington’s Disease

Huntington’s disease (HD) is an inherited neurodegenerative disorder caused by the
abnormal expansion of CAG repeats in the huntingtin gene (HTT), which is located on
chromosome 4p16 [1,2]. HD is characterized by a triad of motor, cognitive, and psychi-
atric symptoms. As the disease progresses, individuals may face challenges with speech,
swallowing, and overall functional independence. The neuropathological hallmark of
HD includes the selective vulnerability of medium spiny neurons (MSNs), which are
GABAergic output neurons comprising over 90% of cells in the striatum [3], as well as
the presence of intracellular aggregates of mutant huntingtin protein (mHTT). known as
inclusion bodies.

HD is relatively rare, with an estimated prevalence of 5–10 cases per 100,000 individu-
als in most European countries, South America, North America, and Australia. However,
the prevalence is significantly lower in Africa and Asia, with rates as low as 0.5 per 100,000
in Japan, China, and South Africa [4,5]. Although juvenile-onset HD cases can occur much
earlier, the disease typically manifests in mid-adulthood, with an average age of onset be-
tween 35 and 50 years, significantly impacting patients’ personal and family lives. Patients
often experience a life expectancy of 15–20 years following the onset of symptoms [6].

The underlying cause of HD is an abnormal expansion of CAG trinucleotide repeats
in the HTT gene, where expanded CAGs code for polyglutamine stretch (polyQ). In normal
individuals, there are typically 10–35 CAG repeats, while individuals with HD have more
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than 36 repeats. The length of the mutant polyQ expansion is inversely correlated with the
age of onset of the disease. Adult-onset HD is associated with 40–50 repeats, while a juvenile
form of the disease is associated with 50–120 repeats [7,8]. The expanded CAG repeats
result in the production of mHTT with enlarged polyQ, which accumulates abnormally
in neurons. The exact mechanisms by which mHTT leads to neurodegeneration are still
uncertain, but it is believed to involve a combination of toxic gain-of-function effects and
loss of normal HTT function [4]. The majority of evidence supports the hypothesis that
polyQ-expanded HTT acquires a “toxic gain of function” [9]. Understanding the cause of
HD and its disease pathogenesis will aid in the development of treatment strategies.

1.2. The Structure and Function of HTT

HTT is a large protein composed of 3144 amino acids and has an approximate weight
of 348 kDa. Its evolutionary history can be traced back millions of years, with continuous
expansion during vertebrate evolution. HTT exhibits a high degree of conservation among
vertebrates, with the highest level of conservation observed [10–13]. It possesses several
crucial functional domains, including the N-terminal polyQ region, the polyproline region,
and three HEAT domains. Additionally, HTT contains nuclear export signals (NES) in
the carboxy-terminus and nuclear localization signals (NLS). The NES in HTT is highly
conserved across various species. However, N-terminal fragments of mHTT lacking NES
or NLS have an increased tendency for nuclear localization by abnormally interacting with
the nuclear pore protein translocated promoter region [14]. Recently, the structure of HTT
in complex with HAP40 was successfully resolved using cryo-electron microscopy (cryo-
EM) with a resolution of 4 Å [15]. However, studying unbound HTT presents challenges
due to its large size, making it difficult to investigate using X-ray crystallography and
cryo-EM techniques.

As a large protein, HTT has been found to interact with numerous proteins and partic-
ipate in various cellular functions [16–18]. It is hypothesized to function as a scaffold in
different cellular processes and plays a crucial role in the development of the central nervous
system (CNS) [19–22]. Additionally, HTT has been reported to interact with transcription
factors, coactivators, and transcriptional repressors, thereby regulating the transcriptional
levels of genes and influencing various cellular physiological processes [23–25].

HTT also plays a vital role in intracellular transport through its interactions with
molecular motor protein complexes. By interacting with various endocytic/trafficking
proteins such as α-adaptin, HIP1, HIP14, HAP1, HAP40, PACSIN1, SH3GL3, clathrin,
and dynamin, HTT is implicated in both long- and short-range axonal transport as well
as vesicle trafficking processes [26–28]. Furthermore, HTT plays a crucial role in the
formation and maintenance of synapses, influencing neurotransmitter release and synaptic
transmission [29,30]. For instance, HTT has been found to interact with the SH3 domain of
PSD95, a critical protein involved in synaptic transmission, suggesting its involvement in
regulating synaptic plasticity [31].

Additionally, HTT has been reported to be associated with cell survival and apoptosis
signaling pathways [32,33]. It exerts anti-apoptotic effects by binding to Pak2, inhibiting
its cleavage by caspase-3 and caspase-8. This prevents the transformation of Pak2 into a
mediator of cell death [34]. Knockdown of HTT in neuroepithelial cells of the neocortex
disrupts cell migration, reduces proliferation, and increases cell death, particularly during
early neural development [35].

HTT also interacts with proteins involved in cellular cytoskeleton and motility, playing
a role in cytoskeleton assembly and the regulation of cell morphology. These functions
contribute to cell movement and migration [36]. Additionally, HTT has been identified as a
component of the pathway that regulates the orientation of mammary stem cell division.
Depletion of HTT in basal progenitors leads to mitotic spindle misorientation [37]. In
neurogenesis, HTT acts as a regulator that helps maintain the proliferative potential of
precursor cells [38].
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1.3. Pathogenic mHTT Forms

HTT contains a region in its N-terminal called PEST sequences, consisting of prolines
(P), glutamic acid (E), serine (S), and threonine (T), which makes it susceptible to cleavage
by various disease-related or pathologically upregulated proteases like calpain, caspases,
and lysosomal proteases [39–46]. The N-terminal fragment or exon1 of mHTT containing
polyQ repeats can be generated through proteolytic cleavage, and it is widely accepted
that this cleavage process plays a significant role in the formation of mHTT N-terminal
fragments and subsequent aggregates [47].

On the other hand, an excessive number of CAG repeats can affect the splicing of
mutant HTT (mHTT), resulting in the generation of a truncated transcript known as HTT
exon1 through abnormal splicing [48]. Aberrantly spliced HTT exon1 has been observed
in both HD mouse models and human tissues, and a recent study using an HD knock-in
(KI) pig model also detected it in the striatum, cortex, hippocampus, and cerebellum [49].
However, its expression level in the HD KI pig model was significantly lower than that
of normally spliced HTT exon products. Thus, the contribution of mHTT N-terminal
fragments or mHTT exon1 products produced by aberrant splicing to the pathogenesis of
HD requires further investigation.

The abnormal N-terminal fragment and HTT exon1 protein can undergo misfolding
and aggregation, leading to more severe cellular dysfunction and toxic effects [50–52].
Based on this evidence, some researchers propose a novel approach to reducing mHTT
toxicity by modifying the proteolytic cleavage of HTT and decreasing the formation of
more toxic N-terminal HTT fragments [53].

The aggregation of mHTT is a prominent pathological feature of HD. mHTT can
spontaneously aggregate, forming various structures such as monomers, oligomers, and
inclusion bodies composed of fibrils [54,55]. Initially, the N-terminus of mHTT undergoes
conformational changes, adopting a misfolded structure rich in β-sheets, which promotes
self-association and aggregation. During the aggregation process, small oligomeric inter-
mediates are formed, as observed in human HD brains and HD mouse models [56]. These
stable oligomers then act as seeds for the formation of mHTT fibrils and large inclusion
bodies in the cytoplasm and nucleus [57]. The expanded polyQ region in HTT leads to an
elongation of the random coil structure, further promoting protein aggregation [58]. The
aggregates assemble into fibrils by recruiting new monomers, accelerating their growth.
The elongating fibrils can induce nucleation-dependent fibrils, resulting in the formation
of fibril branches [55]. These insoluble fibril-rich inclusion bodies accumulate within af-
fected cells. Previous studies have shown that oligomers often selectively target proteins
with extended, low-complexity sequences, potentially disrupting crucial cellular pathways.
However, soluble forms of mHTT engage in more extensive and detrimental interactions
compared to insoluble aggregates [59].

Large inclusion bodies containing mHTT were previously considered pathoge-
nic [60,61]. However, it is interesting to note that large mHTT inclusion bodies can occur
without causing cell death, and conversely, cell death can occur without the presence of
inclusion bodies. This has led to the idea that mHTT oligomers are more toxic [62,63],
while the subsequent formation of inclusion bodies may be protective [64–66]. Small mHTT
oligomers and fibrils have been observed in the brains of HD patients, serving as precursors
to larger inclusion bodies [63]. In mouse and fruit fly models of HD, the formation of mHTT
oligomers and fibrils occurs before symptom onset and increases with disease progression.
Notably, many neurons undergo cell death without forming inclusion bodies, and the
formation of inclusion bodies has been shown to enhance survival and decrease levels of
mHTT in primary cultures of rat striatal neurons [67]. Therefore, the question of whether
the formation of mHTT inclusion bodies represents a protective mechanism or enhances
toxicity remains a subject of debate.



Int. J. Mol. Sci. 2024, 25, 3845 4 of 34

2. The Pathogenetic Mechanisms of HD

Proteins within cells do not function in isolation; instead, they organize into either
stable or transient protein complexes to carry out their cellular functions [68,69]. Abnormal
aggregation of HTT has a profound impact on protein–protein and protein–DNA interac-
tions, as well as organelle functions within cells. This abnormal aggregation disrupts these
interconnected processes, which mutually influence each other.

2.1. Abnormal Protein–Protein Interactions

Recent studies have revealed that both mutant and wild-type HTT (wtHTT) interact
with a large number of proteins [70]. HTT interacts directly or indirectly with numerous
intracellular proteins involved in protein translation, signal transduction, membrane traf-
ficking, and chromatin organization. Many of these protein–protein interactions depend
on the polyQ sequences present in HTT, such as interactions involving HAP1, HAP40,
HIP-1, syntaxin-1B, vesicle-associated membrane protein 2, SNAP25, NSF, and synapsins
1 and 2 [71–73]. The stability and levels of these protein interactions are altered by mHTT,
potentially leading to the dysregulation of intracellular signaling pathways, gene expres-
sion, synaptic function, and cellular functions [74]. Moreover, the abnormal protein–protein
interactions induced by mHTT have been associated with alterations in brain cholesterol
homeostasis [75–78]. mHTT has been found to bind to the SREBP2/importin β complex,
preventing the nuclear import of SREBPs involved in cholesterol biosynthesis [79]. This
sequestration of SREBPs in the cytoplasm hinders the upregulation of cholesterogenic genes
under sterol-depleted conditions. Additionally, mHTT interacts with proteins involved in
protein translation, such as Mapk3, Eif3h, and Eef1a2, potentially disrupting the protein
translation process [80].

2.2. Transcriptional Dysregulation

The mechanisms underlying transcriptional dysregulation in HD are multifaceted.
The toxic mHTT can impact the transcriptional process through various means, includ-
ing disruption of normal protein–protein interactions with the transcriptional machinery
and modification of chromatin structure or genomic DNA, resulting in aberrant gene ex-
pression [81]. The polyQ repeats present in mHTT have a propensity to form insoluble
aggregates. These aggregates can interact with glutamine-rich activation domains found
in various transcription factors, such as cAMP response element-binding protein (CREB),
Sp1, and the transcriptional coactivator CREB binding protein (CBP) [82–85]. The abnor-
mal interaction between mHTT and SP1, for example, downregulates the transcript level
of the metabolic enzyme cystathionine γ-lyase in HD models. Furthermore, mHTT has
been shown to abnormally interact with crucial components of the core transcriptional
machinery, including the large subunit of RNA polymerase II and TATA-binding protein
(TBP) [86,87]. The expansion of polyQ can enhance HTT-DNA interactions, particularly
with recognition elements of transcription factors whose function is disrupted in HD,
leading to abnormal expression of specific mRNA species.

2.3. Mitochondrial Dysfunction

Mitochondrial dysfunction has been identified as an early pathological mechanism
underlying the selective neurodegeneration observed in HD [88]. The abnormal aggregation
of HTT is associated with mitochondrial dysfunction. Studies have shown that mHTT
disrupts mitochondrial function by suppressing the expression of PGC-1α, a transcriptional
coactivator responsible for regulating various metabolic processes, including mitochondrial
biogenesis and respiration [89]. This disruption can lead to increased production of reactive
oxygen species, resulting in cellular damage and cell death [90].

2.4. Autophagy Dysfunction

Research has shown that aggregated mHTT can disrupt the normal functioning of
the autophagy pathway, resulting in the accumulation of waste materials and impaired
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protein degradation [91]. A recent study comparing gene expression profiles between stri-
atal neurons directly reprogrammed from fibroblasts of HD patients and healthy controls
observed a significant down-regulation of genes enriched in the autophagy–lysosome path-
way [92]. J3, identified as an autophagy inducer through high-content screening, has shown
promising potential as an antibody therapy for HD. In vivo studies have demonstrated that
J3 treatment leads to a reduction in the levels of mHTT in the striatum. Additionally, J3
treatment increased the levels of DARPP-32 [93]. Moreover, both in vitro and in vivo inves-
tigations have highlighted the potential of autophagy activators, such as rapamycin, lithium
chloride, and trehalose, for the treatment of HD. These activators have shown promising
results in promoting autophagy and reducing the accumulation of mHTT [94–98].

2.5. Proteasomal Dysfunction

The presence of ubiquitin in inclusion bodies, which are characteristic of HD, allows
their detection using antibodies against ubiquitin and proteasome. Extensive evidence has
shown that the ubiquitin–proteasome system (UPS) function is impaired in various HD
models [99–101]. It has been proposed that the sequestration of proteasomes by mHTT
aggregates contributes to the alterations in UPS activity by recruiting or sequestering key
components of the UPS [102,103].

2.6. Excitotoxicity at Extrasynaptic NMDA Receptors

HD is associated with enhanced N-methyl-D-aspartate (NMDA)-induced excitotox-
icity. In striatal tissue from young, excitotoxin-sensitive YAC mice and cultured MSNs,
there is an amplified binding of GluN2B with PSD-95 [104]. This enhanced binding may be
attributed to altered activation of the p38 MAPK/GluN2B/PSD-95 toxic signaling path-
way [105]. Additionally, research has shown that increased synaptic STEP and calpain
activation contribute to the disrupted localization of NMDAR in YAC128 mice [106].

2.7. DNA Damage Repair

The expansion of trinucleotide CAG/CTG repeats in somatic tissues is believed to
contribute to the continuous progression of HD throughout the life of the affected indi-
vidual [52,107,108]. Genome-wide screens conducted to identify disease modifiers have
highlighted the significance of DNA repair genes, such as FAN1, LIG1, MLH1, MSH3, PMS1,
and PMS2, in HD [109,110]. FAN1, a nuclease involved in DNA repair, has been associated
with the delayed onset and slower progression of HD [111]. In addition, reciprocal congenic
mice studies have pinpointed the MSH3 gene as the key factor responsible for the differ-
ences in repeat instability [109]. A recent genome-wide association study on HD identified
rs557874766, a single nucleotide polymorphism within a polymorphic 9 bp tandem repeat
in the MSH3/DHFR region, as the variant with the most significant association with disease
progression [112]. These findings provide support for the hypothesis that DNA repair
pathways play a crucial role in mediating the impact of modifying genes on HD.

3. HD Treatment

Currently, HD does not have a cure, and the available treatments primarily aim to
manage psychiatric and movement symptoms. Recent advances in understanding the
molecular mechanisms of HD, coupled with the development of gene therapies and other
emerging therapeutic approaches, provide hope for future treatments for this debilitat-
ing condition. We review the current state of potential therapies for HD, encompassing
pharmacological interventions, strategies to reduce mHTT, stem cell transplantation, and
gene therapy.

3.1. Pharmacological Interventions

Numerous pharmacological interventions have been developed to manage the symp-
toms of HD and improve the lives of affected individuals (Table 1). While current treatments
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provide symptomatic relief, ongoing research aims to develop more targeted and disease-
modifying therapies to address the underlying cause of HD.

Table 1. Pharmacogenetics of drugs used in the management of symptoms in HD.

Name of the Drug Therapeutic Class Mode of Action References

Tetrabenazine Vesicular monoamine transporter
2 (VMAT2) inhibitors

Inhibit the dopamine transporter (DAT),
reduce chorea, and improve motor function [113]

Deutetrabenazine VMAT2 inhibitors Inhibit the DAT, reduce chorea, improve
motor function, and longer half-life [114]

Olanzapine Atypical antipsychotic Management of chorea [115]

Riluzole Block glutamatergic neurotransmission Improve HD associated chorea [116]

Risperidone Antagonistic effect of Dopamine D2
and 5HT-receptor Control psychiatric symptoms [117]

Amantadine Glutamate antagonist Reduce choreiform dyskinesias [118]

Rivastigmine Acetylcholinesterase inhibitor Improve motor performances and cognition [119]

Fluoxetine Selective serotonin reuptake inhibitor Management of depression and
reduce agitation [120]

Nabilone Agonist of CB1 and CB2
cannabinoid receptors

Decrease the severity of
neuropsychiatric symptoms [121]

Benzodiazepines Positive allosteric modulators on the
GABA-A receptor

Decrease severe episodes of chorea and
alleviate anxiety [122]

3.1.1. Dopamine Modulation

Dopamine modulation plays a crucial role in the management of HD, particularly
in addressing HD-associated chorea. The dysregulation of dopamine signaling in the
basal ganglia, a brain region involved in motor control, forms the underlying principle of
dopamine modulation in HD treatment [123]. In HD, there is a progressive loss of MSNs
in the striatum, leading to an imbalance in the direct and indirect pathways of the basal
ganglia circuitry. This imbalance results in dysregulation of dopamine release and aberrant
signaling, contributing to the manifestation of motor symptoms, including chorea.

To address the dysregulation of dopamine modulation, dopamine transporter in-
hibitors have been approved for HD treatment. These medications selectively target and
inhibit the DAT, which is responsible for the reuptake of dopamine from the synaptic cleft
back into the presynaptic neuron. By inhibiting DAT, these medications reduce dopamine
reuptake, leading to increased dopamine availability in the synaptic cleft. This increased
dopamine concentration helps normalize dopamine signaling and alleviate motor symp-
toms associated with HD, such as chorea.

Tetrabenazine was the first dopamine transporter inhibitor approved for the treat-
ment of HD-associated chorea. Subsequently, deutetrabenazine, a deuterated form of
tetrabenazine, was developed to improve its pharmacokinetic profile. Both medications
have demonstrated efficacy in reducing chorea severity and improving motor function in
HD patients [124]. However, it is important to note that these medications have side effects,
including akathisia, depression, and parkinsonism-like symptoms [125]. Therefore, careful
monitoring and individualized dosing are necessary to optimize treatment.

3.1.2. Glutamate Receptor Modulation

Glutamate receptor modulation has emerged as a promising therapeutic approach
for treating HD [126,127]. Abnormalities in glutamate signaling, specifically excessive
activation of NMDA receptors, have been implicated in the pathogenesis of HD, leading to
excitotoxicity and neuronal damage. The principle behind glutamate receptor modulation
in HD treatment lies in restoring the balance of glutamate neurotransmission and reducing
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excitotoxicity. Numerous compounds targeting glutamate receptors have been investigated
in both preclinical and clinical studies.

One class of compounds includes NMDA receptor antagonists, such as memantine and
amantadine. These medications act by blocking the excessive activation of NMDA receptors,
thereby preventing excitotoxicity. Some studies have demonstrated that NMDA receptor
antagonists can improve motor function and reduce neurodegeneration in HD [128]. How-
ever, the use of NMDA receptor antagonists to treat chorea remains highly controversial. A
recent Enroll-HD study comparing trajectories in cognition over 5 years found no signifi-
cant differences in cognitive performance between memantine users and non-users [129].
Thus, extended, larger-scale studies are needed to further validate the therapeutic potential
of NMDA receptor antagonists.

Another approach involves modulating metabotropic glutamate receptors (mGluRs).
mGluRs are G-protein-coupled receptors that regulate glutamate neurotransmission. Ac-
tivation of certain mGluR subtypes, particularly mGluR5, has been implicated in HD
pathology [130,131]. Animal studies have shown that mGluR5 antagonists can activate
autophagy through convergent mechanisms, promoting the clearance of mHTT aggregates
and reducing neurodegeneration in HD models [132]. Therefore, antagonists of mGluR5,
such as AFQ056, have been investigated as potential therapeutic agents [133].

3.1.3. Strategies to Reduce HTT Aggregation and Enhance mHTT Clearance

Modulating protein–protein interactions is a promising therapeutic approach for dis-
rupting or modulating the interactions between mHTT and its binding partners, which
play a crucial role in the pathogenesis of HD. This strategy aims to interfere with down-
stream signaling pathways and cellular processes, reducing the formation of toxic protein
aggregates and mitigating their detrimental effects on cellular function. Various approaches
have been explored to target protein–protein interactions in HD.

Modulating Protein–Protein Interactions

One approach involves the use of small molecules and peptides that can bind to specific
regions of mHTT or its interacting partners, thereby disrupting their interactions [134].
These small molecules can be designed to target key domains or motifs involved in protein–
protein interactions, such as the polyQ tract of mHTT. By blocking the interaction between
mHTT and its binding partners, these molecules aim to prevent the formation of toxic
aggregates and mitigate downstream cellular dysfunction. Small molecules, including
high-affinity RNA aptamers, have shown promise in stabilizing the monomeric form of
mHTT and preventing its aggregation [135]. These aptamers have also exhibited enhanced
cell survival, highlighting their therapeutic potential.

In addition to small molecules, peptide inhibitors have been developed and tested
in preclinical studies. Peptides offer advantages such as high specificity, potent biological
activity, cost-effectiveness, and excellent membrane penetrability [136]. Bivalent HTT-
binding peptides have been successful in disrupting the aggregation process of mHTT and
preventing the degeneration of photoreceptor neurons in a Drosophila model [137]. Another
peptide, the polyQ-binding peptide QBP1, identified by combinatorial peptide library
screening, has been shown to effectively suppress polyQ-induced neurodegeneration and
improve the phenotype in both the Drosophila model and R6/2 mice [138]. Additionally,
a specific 23-amino acid peptide called P42, derived from HTT, has demonstrated the
potential to inhibit the aberrant aggregation of mHTT and improve disease symptoms.

Another strategy to modulate protein–protein interactions is through gene targeting-
based approaches, such as CRISPR-Cas9, antisense oligonucleotides (ASOs), RNA inter-
ference (RNAi), or gene overexpression, to specifically target and alter the expression of
proteins involved in pathogenic protein–protein interactions. For example, exogenous
expression of HTT interacting protein K (HYPK) has shown the ability to reduce aggregate
formation and cytotoxicity caused by N-terminal mHTT in neuronal cell lines [139,140].
The protein complex formed by HTT and HAP1 plays a crucial role in regulating organelle
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transport along axons. The depletion of HAP1 through CRISPR-Cas9-mediated approaches
has resulted in selective neuronal loss in the striatum of adult HD KI mouse brains [141].
Overexpression of HAP1 in MSNs has been shown to restore calcium entry, enhance EGFR
signaling activity, and inhibit mHTT-mediated cytotoxicity [142,143].

Autophagy Activation

The autophagy–lysosomal pathway is the primary biological pathway responsible
for clearing intracellular protein aggregates. Impaired autophagy, including defects in
autophagosome trafficking [144] and autophagosome–lysosome fusion [145,146], has been
implicated in the pathogenesis of HD [147,148]. Age-associated upregulation of miR-29b-
3p has been shown to promote HD-MSN degeneration by impairing autophagic function
through human-specific targeting of the STAT3 3′ untranslated region in reprogrammed
MSNs from symptomatic HD patients [92]. Accumulating evidence suggests that enhancing
the autophagy–lysosomal pathway can decrease mHTT levels and enhance cell survival in
cellular and animal models of HD [149,150]. The principle behind autophagy activation in
HD treatment is to enhance the clearance of mHTT aggregates, thereby reducing their toxic
effects on neurons.

Several approaches have been designed to stimulate autophagy in HD. One approach
involves the overall activation of autophagy pathways. For example, rapamycin and its
analogs, known as mTOR inhibitors, have been shown to induce autophagy by inhibiting
the mTOR signaling pathway [151]. In a fly model of HD, treatment with rapamycin has
been found to reduce mHTT aggregates, protect against neurodegeneration, and improve
motor function [152]. Meanwhile, the rapamycin analog CCI-779 has demonstrated the
ability to enhance performance on various behavioral tasks and phenotypes including
the rotarod test, grip strength test, wire maneuver test, and tremors. Additionally, it has
been shown to reduce aggregate formation in HD-N171-N82Q mice [96]. The activation of
AMPK can promote autophagy by phosphorylating and activating key autophagy-related
proteins [153]. Compounds that activate AMPK, such as metformin, have shown promising
results in preclinical studies, reducing mHTT aggregates and improving motor function in
HD models [153–155]. In addition to small molecules, gene-based approaches have also
been explored to enhance autophagy in HD. For instance, viral vector-mediated delivery of
genes encoding autophagy-related proteins, such as TFEB, a well-known master regulator
of autophagy and lysosomal biogenesis, has been shown to induce autophagy and reduce
mHTT aggregates in animal models [156]. Furthermore, a decrease in the expression of
Rhes, a striatum-enriched mTOR activator, was observed in the brains of both HD patients
and HD mice. Interestingly, the administration of exogenous Rhes can improve motor
deficits and ameliorate brain pathology in HD mice [157].

Another strategy is to target selective autophagy. With the assistance of a variety of
receptors that can recognize their specific cargos and connect them to LC3 through their
LC3-interacting regions, selective autophagy can selectively identify and target specific
substrates, including mitochondria (mitophagy) and protein aggregates (aggrephagy).
The initial discovery of p62/SQSTM1 as a selective autophagy receptor aiding in the
clearance of mHTT aggregates has paved the way for further research in this area [158].
Subsequently, several additional receptors for aggrephagy have been identified, expanding
our understanding of the selective autophagy process. Notable examples include optineurin
(OPTN), Tollip, and TAX1BP1, which have been shown to mediate the degradation of mHTT
aggregates [146,159]. Tollip overexpression has demonstrated protective effects against the
toxicity of polyQ-expanded HTT in cellular models of HD [66]. In a recent study, Ma et al.
discovered that the chaperonin TRiC subunit CCT2 acts as a novel receptor involved in
regulating the selective autophagy of aggregation-prone proteins, including mHTT [160].
CCT2 exhibits specificity towards aggrephagy and promotes the autophagic degradation
of solid protein aggregates.

Ongoing clinical trials are currently evaluating the safety and efficacy of autophagy
modulators, including mTOR inhibitors and AMPK activators, in HD. It is crucial to
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consider that while autophagy activation holds promise, it may also come with poten-
tial side effects. Therefore, determining the optimal timing and duration of treatment is
essential [161]. Moreover, researchers are actively exploring the development of selec-
tive autophagy modulators that specifically target mHTT aggregates while preserving
normal cellular components, representing a promising avenue for future research in HD
therapeutics.

Proteasome-Mediated Protein Degradation

Proteasome-mediated protein degradation is a therapeutic approach aimed at enhanc-
ing the clearance of mHTT by promoting its degradation through the UPS. The mechanism
underlying proteasome-mediated protein degradation in the treatment of HD involves the
recognition of ubiquitinated mHTT by the 26S proteasome, a large multi-subunit complex
responsible for protein degradation [162]. The ubiquitin molecules attached to mHTT serve
as a signal for proteasomal degradation. The pathogenic form of the mHTT protein is
ubiquitinated via K48 in ubiquitin, which promotes HTT degradation. Inhibition of the pro-
teasome has been shown to increase the number of HTT aggregates in induced pluripotent
stem cells (iPSCs) derived from HD patients [107]. By enhancing the activity of the protea-
some, the clearance of mHTT aggregates can be facilitated, reducing their accumulation and
mitigating their toxic effects. Several E3 ubiquitin ligases, such as UBE3A/E6AP [163,164],
CHIP [165], HRD1 [166], and the SCF complex [167], can directly polyubiquitinate HTT
through K48-linked ubiquitin chains. This polyubiquitination enables the clearance of HTT
by the UPS. The ubiquitination process mediated by K-48 linkage relies on Ube3a, whose
expression decreases in the aging brain. However, overexpression of Ube3a in the brains of
aged HD KI mice has effectively decreased the accumulation and aggregation of mHTT.
Mutations in the parkin gene, another E3 ubiquitin ligase, are associated with familial
Parkinson’s disease. Partial suppression of parkin exacerbates the clinical phenotype and
the impact of mHTT in the striatal cells of R6/1 mice [168]. In addition to the three classes
of enzymes involved in monoubiquitination, proteasome activators offer an alternative
means to inhibit mHTT-induced neurodegeneration. PA28γ, a proteasome activator, has
shown promising results when a virus overexpressing PA28γ is stereotaxically injected into
the striatum. This approach leads to a significant increase in peptidyl-glutamyl preferring
hydrolytic proteasome activity, reduced presence of ubiquitin-positive inclusion bodies
in the striatum, and improved behavioral abnormalities in YAC128 HD mice [169]. Fur-
thermore, other small compounds can activate the proteasome. For instance, researchers
have identified a Food and Drug Administration-approved drug called desonide through
small-molecule microarray-based screening. Desonide has demonstrated the ability to sup-
press mHTT toxicity in cellular and animal models of HD by destabilizing mHTT through
enhanced polyubiquitination, specifically at the K6 site [170]. It is crucial to acknowledge
that proteasome-mediated protein degradation is a complex process, and the long-term
effects as well as potential off-target effects of modulating proteasome activity need to be
thoroughly evaluated.

Intracellular Antibody (Intrabody)

Intrabodies are gene-based approaches engineered to interfere with mutant proteins
by expressing recombinant antibodies, typically the antigen-binding fragment, within
intracellular compartments such as the nucleus and cytoplasm. The first intrabody for
HD became available in the early 2000s through the establishment of a large naive human
spleen single-chain variable fragment (scFv) phage-display library [171]. Intrabodies exert
their effects through several mechanisms [172]: (1) direct binding to the functional domain
of the target protein to neutralize its activity; (2) disruption of the interaction between
pathological proteins and crucial binding partners; and (3) redirection of the pathogenic
protein to alternative subcellular compartments, such as the proteasome, for degradation.

Various protein domains of the soluble form of HTT/mHTT have been targeted by
intrabodies, including the polyQ domain [173], polyP domain [174], N-terminal exon 1 do-
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main [175], and mHTT aggregates themselves [176]. In a previous study, we engineered
a specific HTT protein-targeting intrabody that can reduce the neurotoxicity caused by
cytoplasmic mHTT and alleviate associated neurological symptoms. This intrabody in-
hibits the accumulation of mHTT in neuronal processes and facilitates its clearance in the
cytoplasm [177]. Recently, we identified that the last 23 amino acids of the C-terminus of
the heavy chain of our previous intrabody, named smaller intrabody 3 (SM3), can bind to
mHTT. SM3, linked to the lamp1 signal peptide, selectively binds to mHTT and facilitates
its delivery to the lysosome, promoting the degradation of soluble and insoluble forms of
mHTT. Additionally, SM3 can alleviate abnormal behaviors in HD KI-140Q mice by enhanc-
ing lysosomal degradation activity. Intravenous administration of SM3 effectively reduces
soluble and insoluble mHTT in the brains of HD KI-140Q mice, improving HD-related
neuropathology and motor function deficits [178].

3.1.4. Strategies to Target the Complement Pathway

The aberrant activation of the complement system and the resulting inflammatory
responses are considered key factors in HD. A broad range of changes in complement
components, at both the transcriptional and protein levels, have been identified in the
brains of HD patients and various HD animal models. Notably, there is a significant
increase in the mRNA levels of complement components such as C1q C chain, C3, C4,
and C1r in the striatum of HD patients. This increase is accompanied by distinct immune
reactivity for C1q, C3, and C4 in oligodendrocytes, astrocytes, and neurons [179]. Moreover,
the use of 3-NP has been shown to result in a substantial rise in the levels of C3, C9, C5aR1,
and C5aR2 in the striatum of rats [180]. These findings highlight the involvement of the
complement system and inflammatory responses in the pathogenesis of HD, emphasizing
their potential as targets for therapeutic interventions.

Recent studies have yielded significant insights into the pathophysiological mecha-
nisms underlying HD, particularly underscoring the therapeutic promise of complement
system modulation. Notably, interventions such as C1q blockade with antibodies or genetic
deletion of complement receptors on microglia considerably alleviated cognitive deficits
and early developmental impairments in visual discrimination learning observed in the
zQ175 mouse model [181]. These measures not only enhanced excitatory impulses to the
striatum but also significantly reduced synaptic damage. This progress marks a promis-
ing development in the therapeutic application of complement modulation. In the phase
2 clinical trial (NCT04514367), ANX005, a humanized monoclonal antibody developed
to inhibit C1q, demonstrated clinical improvement in a subset of HD patients with high
baseline C4a/C4 levels. This trial demonstrates the potential effectiveness of targeting the
complement system, specifically inhibiting C1q, as a therapeutic strategy for HD.

3.1.5. Strategies to Target Astrocytes

Astrocytes play a pivotal role in shaping the neuronal environment by providing
essential nutritional and metabolic support, assisting in the removal of neuronal metabo-
lites, and maintaining local ion balance [182]. Overexpression of Sphingosine kinase 1 in
astrocytes has been shown to enhance autophagy and promote the clearance of mHTT
in HD cell models [183]. In HD mouse models, targeted activation of specific astrocytic
functions in the striatum through AAV virus injection has shown promising results. These
included boosting UPS degradation and lysosomal function via JAK2-STAT3 pathway
activation [184], or initiating the N-terminal active fragment of human SREBP2 to trigger
cholesterol biosynthesis pathways [185], which have led to significant reductions in neu-
ronal mHTT aggregates and improvements in behavioral phenotypes. The pathological
mechanisms in HD also involve disrupted homeostasis and signaling processes mediated
by the downregulated Kir4.1 receptor in astrocytes. Restoring impaired Kir4.1 receptors in
R6/2 mice not only corrects abnormal calcium and glutamate signaling but also rescues
affected MSNs, thereby improving motor deficits [186]. These findings underscore the
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potential of targeting astrocytic functions as a therapeutic strategy in HD, highlighting the
importance of astrocytes in disease pathogenesis and treatment.

3.1.6. Strategies to Stabilize Somatic Expansion

The expansion of the CAG repeat tract in somatic cells, a crucial contributor to HD, is
thought to impact the disease’s progression. As a result, genes within the DNA mismatch
repair (MMR) pathway, which influence the repeat expansion, may be considered potential
targets for therapeutic interventions [187]. In a study involving 683 HD patients with
extreme onset or phenotype relative to the length of the HTT CAG repeat, researchers
performed exome sequencing and identified variants in FAN1 clustered in its DNA-binding
and nuclease domains. Furthermore, FAN1 overexpression has been shown to reduce
the expansion of CAG repeats in human cells and patient-derived neurons [188]. Prior
research identified that the highly conserved SPYF motif at the N terminus of FAN1 can
bind with MLH1. This interaction inhibits the assembly of a functional MMR complex,
thereby contributing to the stabilization of CAG repeats [189]. These findings highlight
the role of FAN1 in modifying the progression of HD by stabilizing the expanded HTT
CAG repeat.

Among the components of MMR that have been identified as modifiers of HD on-
set, MSH3 has shown promise as a potentially safe and effective target for therapeutic
intervention [109]. In a recent study, researchers discovered a fully chemically modified
short interfering RNA (siRNA) that effectively suppresses the expression of MSH3, both
in laboratory experiments and in living organisms. When the siRNA is synthesized in
a divalent scaffold, it successfully inhibits the expansion of CAG repeats in the striatum
of two mouse models of HD. Importantly, this silencing of MSH3 does not have any
adverse effects on tumor-associated microsatellite instability or the expression of other
genes involved in the MMR pathway [190]. Previous research has demonstrated that the
knockdown of endogenous TDP-43 in the striatum of HD KI mice resulted in an expansion
of CAG repeats. This expansion was correlated with increased expression of MSH3 and
MLH1. Additionally, inhibiting MSH3 and MLH1 effectively reduced this CAG repeat
expansion [191]. These findings provide additional evidence supporting the role of DNA
MMR mechanisms, specifically MSH3 and MLH1, in the somatic expansion of CAG repeats
in HD.

The use of strategies to control instability in HD represents a potential approach to
modify disease progression and offer long-term benefits, unlike symptomatic treatments.
However, the concept of targeting instability as a treatment for HD remains a topic of debate.
In a different study, potent divalent siRNAs (di-siRNAs) were employed to suppress MSH3
mRNA expression in HdhQ111 mice in a dose-responsive manner. The results revealed
a direct relationship, with a proportionality constant close to 1, between the inhibition of
somatic HTT CAG expansions and the in vivo expression of MSH3 protein, highlighting
MSH3 as a critical factor in limiting the rate of somatic expansions. Interestingly, even with
a substantial 75% decrease in MSH3 protein levels, there was no observable change in the
accumulation of striatal nuclear HTT aggregates [192]. Thus, further research is necessary
to definitively establish whether managing instability can positively impact HD treatment.
The long-term consequences of stabilizing somatic expansion are not fully understood and
could potentially result in damage to brain cells. Therefore, a comprehensive understanding
of the implications of targeting instability in HD is crucial to assessing both the benefits
and potential risks associated with this therapeutic approach.

3.1.7. Other Therapies

Curcumin, a phytochemical commonly found in Asian food, has been shown to possess
a wide range of beneficial properties, including antioxidant, anti-inflammatory, and anti-
fibrogenic effects. Research has demonstrated that curcumin effectively alleviates disease
symptoms in a Drosophila model of HD by suppressing cell death [193]. Inflammation is
commonly observed in HD patients before the onset of symptoms. Certain drugs, such as
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neflamapimod [194] and minocycline [195], have been investigated for their potential to
improve glial cell functions and prevent neuroinflammation in HD patients.

3.2. Cell Therapies

Stem cell therapies have shown promising advancements in the treatment of HD
owing to the unique characteristics of stem cells, such as their capacity for self-renewal
and differentiation into various cell types. Several types of stem cell therapies have been
investigated in the context of HD. The most investigated stem cell therapies in HD include
mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), neural stem cells (NSCs),
and iPSCs. Each type of stem cell therapy has its own advantages and challenges, and
ongoing research aims to optimize their use for the treatment of HD.

3.2.1. MSCs Therapy

One specific stem cell therapy is MSC therapy, which can be obtained from various
resources such as the umbilical cord, amniotic fluid, bone marrow, and adipose tissue.
MSCs were initially used therapeutically to treat severe graft versus host disease [196].
Adipose and bone marrow-derived MSCs have been widely studied and applied in stem cell
transplantation therapy for HD [197]. These MSCs have the ability to release neurotrophic
factors, which are molecules that support the growth, survival, and function of neurons. By
secreting neurotrophic factors, MSCs can potentially promote neuroprotection, enhance
neuronal survival, and support the repair of damaged neural tissue in conditions like HD.
Several preclinical studies using rodent models have been conducted to investigate the
effects of MSC transplantation. For example, MSCs isolated from the bone marrow of
mice were transplanted intrastriatally into R6/2 mice, leading to significant behavioral and
morphological improvements. These positive effects were likely attributed to an increase
in BDNF [198]. Additionally, MSC treatment has shown potential in protecting against
3NP-induced enlargement of the lateral ventricles, decreasing oxidative stress, enhancing
cell viability, and extending lifespan in an HD rat model [199]. Transplantation of normal
human adipose-derived stem cells, another commonly utilized type of MSC, has also
demonstrated the ability to reduce striatal atrophy in YAC128 mice [200].

Prior research has demonstrated that the use of cytokine-based neuronal inducers
can enhance the differentiation of bone marrow MSCs into functional neurons, exhibiting
spontaneous activity and maturing into an electrophysiologically active state [201]. Con-
currently, another study using a stroke model established that human adipose-derived
MSCs could differentiate into neuron-like cells, characterized by positive expression of
MAP2 and Synapsin 1/2, and exhibiting electrophysiological activity, thereby aiding in
the reconstruction of hippocampal neuronal circuits [202]. However, the existing body of
research does not provide substantial evidence, and no studies reported have that MSCs
can differentiate into neurons in HD. Consequently, the potential for MSCs to differentiate
into mature neuronal or glial cells remains a subject of ongoing debate [203].

MSCs are generally considered to have low immunogenicity. Transplantation of
both rat and human MSC grafts induced very few mast cells, T αβ-cells, and no T γδ-
lymphocytes in rats [204]. The anti-inflammatory cytokines secreted by MSCs play a crucial
role in increasing neuroprotection and reducing disease-induced neuroinflammation. These
results indicate that transplanted MSCs are not expected to elicit a strong inflammatory
response from the host. The ability of MSCs to modulate the immune response and
promote an anti-inflammatory environment can be beneficial in neurodegenerative diseases
accompanied by neuroinflammation.

3.2.2. ESCs Therapy

ESCs have demonstrated the ability to differentiate not only into neurons but also
into astrocytes, highlighting their diverse differentiation potential for enhancing neuronal
function and promoting brain development. In a quinolinic acid-induced HD rat model,
hESCs were differentiated into nestin-positive neural precursors and transplanted into
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the striatum. The transplanted hESC-derived neural precursors were detected in both the
cortex and striatum, showing signs of neuronal differentiation. Moreover, the transplanted
animals exhibited significant behavioral improvement [205].

Clinical trials have shown improvements in HD symptoms using ESCs. In one trial,
human fetal neuroblasts were grafted into the striatum of five patients. PET scans revealed
increased metabolic activity in various subnuclei of the striatum in three patients, indicat-
ing functional grafts. These patients experienced motor and cognitive improvements or
maintained normal function, demonstrating functional benefits in their daily activities [206].
However, the condition of the remaining two patients declined similarly to the control
group, indicating that the clinical application of ESCs is not always successful.

In a recent phase II randomized trial called the Multicentric Intracerebral Grafting in
HD trial, the rate of motor score decline after transplantation was similar to that before
transplantation. Additionally, 40% of the patients developed anti-human leukocyte antigen
antibodies after transplantation. This trial did not demonstrate any clinical benefit, possibly
due to graft rejection [207]. Another study involving the implantation of human fetal gan-
glionic eminence in HD patients showed no signs of tissue overgrowth at the implantation
site [208]. Therefore, further research is needed to investigate the potential adverse effects
of ESC transplantation, such as rejection and tumor formation.

Harvesting, transporting, storing, and preparing ESCs for transplantation present
significant challenges. Additionally, the use of ESCs raises ethical concerns due to the
destruction of human embryos during their derivation.

3.2.3. NSCs Therapy

NSCs can differentiate into various types of neural cells, including neurons and glial
cells [209]. In HD, specific types of neurons (such as MSNs in the striatum) undergo degen-
eration. NSCs transplantation can replace these lost neurons, restore the damaged neural
networks, and have neuroprotective effects by secreting a variety of neurotrophic factors,
such as BDNF. Additionally, NSCs can modulate the neural environment by reducing
inflammation and promoting endogenous neurogenesis, which could be beneficial in the
context of HD [210].

In previous research, NPCs derived from a specific human iPSC line, namely 1231A3-
NPCs, were grafted into the striatum in a quinolinic acid (QA)-lesioned rat model of HD.
The graft recipients demonstrated notable behavioral enhancements for a period extending
up to 12 weeks. Furthermore, the transplanted 1231A3-NPCs not only substituted for some
of the lost neurons but also boosted innate neurogenesis, mitigated inflammatory responses,
and helped restore the impaired neuronal connections [210]. In a recent study involving the
transplantation of human NSCs into HD zQ175 mice, significant behavioral improvements
were observed, along with an increase in BDNF levels and a decrease in mHTT accumula-
tion. Evidence from patch clamp recordings and single-nucleus RNA sequencing suggested
that these human NSCs differentiated into diverse neuronal populations, including MSNs
and interneurons. They also established connections, which contributed to enhancements
in membrane and synaptic properties. These findings emphasize the therapeutic potential
of human NSC transplantation for HD [211].

However, the process of deriving NSCs and differentiating them into the desired types
of neurons is technically challenging and requires further refinement. Additionally, our
current understanding of HD pathology is limited, and it is unclear whether replacing lost
neurons can fully restore the complex neural networks that are disrupted in HD.

3.2.4. iPSCs Therapy

iPSCs have emerged as another potential therapy for HD, complementing the use
of embryonic and MSCs. Unlike MSCs, iPSCs hold significant promise for replacing
degenerated neurons in affected brain regions, making them a more suitable option
for transplantation.
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Since their development in 2006, iPSCs have generated significant excitement due
to their ability to model human diseases in cell models [212]. The concept behind iPSCs
therapy is to generate healthy neurons and replace dysfunctional or damaged neurons
in the brain. These transplanted neurons have the potential to integrate into the existing
neural circuitry, restore normal function, and halt disease progression.

In animal models of HD, significant changes were observed in 3-NP-treated rats,
including decreased optical densitometric measures in the striatum and enlarged lateral
ventricles. However, rats treated with 3-NP and receiving iPSC transplants did not exhibit
these deficits. The transplanted iPSCs were found to survive and differentiate into region-
specific neurons in the striatum, indicating a potential therapeutic effect [213]. However,
the transplantation of iPSCs carries the risk of over-proliferation if the transplants are not
pre-differentiated towards a specific germ layer, such as the neuroectoderm. To address this
concern, researchers have shifted their focus to iPSC-derived NSCs, which are generated by
differentiating iPSCs. This therapy has the potential to replace damaged brain tissue as it
can differentiate into neurons [214]. In a prior study, iPSC-derived NSCs were transplanted
into the striatum of YAC128 mice. The results of the study demonstrated not only the
survival and differentiation of numerous iPSC-NSCs into striatum-specific MSNs but also
the absence of tumor formation. These findings suggest that this approach could be a
promising strategy for neuronal replacement therapy in HD [215].

iPSC-based therapy offers several advantages for the treatment of HD. One significant
advantage is the patient-specific approach, where iPSCs can be derived from the patient’s
cells. This personalized treatment approach minimizes the risk of immune rejection and
enhances the compatibility of the transplanted cells. Additionally, pluripotent stem cells
have the remarkable ability to self-renew indefinitely, providing an unlimited cell supply
for transplantation and addressing the ethical concerns associated with embryonic stem
cell use. Moreover, iPSCs can be utilized to create disease-specific cellular models, allowing
researchers to study the mechanisms underlying HD [52,107,108]. While the results of
iPSC-based therapy in preclinical and clinical trials have shown promise and demonstrated
several advantages, it is important to acknowledge that iPSC therapies for HD still face
challenges and require various improvements. Safety concerns are of utmost importance, as
there is a risk of tumor formation. Additionally, generating a pure population of functional
neurons from pluripotent stem cells is a complex task that requires careful optimization
of differentiation protocols. By addressing safety concerns and optimizing differentiation
efficiency, pluripotent stem cell-based therapies hold significant potential for the treatment
of HD.

3.2.5. Gene-Edited Autologous Transplantation

Autologous stem cell transplantation, which significantly reduces the risk of immune
responses, is gaining increasing interest. As these cells, derived from patients, still carry
the HD gene, it may be crucial to eliminate or silence the mutant HD gene. Numerous
studies have successfully lowered mHTT levels [216], opening the possibility for gene-
corrected autotransplants and thereby enhancing stem cell therapy’s effectiveness. One
such investigation used allele-specific PAM-altering gRNAs in three NPCs from an iPSC
line to remove the CAG expansion mutation. This led to complete mutant allele inactivation
without affecting the normal allele, effectively halting mHTT production [217]. In a different
study, the HTT gene was corrected in human iPSCs using a CRISPR-Cas9 and piggyBac
transposon-based approach. The results showed that both HD and corrected isogenic
human iPSCs could differentiate into active, excitable forebrain neurons, and the phenotypic
defects observed in HD human iPSC-derived neural cells were successfully addressed [218].
While the idea of using autologous stem cells for HD treatment is promising, it’s worth
noting that this field is still emerging, and further research is required to fully understand
the safety and efficacy of this approach.
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3.2.6. “Prion-like” Propagation following Transplantation

During the process of transplantation, particularly in the context of neurological disor-
ders, there are inherent risks, one of which includes the potential for prion-like transmission.
In HD, this primarily involves cells or aggregates carrying the abnormal protein mHTT.
These abnormal proteins may spread to transplanted tissues or cells, creating a situation
similar to prion disease transmission. Some studies have demonstrated that mHTT ag-
gregates could transfer to transplanted cell grafts in a prion-like fashion. For instance,
human iPSC-derived MSNs were transplanted into the striatum of R6/2 mice, leading to a
reduction in motor deficits and an increase in lifespan. However, mHTT aggregates were de-
tected in the nuclei of transplanted cells [219]. Similarly, fetal striatal allografts transplanted
into HD patients exhibited mHTT aggregates within the transplanted tissue [220]. These
observations suggest the potential transfer of mHTT from the host to transplanted cells.
Furthermore, research has shown that mHTT aggregates can migrate from the transplant to
the host tissue. For instance, when HD skin fibroblasts were transplanted into healthy mice,
mHTT aggregates were detected in host cells [221]. The spread of mHTT aggregates to
healthy cells following transplantation in HD stem cell therapy could have adverse effects
on the patient’s condition, potentially accelerating disease progression. Therefore, it is
imperative for researchers to thoroughly evaluate and monitor this risk of transmission.

3.3. RNA Targeting Therapy

Given the complex pathological mechanisms of HD and the diverse effects of mHTT on
a wide range of cellular functions, it is widely accepted that an effective therapeutic strategy
would involve gene therapy to eliminate or reduce the expression of mHTT. Researchers
have made significant progress in animal models and clinical trials, exploring various
approaches for gene therapy in HD, including the following.

3.3.1. SiRNA Treatment

Synthetic siRNAs can be specifically designed to target and degrade HTT mRNA,
effectively reducing the production of mHTT protein. In a study, cholesterol-conjugated
siRNA duplexes (cc-siRNA) were introduced into the striatum of mice carrying the mHTT
gene, resulting in the prolonged survival of striatal neurons, reduced neuropil aggregates,
decreased inclusion size, and improved performance on the balance beam test [222].

Silencing gene expression throughout the brain using siRNAs has been challenging,
but a specific di-siRNA has shown promise in achieving potent and sustained gene silencing
in the CNS of mice and nonhuman primates. By administering a single injection into
the cerebrospinal fluid (CSF), di-siRNAs successfully silenced the HTT gene for at least
6 months in mouse models and exhibited robust silencing in both the brain and spinal cord
of cynomolgus macaques [223].

However, the lack of an efficient in vivo delivery system remains a major challenge,
particularly for delivering oligonucleotides to the cortex and striatum. To overcome this
limitation, one study utilized focused ultrasound (FUS) in combination with an intravascu-
lar microbubble contrast agent to transiently and locally disrupt the blood–brain barrier
(BBB) in the striatum of adult rats [224]. Another study loaded hydrophobically modified
siRNAs (hsiRNAs) into exosomes, enabling efficient bilateral distribution when infused
into the mouse striatum [225]. However, continuous delivery of siRNA into the brain and
optimizing delivery efficiency are still areas for improvement.

To address these challenges, a recent study proposed a synthetic biology approach
that combines the exosome-circulating system with artificial genetic circuits for the self-
assembly and delivery of mHTT-silencing siRNA to the cortex and striatum. This strategy
demonstrated an effective reduction in mHTT protein and toxic aggregates, leading to
improved behavioral deficits and alleviated neuropathology in HD mouse models [226].
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3.3.2. MicroRNAs (miRNAs) Treatment

MiRNAs, small non-coding RNAs that regulate gene expression, have also shown
promise as a therapeutic approach for HD. Studies have evaluated the efficacy and toler-
ability of selective or non-selective miRNA-based strategies for reducing HTT levels in
mouse models. For example, intrastriatal administration of AAV5-miHTT, an AAV5 vector
encoding a miRNA targeting human HTT, resulted in sustained suppression of HTT for at
least 7 months in a mouse model [227]. Additionally, intrastriatal injection of AAV5 vectors
carrying CAG repeat-targeting artificial miRNA in mice led to a significant reduction in
mHTT levels and aggregates [228].

However, the translation of these findings to HD patients is hindered by differences
in brain size and structure between rodents and humans. Therefore, investigating the
feasibility, efficacy, and tolerability of miRNA therapy in large animal models is crucial.
Studies in transgenic HD minipigs and Rhesus macaques have demonstrated the potential
of miRNA therapy in reducing mHTT mRNA and protein levels in the brain [229,230].
Despite these promising findings, miRNA therapy still faces limitations and challenges.
One major limitation is that a single miRNA often has multiple targets, which may result
in unexpected side effects due to multiple bindings to different direct targets [231].

3.3.3. Short Hairpin RNA (shRNA) Treatment

ShRNAs are RNA sequences that form tight hairpin structures. The transcription of the
shRNA plasmid produces a product that is processed by Drosha, resulting in pre-shRNA.
Exportin 5 assists in exporting this pre-shRNA from the nucleus. Dicer then processes the
pre-shRNA, which binds to the RISC complex and degrades specific mRNA molecules,
thereby mediating RNA interference [232]. Numerous research groups have demonstrated
the effectiveness of viral vector-mediated and plasmid vector-mediated shRNAs in the long-
term downregulation of HTT expression. This downregulation can be either allele-specific
or non-allele-specific in various HD cell models, including patient-derived fibroblasts,
iPSCs from YAC128 mice, astrocytes derived from iPSC-derived neural progenitor cells
of HD monkeys, and striatal neurons derived from iPSCs of HD patients [233]. In human
embryonic stem cells, Drouet et al. observed that stable knockdown of HTT also resulted
in functional recovery of vesicular transport of BDNF along microtubules [234]. Franich
and colleagues demonstrated that shRNAs decreased HTT expression, preventing striatal
neurodegeneration and associated motor behavioral impairment in an rapid-onset HD rat
model [235].

Extensive research findings suggest that suppressing both wtHTT and mHTT expres-
sion can have therapeutic benefits. However, selectively silencing mHTT is considered the
safest approach as it preserves wtHTT expression and functions. For example, the intras-
triatal injection of AAV5-mediated shRNA targeting CAG repeats resulted in a specific
50% reduction in mHTT levels and a dose-dependent decrease in HTT aggregates in the
striatum of YAC128 mice [228]. In another study, selective silencing of mHTT was achieved
using LV-mediated shRNAs targeting the single-nucleotide polymorphisms (SNPs) of the
mHTT gene in transgenic BACHD mice and the rapid-onset HD rat model [234].

Unlike double-stranded RNA, which has a transient effect, shRNAs are delivered on a
DNA plasmid, allowing for continuous expression over extended periods, ranging from
months to years [232]. However, McBride et al. reported that shRNAs induce significant
neurotoxicity in the striatum of HD140Q KI mice, primarily due to the robust levels of
antisense RNAs arising from shRNA expression systems [236]. This finding, along with the
challenge of precisely modulating shRNA expression levels, presents additional obstacles
to the implementation of shRNA therapy.

3.3.4. ASOs Treatment

ASOs are short nucleic acid sequences that can bind to specific mRNA sequences
and recruit RNase H to degrade the targeted transcript, resulting in reduced levels of
the targeted gene expression [237]. Direct administration of ASOs into the CSF through
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intrathecal (IT) or intracerebroventricular (ICV) injection effectively bypasses the BBB [238].
Compared to systemic administration, ICV and IT injections offer targeted drug delivery to
the CNS, leading to enhanced drug availability, reduced dosage requirements, and a faster
onset of action. In mice, ICV administration of Tricyclo-DNA (tcDNA) ASOs results in
extensive distribution throughout the CNS. YAC128 mice, following a single ICV injection
of tcDNA ASO, exhibit a widespread distribution of ASOs throughout the CNS, and this
sustained reduction in mHTT levels in various brain regions lasts for up to 12 weeks [239].
To assess the efficacy of delivering ASOs into a larger, more complex brain that closely
resembles the human brain, intrathecal infusion of ASOs in Rhesus monkeys is necessary.
Intrathecal infusion of ASOs into the CSF of nonhuman primates leads to a sustained
reduction in HTT mRNA in most brain and spinal cord regions, including those heavily
implicated in HD pathology [240].

While ICV and IT injections target drug delivery to the CNS, it is important to note
that these invasive approaches carry inherent risks, such as infection and tissue damage.
Therefore, non-invasive approaches are necessary. Using apolipoprotein A-I nanodisks
(apoA-I NDs) as delivery vehicles for ASOs, a single intranasal administration in BACHD
mice significantly reduces mHTT levels in the cortex and striatum, the brain regions
primarily affected by HD [241]. The cyclodextrin-based nanoparticles (CDs) platform is
another innovative strategy to improve ASO delivery [242].

ASOs can be allele-specific, targeting mHTT specifically, or allele non-specific, targeting
both wtHTT and mHTT. Considering that wtHTT plays a role in embryonic neurodevelop-
ment and serves various functions in the adult brain, selectively reducing mHTT levels may
be a safer option [23,243]. In the case of allele-specific ASOs, they are designed to target
specific SNPs in the mHTT gene. Treatment with allele-specific ASOs has shown promising
results in reducing cognitive and behavioral impairments in a humanized mouse model of
HD, Hu97/18 [244,245].

ASOs have made significant advancements in recent years, and numerous clinical
trials are currently underway to evaluate their efficacy in treating patients with HD. In a
Phase III study evaluating the use of tominersen for HD treatment, there was an average
reduction of 40% in specific HTT levels in the CSF of HD patients [246]. Unfortunately, due
to an unsatisfactory risk/benefit assessment, the trial was halted. However, it is foreseeable
that ASO-based drugs will eventually achieve optimal efficacy and minimal toxicity in the
future treatment of HD.

3.4. Gene Editing and CRISPR/Cas System Therapy

Gene editing technology has undergone significant development in the past decade,
emerging as a powerful tool for precise genome modification. These techniques allow for
the targeted manipulation of specific DNA sequences, inducing double-strand breaks in
the desired genomic region. Subsequently, the cell’s natural DNA repair mechanisms, such
as nonhomologous end joining (NHEJ) or homology-directed repair (HDR), are activated
to accurately restore the DNA. The error-prone NHEJ pathway can introduce insertion or
deletion mutations in the target gene, while HDR employs an alternative DNA sequence
as a template for precise repair of the break. Among the widely utilized gene editing
technologies are zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases
(TALENs), and the CRISPR/Cas system.

Given the monogenic nature of HD, it represents an exceptional candidate for gene
therapy interventions. Gene editing studies have demonstrated successful reductions in
mHTT protein levels in animal models [247,248].

3.4.1. ZFNs

ZFNs combine a DNA-binding domain derived from zinc fingers with a DNA-cleavage
domain from the FokI endonuclease. The DNA-binding domain recognizes and binds to a
specific target sequence, while the FokI domain induces a double-strand break in the DNA,
enabling precise genome editing [249]. Zinc finger protein transcription factors (ZFP-TFs)
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offer high target specificity by designing zinc finger domains that recognize specific DNA
sequences. This specificity allows for precise gene regulation. In the context of HD, ZFP-TFs
have been used to selectively reduce the expression of mHTT in the brains of R6/2 HD mice
and Hdh Q50 mice. This targeted reduction leads to decreased aggregation and improved
motor symptoms [250,251]. However, compared to other gene editing techniques, ZFNs
require more extensive design and optimization steps to achieve specific targeting and have
a relatively limited target range. Therefore, addressing the limitations of these techniques
in HD treatment and making efforts to overcome them is crucial.

3.4.2. TALENs

TALENs utilize DNA binding domains composed of repetitive peptides that interact
with DNA nucleotides, leading to the generation of double-strand breaks using artificial
nucleases. This capability enables the precise deletion or correction of DNA segments.
Compared to ZFNs, TALEN-based nucleases demonstrate higher efficiency and increased
specificity. The implementation of an SNP-specific transcription activator-like effector
(TALE-SNP) in HD patient-derived fibroblasts resulted in a significant reduction of up
to 20% in mHTT gene expression, accompanied by a notable decrease in protein aggrega-
tion [252]. However, due to the challenges associated with delivery and the complexity
involved in designing and assembling TALENs, there has been limited exploration of
TALENs in HD animal models thus far.

3.4.3. CRISPR/Cas9

The CRISPR/Cas system comprises the Cas9 protein and a synthetic guide RNA. The
gRNA recognizes the target genomic sequence and guides the Cas9 protein to cleave the
DNA double-strand, resulting in double-strand breaks that can be repaired to achieve gene
knockout or gene insertion. Several research groups have successfully reduced mHTT
expression in HD patient-derived fibroblasts by introducing plasmid vectors expressing
CRISPR/Cas tools [253]. Han and colleagues effectively utilized CRISPR/Cas9 by de-
signing guide RNAs to induce large deletions or frameshift indel mutations in the CAG
expansion of R6/2 mouse-derived neurospheres. This approach led to a reduction in polyQ
aggregation and cellular apoptosis [254]. By employing an allele non-specific strategy,
researchers achieved reduced mHTT expression and aggregation, as well as improved
motor symptoms in both heterozygous zQ175 mice and HD140Q-knockin mice [255,256].
Furthermore, an allele-specific strategy targeting the SNP of the mHTT gene resulted in a
significant reduction in mHTT mRNA and protein levels specifically in both heterozygous
zQ175 mice and BAC97 mice [257]. In 2023, Yan et al. used a Cas9-mediated strategy to
replace expanded CAG repeats in the mHTT allele with normal CAG repeats in HD KI
pigs. By introducing donor DNA containing the normal CAG repeat, they successfully
depleted the mHTT gene, leading to significant reductions in the dysregulated expression
and neurotoxicity of mHTT [258].

3.4.4. CRISPR-Cas13d

CRISPR-Cas13d is an emerging type of CRISPR system specifically designed to tar-
get RNA molecules rather than DNA [259]. In comparison to shRNA, nuclear-localized
sequence-fused Cas13d has shown significantly stronger RNA cleavage ability with high
efficiency (approximately 96% knockdown by Cas13d compared to approximately 65% by
shRNA). Additionally, Cas13d has demonstrated remarkable specificity, resulting in mini-
mal off-target effects [260]. This innovative system holds great potential for RNA-targeted
gene editing and therapeutic interventions in HD.

In a recent study, researchers developed a CRISPR-Cas13d system called Cas13d-
CAGEX, which specifically targets mutant CAGEX RNA [261]. They demonstrated the
effectiveness of this system by successfully eliminating toxic CAGEX RNA in fibroblasts
derived from HD patients and iPSC-derived neurons. To further validate its potential,
the researchers utilized an AAV vector to deliver Cas13d-CAGEX into the striatum of
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heterozygous zQ175 mice. This targeted delivery resulted in a selective reduction in mHTT
mRNA and protein levels in the striatum, leading to improvements in motor coordination,
attenuation of striatal atrophy, and a reduction in mHTT protein aggregates. Importantly,
these positive effects were sustained for at least eight months without any adverse effects,
and minimal off-target transcriptomic effects were observed. This study highlights the
promising therapeutic potential of Cas13d-CAGEX in HD treatment, as it demonstrates the
system’s ability to selectively target and reduce the mHTT protein, resulting in significant
phenotypic improvements in an HD mouse model. However, it is crucial to note that
the use of CRISPR-Cas13d in HD treatment is still in the early stages of research, and
further studies are necessary to evaluate its safety, efficacy, and optimal delivery methods
in clinical settings.

3.5. The Challenge of Gene Therapy

Numerous research findings indicate the therapeutic potential of gene editing tech-
niques for treating HD. However, before advancing to human clinical trials, further devel-
opment and comprehensive pre-clinical studies are essential. Since many current clinical
trials for HD treatment use non-allele-specific gene therapy, it is important to consider
the safety of this approach due to the involvement of HTT in various biological functions.
While a partial reduction in normal HTT levels has been tolerated in preclinical animal
models of HD, such as minipigs or adult rhesus monkeys, the long-term consequences in
humans remain uncertain [262,263].

Researchers have observed that deleting the HTT gene causes age-dependent pheno-
types. Although deletion of the HTT gene in mice at 2 months or earlier can cause obvious
animal death because of acute pancreatitis, animal mortality is significantly reduced when
the HTT gene is knocked out beyond four months of age [264]. Consistently, Pla et al.
analyzed a mouse model in which HTT was selectively deleted at a young age (2 months)
and found impairments in the survival and dendritic arborization of newly generated
hippocampal neurons [265]. Interestingly, the absence of HTT exon 1 does not affect animal
reproduction, the subcellular distribution of HTT, the expression of autophagy proteins,
and global gene transcription in the mouse brain [266]. In a recent study using the Kami-
Cas9 gene-editing system and single-nuclei RNA sequencing, researchers found that HTT
inactivation did not induce changes in the profiles or proportions of striatal cells in aged
animals, indicating a limited response to HTT inactivation across all cell types [267]. How-
ever, a study by Dietrich et al. found that the elimination of HTT expression in mice older
than 12 months led to behavioral deficits, bilateral thalamic calcification, and disrupted
brain iron homeostasis despite the absence of overt neurodegeneration [268].

Although knocking out the mouse homolog of HTT has been found to be embryonically
lethal, inactivation of HTT in adult mice can significantly reduce animal mortality and does
not lead to obvious alterations in neuronal survival [21,267,269,270], these results suggest
that the phenotypes observed in HTT knockout mice are age-dependent.

In the Phase III clinical trial of tominerson, a non-allele-selective HTT-lowering ASO
therapy, HD patients receiving tominerson experienced a more rapid worsening of compos-
ite Unified Huntington’s Disease Rating Scale scores compared to the placebo group [246].
Similarly, in another non-allele-selective HTT-lowering clinical trial called AMT130, three
out of the 14 patients receiving the higher dose of AMT-130 experienced unexpectedly
severe adverse reactions. However, at this stage, no definitive conclusions can be drawn
regarding these unexpected outcomes. Researchers should consider evaluating key factors
such as the potential impact of blocking the normal HTT protein on patients and the possi-
ble insufficiency of the method of administration. Based on the existing evidence, ensuring
the safety of non-allele-specific therapy for HD is crucial due to the potential reduction
in wtHTT levels. Identifying the most appropriate stage to intervene and the duration of
treatment are critical considerations.

Significant advancements have been made in gene therapy for HD, specifically in
targeting the mHTT alleles. This strategy aims to selectively diminish the expression of
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mHTT, thereby mitigating the toxic effects of the mHTT protein while maintaining the
normal function of wtHTT. Such an allele-selective approach could prove particularly
beneficial in treating presymptomatic young adults with HD [271].

In addition, efficient delivery of therapeutic agents across the BBB to reach affected
neurons in the CNS remains a major hurdle. Researchers are actively exploring different
delivery strategies and optimizing viral vectors or non-viral carriers to enhance CNS
penetration. Technological advancements like microbubble-facilitated FUS combined with
magnetic resonance imaging (MRI)-guided procedures have shown promise in enhancing
and facilitating the targeted delivery of recombinant AAV for therapeutic gene delivery
into the brain [272].

4. Clinical Trials for HD Treatment

Clinical trials for HD treatment are currently underway, with specific objectives aimed
at evaluating the safety, effectiveness, and potential benefits of various therapeutic ap-
proaches. These approaches include RNAi, gene therapy, small molecule drugs, and
non-pharmacological treatments. The ultimate goal of these trials is to improve symptoms,
slow disease progression, and enhance the overall quality of life for individuals affected by
HD. In the field of gene therapy for HD, several notable clinical trials and research studies
have been conducted (Supplementary Materials, [273–282]).

4.1. Tominersen

Tominersen, developed by Ionis Pharmaceuticals, is an ASO that targets the HTT
mRNA to reduce the production of mHTT. The GENERATION HD1 clinical trial
(NCT03761849), which aimed to evaluate safety and effectiveness, has shown promis-
ing results in reducing mHTT levels in the CNS and slowing disease progression. In the
Phase I/II clinical trial, tominersen significantly reduced mHTT levels, with a sustained
reduction in corresponding mRNA and protein levels. After three months of treatment
with the highest doses of tominersen, HD patients experienced an average reduction of
40% in specific HTT levels in their CSF. The majority of patients continued to see a decline
in mHTT levels in the CSF, indicating the sustained effect of tominersen. Additionally,
tominersen demonstrated good tolerability.

However, in March 2021, based on a pre-planned risk/benefit assessment conducted
by an independent data monitoring committee, Roche announced the discontinuation of
dosing in the Phase III study evaluating the use of tominersen for HD treatment [244].
Despite this setback, the sponsor has initiated the GENERATION HD2 trial (NCT05686551),
which focuses on younger participants with a lower disease burden. In this trial, partici-
pants will receive lower doses of tominersen administered every 16 weeks without loading
doses. The GENERATION HD2 trial aims to assess the potential benefits of this dosing
regimen in this specific study population. The trial is expected to be completed in 2027.

4.2. AMT-130

UniQure, a biopharmaceutical company, is developing a gene therapy called AMT-130
that utilizes an AAV5 vector to deliver a microRNA-based therapeutic agent targeting
and reducing HTT expression. Preclinical studies in animal models have demonstrated
promising results in reducing mHTT levels and improving motor function [227,283]. This
innovative approach of non-selective knockdown of the HTT gene in the brain using the
AAV vector shows great potential for treating HD.

On 8 August 2022, uniQure reported that three out of 14 patients in the high-dose
AMT-130 treatment group experienced severe adverse effects during a Phase 1/2 trial
(NCT04120493) for HD. Following consultation with the Data Safety Monitoring Board,
uniQure decided to suspend dosing in the high-dose group. Currently, a Phase 3 clinical
trial called HD-KINECT (NCT04102579) is still underway to assess the safety and efficacy
of AMT-130 in HD patients. In June 2023, the Phase I/II trial of AMT-130 for the treatment
of HD demonstrated good tolerability and manageable safety after 24 months of follow-
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up. Patients showed preserved function and reductions in relevant biomarkers. Further
investigation will focus on the safety of using two doses of AMT-130 in combination with
perioperative immunosuppression.

4.3. Splice Modulators: PTC518 and Branaplam

Given the potential benefits of splice modulators in reducing the production of mHTT,
several companies are actively developing splice modulators for the treatment of HD.
PTC518 is an orally available small molecule specifically designed for HD. It was developed
using a drug discovery platform that screened over 300,000 compounds to identify splicing
modulators. PTC518 acts as a modulator of HTT pre-mRNA splicing by promoting the
inclusion of a pseudoexon, which induces a premature termination codon and leads to the
degradation of HTT mRNA [284,285]. This small molecule can penetrate the BBB and has
shown promising results.

In June 2023, PTC Therapeutics shared mid-term data from the PIVOT-HD Phase
2 study of PTC518 (NCT05358717) in HD patients. The study demonstrated a dose-
dependent reduction in HTT levels in peripheral blood cells, with an average decrease
of 30% at a dose of 10 milligrams. Treatment with PTC518 was well-tolerated, with no
treatment-related serious adverse events reported, and no reports of peripheral neuropathy
or dose-limiting toxicity. Additionally, after 12 weeks of PTC518 treatment, the CSF NfL
levels showed an overall downward trend.

Another alternative disease-modifying small molecule, branaplam, has shown promise
in lowering mHTT protein levels in an HD mouse model by enhancing pseudoexon inclu-
sion. This small molecule promotes the inclusion of non-annotated novel exons, including
a frameshift-inducing exon in the HTT transcript. It has demonstrated a dose-dependent
reduction in the total HTT and mHTT levels in patients’ fibroblasts, iPSCs, cortical progeni-
tors, and neurons [286]. However, the occurrence of nerve damage reported in participants
receiving branaplam treatment during a Phase 2 study (NCT05111249) for HD is concern-
ing. As a precautionary measure, Novartis has decided to temporarily suspend this trial.
Branaplam has been observed to alter the levels of the survival motor neuron-2 (SMN2)
protein, as well as potentially other proteins, which may partially contribute to the observed
side effects [287].

4.4. VMAT Inhibitor: SOM3355 and Valbenazine

SOM3355, also known as bevantolol hydrochloride, is a VMAT inhibitor that dis-
rupts the transmission of dopamine messages between neurons. In a previous small trial
(NCT03575676), a mixed-model analysis demonstrated a significant improvement in the
total maximal chorea score, indicating its potential to effectively control HD chorea [278].
Following the completion of a clinical phase 2a trial, SOM3355 exhibited a favorable safety
profile without depressive side effects. Currently, the drug is undergoing a phase 2b trial to
validate its efficacy and safety in HD patients with chorea (NCT05475483).

4.5. Pridopidine

Pridopidine is a dopamine stabilizer that interacts with dopamine type 2 receptors.
In preclinical studies, pridopidine has shown beneficial effects in R6/2 mice, including
increased expression of pro-survival and neurostimulatory molecules like BDNF and
DARPP32. Additionally, pridopidine treatment has led to a reduction in the size of mHTT
aggregates in striatal tissues [288]. In a previous study called PRIDE-HD (NCT02006472),
pridopidine demonstrated a beneficial effect on the Total Functional Capacity (TFC) for
the entire population at week 52, with an improvement of 0.87 (nominal p = 0.0032). The
effect was particularly notable in early-stage HD participants [274–276]. New studies
suggest that pridopidine activates a protein called the sigma-1 receptor, which could have
positive effects on brain health [289]. PROOF-HD (NCT04556656), a larger and longer
study, aimed to examine whether pridopidine could help patients with HD maintain
daily function. The study is complete, and the results are a mix of positive and negative
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findings. Prespecified analyses in PROOF-HD showed clinically meaningful and nominally
significant benefits and improvements from baseline in disease progression, as well as motor
and cognitive outcome measures when comparing pridopidine with placebo. However,
these effects were not observed in patients taking neuroleptics and chorea medicines,
potentially due to the masking effect of concurrent medications. As a result, the primary
endpoint and key secondary endpoint did not reach statistical significance. The results from
larger trials have been mixed, highlighting the complexity of HD and the need for further
research to fully understand the effects of pridopidine in different patient populations and
treatment contexts.

4.6. SAGE-718

SAGE-718, a derivative of the endogenous steroid 24(S)-hydroxycholesterol, acts as a
positive allosteric modulator of the NMDA receptor. In 2021, SAGE-718 received the FDA’s
fast-track designation for the treatment of HD, aiming to expedite the development and
review of potentially significant new therapies. Cognitive impairment is often overlooked in
HD, and currently, there are no approved treatments specifically targeting cognitive decline
in affected individuals. To assess the safety and effects on cognitive function, two Phase
2 clinical trials, namely DIMENSION (NCT05107128) and SURVEYOR (NCT05358821), are
evaluating SAGE-718 against a placebo in patients with HD. These trials aim to provide
valuable insights into the potential of SAGE-718 as a therapeutic option for cognitive
impairment in HD.

5. Conclusions

In recent decades, significant progress has been made in understanding the patho-
genesis of HD and developing therapeutic strategies. Pharmacological interventions have
shown promise in managing HD symptoms and improving patients’ quality of life. Addi-
tionally, approaches focused on modulating protein folding, enhancing protein clearance
pathways, and targeting specific steps in the aggregation cascade have demonstrated
encouraging results in preclinical studies. However, the translation of these promising
preclinical findings into effective treatments for HD patients has proven to be challeng-
ing. Clinical trials investigating various therapeutic approaches, such as gene therapy,
proteasome modulators, and antibody therapies, have encountered setbacks and have
not yet produced definitive outcomes. The complexity of HD pathogenesis may be better
replicated in large animals that are more similar to humans. Therefore, large animal models
of HD should be considered as alternative models to validate important therapeutic targets.
While gene therapy holds great promise for the effective treatment of HD, the need for
precise targeting of mHTT and the difficulty of delivering therapies to the affected brain
regions present significant challenges.

Despite these challenges, ongoing research and clinical trials continue to expand
our understanding of HD and refine therapeutic strategies. Continuous and significant
advances in understanding HD pathogenesis and developing new tools for treatment will
ultimately lead to a cure for this debilitating disorder.
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