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Abstract: Approximately 75% of bladder cancer cases originate as non-muscle-invasive bladder
cancer (NMIBC). Despite initial diagnosis, NMIBC commonly recurs, with up to 45% advancing
to muscle-invasive bladder cancer (MIBC) and metastatic disease. Treatment for high-risk NMIBC
typically includes procedures like transurethral resection and, depending on recurrence risk, intraves-
ical chemotherapy or immunotherapy such as Bacillus Calmette–Guérin (BCG). However, persistent
shortages of BCG necessitate alternative first-line treatments. We aim to use a multi-gene signature
in high-risk NMIBC patients to determine whether patients may benefit from immune checkpoint
inhibitors (ICIs) as an alternative to BCG and to evaluate their clinical utility. The multi-gene signature
obtained from the three independent NMIBC cohorts was applied to stratify the UROMOL2016 cohort
(n = 476) using consensus clustering. Each subtype was distinguished by biological pathway analysis.
Validation analysis using a machine learning algorithm was performed in six independent cohorts
including the BRS (n = 283) cohort treated with BCG and the IMvigor210 (n = 298) clinical trials treated
with PD-L1 inhibitors. Based on consensus cluster analysis, NMIBC patients in the UROMOL2016
cohort were classified into three classes exhibiting distinguished characteristics, including DNA
damage repair (DDR). Survival analysis showed that the NMIBC-DDR class had the highest rates of
disease progression (progression-free survival, p = 0.002 by log-rank test) in the UROMOL cohort
and benefited from BCG and ICIs (respectively, p = 0.02 and p = 0.03 by log-rank test). This study
suggests that the multi-gene signature may have a role in identifying high-risk NMIBC patients and
improving the responsiveness of ICIs. Additionally, we propose immunotherapy as a new first-line
treatment for patients with high-risk NMIBC because of the shortage of BCG supply. It is important
to help more patients prioritize cancer immunotherapy.

Keywords: high-risk non-muscle-invasive bladder cancer; the multi-gene signature; molecular
subtype; prognosis; BCG shortage; immunotherapy

1. Introduction

Bladder cancer accounts for 83,190 cancer-related deaths annually in the United
States [1]. Approximately 75% of BC patients are initially diagnosed with non-muscle-
invasive bladder cancer (NMIBC). Although NMIBC patients generally have a favorable
prognosis, with a five-year survival rate of approximately 85%, the recurrence rate is ap-
proximately 70%, and up to 45% of these cases progress to muscle-invasive bladder cancer
(MIBC) and metastatic disease [2].

According to the 2023 European Association of Urology (EAU) treatment guidelines
for NMIBC, all patients undergo transurethral resection of bladder tumor (TURBT) and
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subsequent treatment is determined by the EAU or European Organization for Research
and Treatment of Cancer (EORTC) risk scores. Patients with low scores are offered intraves-
ical chemotherapy, patients with intermediate scores are offered Bacillus Calmette–Guérin
(BCG) or chemotherapy, and patients with high scores are offered intravesical BCG treat-
ment or radical cystectomy (RC) [3].

BCG treatment is the optimal adjuvant therapy for high-risk NMIBC patients after
TURBT, but this treatment has several limitations. Patients may experience relapses at
rates of up to 40% at 2 years, while other vulnerable populations, such as elderly and
immunocompromised individuals, may have reduced immunological responses [4]. How-
ever, the most important issue with BCG is ongoing production shortages, which have left
many urological practices in need of alternative first-line treatments that are effective and
readily available [5,6]. Additionally, in recent years, due to the impact of the pandemic,
the BCG supply has been disrupted worldwide, increasing the urgency of developing first-
or second-line treatments for NMIBC [7]. From this perspective, immunotherapy treat-
ment may be a good alternative to overcome the BCG shortage. New strategies involving
immunotherapy are currently being evaluated in several clinical trials [8]. These efforts
suggest that preferential immunotherapy for high-risk NMIBC patients may reduce cancer
progression and recurrence.

In this study, we used transcriptomic data from NMIBC patients to construct a multi-
gene signature to identify three molecularly distinct subtypes. In addition, through a
machine learning-based prediction model, we performed a validation analysis on six
independent bladder cancer patient cohorts, including a cohort with BCG and immune
checkpoint inhibitor (ICI) records, and estimated the prognostic relevance.

2. Results
2.1. Identification of Distinct Molecular Subtypes of NMIBC

The baseline characteristics of the 1996 NMIBC and MIBC patients and the schematic
workflow of this study are detailed in Figure 1 and Table 1.
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Figure 1. The workflow diagram for this study. First, we identified the top 5000 genes based on
standard deviation in three independent non-muscle-invasive bladder cancer (NMIBC) cohorts and
selected 1528 commonly included genes. Next, consensus clustering analysis was performed to
determine the appropriate number of clusters. Then, Database for Annotation, Visualization, and
Integrated Discovery (DAVID) analysis was performed to explore the significantly enriched pathways.
Finally, we constructed a machine learning-based prediction model and verified the prognostic
relevance. NMIBC, non-muscle-invasive bladder cancer; MIBC, muscle-invasive bladder cancer.

We used the top 5000 genes based on standard deviation in the three NMIBC cohorts
to construct a common 1528 gene signature. Based on this signature, a consensus clustering
method was used to determine the optimal number of subgroups for distinguishing NMIBC
patients in the UROMOL2016 cohort, which was best when patients were divided into
three subgroups (Supplementary Figure S1A).
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Table 1. Baseline characteristics of the NMIBC and MIBC cohorts.

Variable UROMOL2016 GSE32894 GSE163209 GSE13507 BRS TCGA IMvigor210

Total 476 (100) 213 (100) 217 (100) 102 (100) 283 (100) 407 (100) 298 (100)
Sex

Male 367 (77.1) 158 (74.2) 159 (73.3) 86 (84.3) 227 (80.2) 301 (73.9) 233 (78.2)
Female 109 (22.9) 55 (25.8) 58 (26.7) 16 (15.7) 56 (19.8) 106 (26.1) 65 (21.8)

Grade
NA 0 1 (0.5) 0 0 0 3 (0.1) 298 (100)
PUNLMP 7 (1.5) 0 0 0 0 0 0
Low or G1 and G2 277 (58.2) 139 (65.3) 77 (35.5) 85 (83.3) 15 (5.3) 21 (5.8) 0
High or G3 and G4 192 (40.3) 73 (34.2) 140 (64.5) 17 (16.7) 268 (94.7) 383 (94.1) 0

Stage
CIS 3 (0.6) 0 0 0 0 0 0
Ta 345 (72.5) 116 (54.5) 113 (52.1) 23 (22.5) 38 (13.4) 0 0
T1 112 (23.5) 97 (45.5) 104 (47.9) 79 (77.5) 245 (86.6) 0 0
T2-4 16 (3.4) 0 0 0 0 407 (100) 298 (100)

Progression
No 445 (93.5) 191 (89.7) 200 (92.2) 91 (89.2) 187 (66.1) NA NA
Yes 31 (6.5) 22 (10.3) 17 (7.8) 11 (10.8) 96 (33.9) NA NA

Death
No NA NA NA NA NA 229 (56.3) 110 (36.9)
Yes NA NA NA NA NA 178 (43.7) 188 (63.1)

Treatment (BCG or ICIs) BCG ICIs
No NA NA NA NA 0 NA 0
Yes NA NA NA NA 283 (100) NA 298 (100)

Abbreviations: PUNLMP, papillary urothelial neoplasm of low malignant potential; CIS, carcinoma in situ; BCG,
Bacillus Calmette–Guérin; ICIs, immune checkpoint inhibitors; NA, not available.

To determine the activation of biological pathways in each subgroup, Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway analysis of the Database for Annotation,
Visualization, and Integrated Discovery (DAVID) was applied to the genes (FDR < 0.25).
Cluster 1 was enriched in cell cycle and DNA damage and repair (DDR)-related genes,
which included the Fanconi anemia pathway and homologous recombination pathways
(named NMIBC-DDR). Cluster 2 was enriched in epithelial–mesenchymal transition (EMT)
and T cell activation-related genes, which included those involved in focal adhesion, the
PI3K-AKT signaling pathway, the regulation of the actin cytoskeleton pathway, and antigen
processing and presentation-related genes (named NMIBC-ET). Cluster 3 was enriched
in lipid metabolism and ABC transporters-related genes. And this class also enriched
TGF-beta, MAPK, and Hippo signaling pathways (named NMIBC-F3M, Supplementary
Figure S1B).

2.2. Characteristics of Distinct Molecular Subtypes of NMIBC

An integrated analysis was performed to evaluate the prognostic impact of each
subgroup of NMIBC patients. We selected seven genes representing each subgroup and
collected clinical information including stage, grade, the taxonomy of the UROMOL con-
sortium, risk scores, and various signatures (Figure 2A). After exploring NMIBC-DDR,
we found that DNA damage response-related genes, including AURKA, CENPF, CHEK1,
EXO1, FANCB, FOXM1, and TOP2A, were enriched in a large number of patients with
T1-high grade NMIBC (59 out of 78, 76%). The EAU and EORTC risk scores were also high
(respectively, 81 out of 203, 40%, and 100 out of 174, 57%), high grade and T2-4 patients
(respectively, 115 out of 192, 60%, and 7 out of 16, 44%), and the late cell cycle and DNA
replication signatures was highly expressed in NMIBC-DDR. Exploring NMIBC-ET, we
found that it was enriched in EMT and T cell activation-related genes, including COL8A1,
DCN, LUM, PDGFRA, PTGS1, VCAM1, and VIM. Patients mainly included Class 2b (90
out of 160, 56%) and showed high expression of EMT, hypoxia, CD8 T cell, and Interferon
gamma signatures. In NMIBC-F3M, the expression of the FGFR3, FOXQ1, GATA3, HOXA1,
KRT13, MOGAT2, and PLCD3 genes was identified. The patients were mainly classified as
Class 1 and Class 3 (respectively, 65 out of 99, 65%, and 86 out of 96, 89%) and exhibited
high expression of the early cell cycle and FGFR3 signatures (Figure 2A,B). The progression
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rate of NMIBC-DDR was significantly higher than that of the remaining classes (log-rank
test, p = 0.002, Figure 2C).
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Figure 2. Characteristics of three classes categorized by the multi-gene signatures and estimation of
their prognostic relevance in NMIBC patients. (A) The heatmaps, clinical information, taxonomies,
risk scores, and signatures of UROMOL2016 (n = 476) were grouped into three classes according to the
multi-gene signature. Seven genes representing each class were selected. The colors in the heatmaps
reflect relatively high (red) and low (blue) (B) distributions of taxonomy, clinical information, risk
scores, and signatures according to the three classes. (C) Kaplan–Meier plot of the three classes in
UROMOL2016 (progression-free survival, p = 0.002 by the log-rank test).



Int. J. Mol. Sci. 2024, 25, 3800 5 of 14

2.3. Prognostic Impact of Distinct Molecular Subtypes of NMIBC

We used multi-gene signatures that distinctly identified three subtypes of NMIBC
and we applied a machine learning method (random forest) to train a prediction model
based on the 1528 gene signature to evaluate the prognostic relevance. The transcriptomic
data from 393 randomly selected NMIBC patients (80%) in total (training dataset) were
pooled to form a prediction model able to estimate the probability that a particular NMIBC
patient belonged to one of the three subtypes. To prevent overfitting in the prediction
model, we selected appropriate hyper-parameters through grid search (Supplementary
Table S1) and retrained the model with the remaining NMIBC patients (20%) in total (test
dataset; accuracy 94%, Supplementary Table S2 and Figure 3).
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Figure 3. Development of a prediction model based on the multi-gene signature. The random forest
algorithm was used. A prediction model was built based on transcriptome data from 393 randomly
selected patients (80%, training dataset) among all patients. To prevent overfitting of the prediction
model, we selected hyper-parameters through grid search and retrained the prediction model.

When this prediction model was applied to the validation cohorts, three classes were
clearly identified and prognostic relevance was determined (Supplementary Figure S2A–D).
Consistent with the previous results in UROMOL2016, most high-risk NMIBC patients
were included in the NMIBC-DDR class (respectively, p = 0.002, p < 0.001, and p = 0.003 by
log-rank test, Figure 4A–C).

2.4. NMIBC-DDR Was Associated with a Better Response to Immunotherapy Such as BCG and
Immune Checkpoint Inhibitor Treatment

In the BRS cohort with BCG treatment, three distinct classes were identified using the
prediction model, and the lowest rates of disease progression were observed in NMIBC-
DDR (p = 0.02 by log-rank test, Figure 4D,E). In addition, in the cases of BCG response
rate, the trend was confirmed to be highest in NMIBC-DDR and lowest in NMIBC-ET
(Figure 4F). In the classification of BRS, the BRS3 subtype was mostly included in NMIBC-
ET. To confirm whether the new NMIBC classification system consistently had prognostic
relevance in the MIBC cohort, validation analysis was performed on MIBC patients from
The Cancer Genome Atlas (TCGA) cohort and the immunotherapy clinical trial cohort
(IMvigor210 trial). The data were analyzed separately by a prediction model and three
classes were assigned (Supplementary Figure S3A,B). For the TCGA cohort, a prognostic
relevance could be found for the three classes (p = 0.03 by log-rank test, Figure 5A). In the
case of the IMvigor210 trial, three distinct classes and prognostic relevance were identified.
NMIBC-DDR, which had the highest rate of progression in NMIBC and poor prognosis
for MIBC patients, showed the most improved prognosis in the IMvigor210 trial (p = 0.03
by log-rank test, Figure 5B,C). When the objective response rate (ORR) was compared
among these classes, NMIBC-DDR exhibited a higher response rate than the other subtypes
(chi-square test, p < 0.001, Figure 5D).
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Figure 4. Estimation of prognostic relevance based on prediction model. (A) Kaplan–Meier plot of
three classes in GSE32894 (progression-free survival, p = 0.002 by the log-rank test). (B) Kaplan–Meier
plot of three classes in the GSE163209 cohort (progression-free survival, p < 0.001 by the log-rank test).
(C) Kaplan–Meier plot of three classes in the GSE13507 cohort (progression-free survival, p = 0.003 by
the log-rank test). (D) The heatmap and clinical information of BRS (n = 283) were divided into three
classes according to the prediction model. Seven genes representing each class were selected with
colors in the heatmap reflecting relatively high (red) and low (blue) levels. (E) Kaplan–Meier plot of
three classes in the BRS cohort (progression-free survival, p = 0.02 by the log-rank test). (F) The bar
chart represents the response rate for BCG treatment in each of the three classes. The p-values were
calculated using the chi-square test.
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Figure 5. Characteristics of the three classes categorized by the multi-gene signatures and estimation
of their prognostic relevance in MIBC patients. (A) Kaplan–Meier plot of the three classes in TCGA
showed a significant difference in overall survival (p = 0.03 by the log-rank test). (B) Kaplan–Meier
plot of the three classes in IMvigor210 with ICI treatment showed a significant difference in overall
survival (p = 0.03 by the log-rank test). (C) The heatmaps and clinical information of IMvigor210
(n = 298) were divided into three classes according to the prediction model. Seven genes were selected
representing each class, with colors in the heatmap reflecting relatively high (red) and low (blue)
levels. IC PD-L1, PD-L1 expression in immune cells; TC PD-L1, PD-L1 expression in tumor cells; TMB,
tumor mutation burden. (D) The bar chart represents the objective response rate by immunotherapy
in each of the three classes. The p-values were calculated using the chi-square test. PD, progressive
disease; SD, stable disease; PR, partial response; CR, complete response.
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2.5. Comparison of Prognostic Relevance of Clinical Risk Factors and Molecular Subtypes
of NMIBC

To confirm the prognostic independence of a multi-gene signature-based prediction
model for bladder cancer cohorts, we applied Cox proportional hazards regression analyses
to the three classes in the independent cohorts.

Univariate analysis confirmed various factors, such as stage, grade, risk scores, and
taxonomy, as significant indicators of disease progression in NMIBC (Table 2). Additionally,
the multi-gene signature, PD-L1 expression in immune cells, and the tumor mutation bur-
den (TMB), were identified as major indicators of responsiveness to ICI treatment (Table 2).
Multivariate analysis with the EORTC risk score identified that the multi-gene signature
remained a statistically significant indicator for disease progression in the UROMOL cohort
(hazard ratio, 3.48; 95% confidence interval, 1.46–8.29; p = 0.004; Table 2). Multivariate
analysis with the EORTC risk score identified the multi-gene signature as a statistically
significant indicator of a trend toward reduced disease progression with BCG response in
the BRS cohort (hazard ratio, 0.62; 95% confidence interval, 0.04–0.95; p = 0.03; Table 2). In
addition, the multi-gene signature still remained an associated indicator of responsiveness
to ICI treatment in metastatic bladder cancer patients (hazard ratio, 0.69; 95% confidence
interval, 0.51–0.94; p = 0.018; Table 2). In the GSE163029, GSE32894, GSE13507, and TCGA
cohorts, the multi-gene signature remained a significant indicator through univariate anal-
ysis, but only reached statistical significance in multivariate analysis in the GSE13507 and
TCGA cohorts (Supplementary Table S3).

Table 2. Univariate and multivariate Cox proportional hazards regression analysis in the UROMOL,
BRS, and IMvigor210 cohorts.

Variable
Disease Progression in the UROMOL Cohort

Univariate Multivariate

hazardRatio ciLower ciUpper p-Value hazardRatio ciLower ciUpper p-Value

Gender
Male (Ref.) vs. Female 1.20 0.54 2.68 0.660

Age
≤69 (Ref.) vs. >69 2.49 1.14 5.40 0.021

Tumor size
≤3 cm (Ref.) vs. >3 cm 1.03 0.50 2.13 0.930

Stage
Ta (Ref.) vs. T1 9.11 4.19 19.81 <0.001

Grade
Low (Ref.) vs. High 4.31 1.98 9.38 <0.001

Risk scores
EAU Low (Ref.) vs. EAU High 2.13 1.01 4.48 0.046

EORTC Low (Ref.) vs. EORTC High 12.47 4.36 35.66 <0.001 8.43 2.86 24.81 <0.001
Taxonomy

Class 1, Class 2b, and Class 3 (Ref.) vs. Class 2a 5.06 2.38 10.77 <0.001
The multi-gene signature

Other classes (Ref.) vs. NMIBC-DDR 2.99 1.45 6.17 0.003 3.48 1.46 8.29 0.004

Variable
Disease progression in the BRS cohort

Univariate Multivariate

hazardRatio ciLower ciUpper p-value hazardRatio ciLower ciUpper p-value

Gender
Male (Ref.) vs. Female 0.46 0.24 0.87 0.018

Age
≤69 (Ref.) vs. >69 1.89 1.26 2.85 0.002

Stage
Ta (Ref.) vs. T1 1.11 0.61 1.99 0.727

Grade
Low (Ref.) vs. High 0.83 0.36 1.91 0.669

Risk scores
EORTC High (Ref.) vs. EORTC Highest 1.67 1.08 2.55 0.018 1.68 1.10 2.58 0.01

Taxonomy
BRS2 and BRS3 (Ref.) vs. BRS1 0.55 0.34 0.90 0.017

The multi-gene signature
Other classes (Ref.) vs. NMIBC-DDR 0.63 0.41 0.97 0.037 0.62 0.04 0.95 0.03
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Table 2. Cont.

Variable
Overall survival in the IMvigor210 cohort

Univariate Multivariate

hazardRatio ciLower ciUpper p-value hazardRatio ciLower ciUpper p-value

Gender
Male (Ref.) vs. Female 1.20 0.85 1.68 0.294

PD-L1 expression in immune cell
IC0 and IC1 (Ref.) vs. IC2 0.57 0.41 0.78 <0.001 0.56 0.41 0.78 <0.001

PD-L1 expression in tumor cell
TC0 and TC1 (Ref.) vs. TC2 0.98 0.65 1.46 0.904

Tumor mutation burden
TMB Low and Intermediate (Ref.) vs. TMB High 0.52 0.36 0.74 <0.001

The multi-gene signature
Other classes (Ref.) vs. NMIBC-DDR 0.69 0.51 0.94 0.019 0.69 0.51 0.94 0.018

Abbreviations: EAU, European Association of Urology; EORTC, European Organization for Research and
Treatment of Cancer; IC, PD-L1 expression in immune cells (IC with number indicates relative expression
value); TC, PD-L1 expression in tumor cells (TC with number indicates relative expression value); TMB, tumor
mutation burden.

3. Discussion

This study demonstrated that the multi-gene signature can stratify NMIBC patients
into three molecularly distinct subtypes and predict patient prognosis. The ability of this
multi-gene signature to predict patient prognosis was validated in independent bladder
cancer cohorts. Furthermore, we identified potential benefits of immunotherapy such as
BCG and ICIs in NMIBC-DDR. Given the growing urgency of developing first- or second-
line treatments for high-risk NMIBC patients due to the global BCG shortage [5–7,9], and
the view that immune checkpoint inhibitor-based treatment may be an alternative for these
patients [8], the multi-gene signature is valuable as an important indicator.

The genes in each cluster were assigned to three classes (NMIBC-DDR, NMIBC-F3M,
and NMIBC-ET) and identified as molecularly distinct through biological pathway analysis.
The risk score of the NMIBC-F3M class was also low in the EAU and EORTC risk scores,
and a relative increase in the early cell cycle was observed. In addition, there was a relative
increase in FGFR3 signature, a higher proportion of patients with Class 1 and 3 in the
UROMOL2021 taxonomy. The NMIBC-ET class had relatively high EMT and hypoxia
signatures, and at the same time, activation of signatures associated with T cell activation
was also observed. It is known that the EMT in cancer is the cause of acquiring resistance
to many other drugs. In particular, it changes the tumor microenvironment (TME), making
it difficult for immune cells to reach it, and metastasis can become possible through cell
remodeling [10]. These characteristics are significantly relevant in several studies showing
that T cells are activated but suppress the effect of immunotherapy at the TME such as
cancer-associated fibroblast (CAF) [11]. The low response rate to immunotherapy such as
BCG or ICIs was associated with those observed in the NMIBC-ET class of the BRS and
IMvigor210 cohorts (Figures 4E,F and 5B,D). The NMIBC-DDR class had a high rate of
disease progression and included many T1-risk patients such as those with T1-high grade
and high EAU or EORTC risk scores.

Clearly, in the three independent NMIBC cohorts (GSE163209, GSE32894, and GSE13507),
patients classified as NMIBC-DDR had a higher rate of cancer progression, whereas slowed
cancer progression was observed in the BRS cohort treated with BCG. Similarly, in MIBC,
patients classified as NMIBC-DDR in the TCGA cohort had a poor prognosis, but the prognosis
was confirmed to be improved in the IMvigor210 trial with ICI treatment.

PD-L1 is expressed on tumor cells and peripheral immune cells and is an important
part of tumor immune evasion mechanisms. Many follow-up studies have revealed that
PD-L1 expression in immune cells is a major target for immunotherapy [12,13]. PD-L1
expression, especially on CD8-T cells, may be involved in tumor evasion of immune
responses. Excessive PD-L1 expression is associated with impaired function of CD8-T cells,
which may have negative effects on tumor invasion and metastasis [14]. Activation of the
cell cycle and DDR pathways in cancer cells ultimately increases the tumor mutational
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burden (TMB), making them targets of immune cells. The TMB causes a greater number of
mutations in cancer cells, causing them to become neoantigens which are modified proteins
that do not exist in normal cells. Neoantigens are recognized as foreign substances and
serve as targets for the immune system. The higher the TMB, the more diverse neoantigens
are produced, making the tumor more visible to the immune system [15]. Therefore, the
result that NMIBC-DDR patients show potential benefits from immunotherapy such as BCG
or ICIs can be interpreted as a result that well reflects these characteristics (Figures 4E,F and
5B,D). Because the BRS cohort mainly included patients with high-grade NMIBC (94.7%,
Table 1) and the IMvigor210 cohort was a clinical trial conducted on patients with metastatic
muscle-invasive bladder cancer [16], in this study the progression-free survival of the BRS
cohort or the overall survival of the IMvigor210 cohort of MIBC may show a much worse
trend than other compared cohorts.

Taken together, high-risk NMIBC patients, such as those with high EAU or EORTC risk
scores, are more likely to experience frequent cancer recurrence and progression. BCG treat-
ment and cystectomy should be discussed in these patients, according to the EAU treatment
guidelines. In the case of NMIBC-DDR identified by the multi-gene signature, patients
could potentially be classified as high-risk NMIBC patients, and a favorable outcome was
also observed in BCG response. In addition, MIBC patients corresponding to NMIBC-DDR
showed a poor prognosis, but the results of the IMvigor210 clinical trial suggest that these
patients may have a favorable ICI response, as observed in a favorable BCG treatment
response. Considering the global shortage of BCG supply and the misfortune of the poor
quality of life for patients after cystectomy, immunotherapy based on immune checkpoint
inhibitors is likely to be a good alternative as first or second treatment for high-risk NMIBC
patients (Figure 6).
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The results of this study have several limitations. First, in vitro or in vivo experiments
should be further discussed to confirm and verify the research results. Additionally, the
continuity of results must be evaluated through new bladder cancer immunotherapy
clinical trial data that will be added in the future. In conclusion, we have confirmed the
value of the multi-gene signature in distinctly identifying NMIBC and observed a potential
benefit for immunotherapy. Due to the shortage of BCG supply and the quality of life of
patients, immunotherapy based on immune checkpoint inhibitors may be proposed as a
treatment for high-risk NMIBC patients.

4. Materials and Methods
4.1. Public Datasets of NMIBC and MIBC Patients

We obtained clinical information and gene expression data from NMIBC and MIBC
patients from public databases. The raw data from the UROMOL consortium were down-
loaded from the European Genome-Phenome Archive (EGA) under accession numbers
EGAS00001001236 (UROMOL2016) and EGAS0001004693 (UROMOL2021) [17,18]. Prior to
the analysis, we performed the analysis with version UROMOL2016, which included 16
MIBC patients, and used version UROMOL2021 for clinical information. Gene expression
data for the bladder cancer microarray study were downloaded from the Gene Expression
Omnibus (GEO) database from the National Center for Biotechnology Information (NCBI)
under accession numbers GSE32894, GSE163209, and GSE13507 [19–21]. The BRS cohort
data were obtained through in the paper [22]. The TCGA data were obtained through
the cancer browser (https://xenabrowser.net, accessed on 30 January 2020). The raw
data for the IMvigor210 trial were downloaded from the EGA under accession numbers
EGAS00001002556 (IMvigor210 trials) [16].

4.2. Processing of Transcriptomic Data and Clustering Analysis

Reference genome sequence data from Homo sapiens were obtained from the Ensemble
genome browser (assembly ID: GRCh38). Reference genome indexing and read mapping of
samples were performed using STAR software (ver. 2.6.1a) [23]. FeatureCounts (ver. 1.6.2)
software was then used to calculate generated binary alignment map files [24]. All gene
expression data were separately log2 transformed and quantile normalized. For RNA-seq
data, the read counts per million fragments mapped (CPM) of each sample were used to
estimate the expression level of each gene. Genes with an average CPM value less than 1
for the entire sample were removed. Regardless of the data type (RNA-seq or microarray),
genes with expression levels that differed more than twice the median in more than 10%
of the samples were used for the main analysis. ConsensusClusterPlus (R package, ver.
1.52.0) analysis was performed to determine the appropriate number of clusters for NMIBC
patients [25].

4.3. Development of Prediction Model Based on the Multi-Gene Signature

We identified the top 5000 genes based on standard deviation in three independent
NMIBC patient cohorts (UROMOL2016, BRS, and GSE163209), and selected 1528 commonly
included genes. The process of selecting common genes from three independent NMIBC
patient cohorts involved selecting as many common features as possible, taking molecular
heterogeneity into account. Consensus clustering analysis was performed using the multi-
gene signature. The optimal k value (k = 3) was chosen considering both the delta area
and the cumulative density function (CDF) plot. To validate the prognostic relevance of
the subtypes derived from UROMOL2016, we trained a prediction model using a random
forest machine learning algorithm (R package, randomForest ver. 4.7–1.1) and subsequently
improved performance by modifying hyper-parameters (mtry, node size, and sample size)
via grid search. The mtry helps balance reasonable prediction strength. Node size is
the most common hyper-parameter that controls tree complexity. If the nodes are too
large (i.e., increasing tree depth and complexity), overfitting problems may occur. If the
training dataset is too small, the performance of the prediction model may deteriorate due

https://xenabrowser.net
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to insufficient learning. Gene expression data used to build the prediction model were
preprocessed through normalization and standardization.

4.4. Biological Pathway and Statistical Analysis

To explore significantly enriched functions, KEGG pathway analysis was performed
using the DAVID tool (https://david.ncifcrf.gov) accessed on 1 February 2024 with signifi-
cance criteria (FDR < 0.25). Kaplan–Meier plots were used to estimate associations between
subgroups and survival outcomes by the log-rank test. Comparisons of objective responses
were estimated using the chi-square test. All statistical analyses were performed in the R
4.2.1 language environment (https://www.r-project.org) accessed on 22 June 2022.

4.5. Data Availability

The gene expression data and clinical information are available in the GEO public
database (https://www.ncbi.nlm.nih.gov/geo) (accessed on 1 January 2024) under ac-
cession numbers GSE32894, GSE163209, and GSE13507. The gene expression data and
clinical information of TCGA are available in the cancer browser (https://xenabrowser.net)
accessed on 30 January 2020. The gene expression data and clinical information of BRS
are available in the Supplementary Materials of this paper. The FASTq files and clinical
information are available in the EGA public database (https://web2.ega-archive.org/)
accessed on 1 June 2023 under accession numbers EGAS00001001236 (UROMOL2016),
EGAS0001004693 (UROMOL2021), and EGAS00001002556 (IMvigor210 trial).

5. Conclusions

This study confirmed the utility of a multi-gene signature in stratifying non-muscle-
invasive bladder cancer (NMIBC) patients into three molecularly distinct subtypes and
predicting their prognosis. It demonstrated that the multi-gene signature effectively pre-
dicts patient outcomes and its relevance was validated across independent bladder cancer
cohorts. This study also highlighted the potential advantages of immunotherapy, such
as Bacillus Calmette–Guérin (BCG) and Immune Checkpoint Inhibitors (ICIs), especially
for the NMIBC subtype associated with DNA damage response (NMIBC-DDR), amidst
the global shortage of BCG and the search for alternative treatments for high-risk NMIBC
patients. The findings suggest that patients in the NMIBC-DDR class, characterized by
high rates of disease progression and poor prognosis in standard settings, may benefit from
immunotherapy due to an increased tumor mutational burden (TMB), which enhances
the visibility of tumors to the immune system through neoantigens. Consequently, this
study supports immunotherapy with ICIs as a viable first- or second-line treatment option
for high-risk NMIBC patients, offering a potential improvement in patient outcomes and
quality of life while addressing the limitations of current treatment modalities due to BCG
supply issues.
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