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Abstract: The gut–brain axis is increasingly understood to play a role in neuropsychiatric disorders.
The probiotic bacterium Lactobacillus (L.) reuteri and products of tryptophan degradation, specifically
the neuroactive kynurenine pathway (KP) metabolite kynurenic acid (KYNA), have received special
attention in this context. We, therefore, assessed relevant features of KP metabolism, namely, the
cellular uptake of the pivotal metabolite kynurenine and its conversion to its primary products
KYNA, 3-hydroxykynurenine and anthranilic acid in L. reuteri by incubating the bacteria in Hank’s
Balanced Salt solution in vitro. Kynurenine readily entered the bacterial cells and was preferentially
converted to KYNA, which was promptly released into the extracellular milieu. De novo production
of KYNA increased linearly with increasing concentrations of kynurenine (up to 1 mM) and bacteria
(107 to 109 CFU/mL) and with incubation time (1–3 h). KYNA neosynthesis was blocked by two
selective inhibitors of mammalian kynurenine aminotransferase II (PF-048559989 and BFF-122). In
contrast to mammals, however, kynurenine uptake was not influenced by other substrates of the
mammalian large neutral amino acid transporter, and KYNA production was not affected by the
presumed competitive enzyme substrates (glutamine and α-aminoadipate). Taken together, these
results reveal substantive qualitative differences between bacterial and mammalian KP metabolism.

Keywords: cognition; gut–brain axis; kynurenine pathway; kynurenine aminotransferases;
psychiatric disorders

1. Introduction

The gut–brain axis has recently emerged as a major topic of interest in neurobiology,
especially with regard to the pathophysiology of neuropsychiatric disorders. Mounting
evidence supports the hypothesis that gut microbiota regulate brain development and
behavior [1–5] and that dysbiosis contributes to cognitive deficits and other behavioral
abnormalities [6–8] and may be critically involved in a variety of psychiatric diseases [9–12].

Studies in germ-free and antibiotic-treated rodents suggest that the essential amino
acid tryptophan plays a special role in this context [13]. In the mammalian gut, most dietary
tryptophan is either absorbed in the small intestine or locally converted to biologically active
metabolites that then enter the circulation [14]. About 5% of tryptophan is metabolized by
specific gut bacteria, mostly to indole derivatives [15–17], and, notably, elevated circulating
tryptophan levels are associated with a decrease in gut microbiota [13,18].

In mammals, 95% of dietary tryptophan is degraded via the kynurenine pathway
(KP), which is named after the pivotal metabolite L-kynurenine (L-KYN). Conversion of
tryptophan to L-KYN is catalyzed by indoleamine 2,3-dioxygenases (IDO 1 and IDO 2),
which are present in the intestine, brain and immune cells and activated by inflammatory
stimuli and tryptophan 2,3-dioxygenase (TDO), which is mostly expressed in the liver.
Subsequently, L-KYN is metabolized to the free radical generator 3-hydroxykynurenine
(3-HK) by kynurenine 3-monooxygenase or to anthranilic acid (ANA) by kynureninase
(Figure 1). Of special significance for brain function and dysfunction [19–23], L-KYN is also
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converted by kynurenine aminotransferases (KATs) to kynurenic acid (KYNA), an antago-
nist of N-methyl-D-aspartate (NMDA; [24,25], and α7 nicotinic acetylcholine (α7nACh; [26]
receptors and an agonist at an orphan G-protein-coupled receptor (GPR35; [27]. Interest-
ingly, KYNA can also regulate the immune system through its agonistic effects on the
aryl hydrocarbon receptor (AhR; [28] and is an effective scavenger of reactive oxygen
species [29,30].
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Figure 1. Initial enzymatic processes involved in the kynurenine pathway of tryptophan metabolism
in mammals.

Although the formation of KP metabolites by intestinal microbiota impacts host
function [31], and in spite of the fact that experimental manipulation of the gut microbiota
affects KP metabolism in the host [6,32–36], only relatively little is known about the ability
of individual intestinal bacteria to express functional KP enzymes and to produce KYNA,
3-HK and ANA [37–40].

Lactobacillus (L.) reuteri, a well-studied probiotic bacterium that colonizes the gas-
trointestinal tract of both humans and animals, can influence the composition of the gut
microbiota [41] and has been shown to exert a remarkable range of beneficial effects in
both humans and relevant animal models. Notably, L. reuteri administration affects neu-
rodevelopment and prevents social deficits and depressive-like behaviors in experimental
animals [41–47]. Interestingly, though the underlying mechanisms have not been identified
so far, L. reuteri is able to normalize the impaired plasma levels of KP metabolites caused
by chronic stress and to improve associated behavioral abnormalities [35].

The present study was designed to examine the intricacies of KP metabolism in this
translationally relevant bacterial species in greater depth. To this end, we investigated the
ability of L. reuteri to accumulate exogenous L-KYN and to produce KYNA, 3-HK and ANA
under a variety of experimental conditions in vitro.

2. Results
2.1. L-KYN Uptake into Live L. reuteri

To characterize KP metabolism in live L. reuteri, we first tested the ability of L-KYN
to enter the cells. Incubation resulted in increased levels of intracellular L-KYN, starting
at 5 min and slowly rising until 180 min, indicating that L-KYN rapidly enters and ac-
cumulates in the bacterial cells (Figure 2). Under standard conditions (1 h incubation at
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37 ◦C), significantly less L-KYN was recovered from heat-inactivated bacteria (9.8 ± 1.3 vs.
3.1 ± 1.0 fmoles, n = 3; p < 0.05; Student’s t-test).
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Figure 2. Time-dependence of L-KYN uptake into live L. reuteri (109 CFU/mL). Bacteria were
incubated in the presence of 100 µM L-KYN and 0.2 µCi 3H-L-KYN (see text for experimental details).
Data are the mean ± SEM of 3 experiments.

We next tested selected amino acids that are known to compete with L-KYN as
substrates of the large neutral amino acid transporter (LAT) in mammals [48,49] for their
ability to affect L-KYN uptake into bacterial cells (Table 1). Unexpectedly, none of the
tested compounds affected L-KYN uptake at a concentration of 5 mM (p > 0.05; one-
way ANOVA, followed by Bonferroni’s post hoc test). Five mM BCH, an inhibitor of
L-type amino acid transporters including the LAT [50], also failed to affect L-KYN uptake
(p > 0.05; one-way ANOVA, followed by Bonferroni’s post hoc test), indicating substantive
qualitative differences between L-KYN uptake into bacterial and mammalian cells.

Table 1. Effects of selected compounds (final concentration: 5 mM) on L-KYN uptake into live L. reuteri.

Test Compound Kynurenine Uptake
(% of Control)

Leucine 115.3 ± 13.5

Tryptophan 109.7 ± 14.0

Valine 111.5 ± 11.9

Isoleucine 123.1 ± 4.4

Phenylalanine 131.5 ± 11.1

2-Amino-2-norbornanecarboxylic acid (BCH) 116.2 ± 6.2

Bacteria (109 CFU/mL) were incubated for 1 h in the presence of 100 µM KYN containing 0.2 µCi 3H-KYN (see
text for experimental details). Control values: 10.1 ± 1.2 fmoles. Data are the mean ± SEM of 3–4 experiments.

2.2. Basal Levels and De Novo Production of KYNA, 3-HK and ANA

Next, we examined the presence of endogenous levels of KP metabolites in live
L. reuteri and their de novo production after incubation with L-KYN for 3 h. Under these con-
ditions, the basal levels of KYNA (2.4 ± 1.7 fmoles/µL, n = 4) and ANA (1.9 ± 0.7 fmoles/µL,
n = 3) were clearly measurable, but basal 3-HK levels were below our limit of detection
(<0.5 fmoles/µL).

Incubation with 100 µM L-KYN induced a significant increase in the levels of KYNA
(p < 0.0001; Student’s t-test) and raised the levels of 3-HK above the detection limit
(2.8 ± 0.6 fmoles/µL); however, it did not significantly elevate the levels of ANA
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(p > 0.05; Student’s t-test), demonstrating that L-KYN in L. reuteri is preferentially converted
to KYNA (Figure 3).
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In view of these results, subsequent experiments focused exclusively on evaluating
the de novo synthesis of KYNA and its regulation.

2.3. Optimization of De Novo synthesis of KYNA from L-KYN by Live L. reuteri

To determine the optimal conditions for the neosynthesis of KYNA production in
live L. reuteri, we tested different L-KYN and bacterial concentrations as well as various
incubation times (Figure 4). A dose-dependent elevation in KYNA levels was observed with
increasing L-KYN concentrations (ranging from 10 to 1000 µM; Figure 4A) and bacterial
density (from to 107 to 109 CFU/mL; Figure 4B). Increasing the incubation time from 1 to
3 h linearly raised KYNA formation (Figure 4C), and 99.6% of total KYNA produced from
L-KYN was released into the extracellular milieu (Figure 4D). Longer incubation times
(tested up to 24 h) failed to result in further increases. Based on these results, all subsequent
experiments were conducted using 108 CFU/mL bacteria, which were incubated for 3 h
with 100 µM L-KYN.

In light of the ability of bacteria—in contrast to mammalian cells—to synthesize D-
amino acids [51,52], we also investigated the production of KYNA from D-KYN. Incubation
of L. reuteri with 100 µM D-KYN under standard experimental conditions (108 CFU/mL
bacteria, 3 h) caused a significant elevation in KYNA over endogenous levels (p < 0.01;
Student’s t-test); however, the increase in extracellular KYNA was only ~30% of the effect
resulting from incubation with L-KYN (18.1 ± 3.5 vs. 65.1 ± 3.5 fmoles/µL, n = 3; p < 0.05;
Student’s t-test).

Notably, no de novo formation of KYNA was detected when L. reuteri was incubated
with 1 mM of L-tryptophan under standard conditions.
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inhibitors BFF-122 [55] and PF-04859989 [56] (Table 2). Whereas 1 mM AOAA essentially 
totally prevented the de novo production of KYNA from L-KYN (99.7%, p < 0.0001) and 
10 mM aspartate induced a small reduction (~25%, p < 0.01), neither glutamine nor α-ami-
noadipate (both at 10 mM) had an effect (p > 0.05). Interestingly, both BFF-122 (1 mM) and 
PF-04859989 (100 µM) significantly inhibited the bacterial neosynthesis of KYNA (p < 
0.0001). Subsequent dose-dependency experiments showed higher efficacy of PF-
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5). 
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only weak activity, with less than 40% inhibition of KYNA neosynthesis at 10 mM (n = 6; 

Figure 4. De novo synthesis of KYNA from L-KYN in live L. reuteri. (A–C): concentration of KYNA
recovered from the extracellular milieu (see text for experimental details). (A) KYNA production
in bacteria (108 CFU/mL) incubated for 3 h with increasing concentrations of L-KYN. (B) KYNA
formation after incubation of different concentrations of L. reuteri with 100 µM L-KYN for 3 h.
(C) Effect of incubation time on KYNA neosynthesis using 100 µM L-KYN and 108 CFU/mL L. reuteri.
(D) Percentage of KYNA detected in the intracellular vs. the extracellular compartment following a
3 h incubation of L. reuteri (108 CFU/mL) with 100 µM L-KYN. In all cases, data are the mean ± SEM
of 3–4 experiments. See text for experimental details.

2.4. Pharmacological Regulation of KYNA Production in Live L. reuteri

To examine the role of KAT enzymes (KAT I, KAT II, KAT III and KAT IV; [53,54] in
KYNA formation in live L. reuteri, we tested the effect of endogenous amino acids, which
are known to compete with L-KYN as respective substrates of the mammalian enzymes
(glutamine for KAT I and KAT III, α-aminoadipate for KAT II and aspartate for KAT IV),
as well as the non-specific aminotransferase inhibitor AOAA and the synthetic KAT II
inhibitors BFF-122 [55] and PF-04859989 [56] (Table 2). Whereas 1 mM AOAA essentially
totally prevented the de novo production of KYNA from L-KYN (99.7%, p < 0.0001) and
10 mM aspartate induced a small reduction (~25%, p < 0.01), neither glutamine nor α-
aminoadipate (both at 10 mM) had an effect (p > 0.05). Interestingly, both BFF-122 (1 mM)
and PF-04859989 (100 µM) significantly inhibited the bacterial neosynthesis of KYNA
(p < 0.0001). Subsequent dose-dependency experiments showed higher efficacy of PF-
04859989 compared to BFF-122 (>90% and <50% inhibition, respectively, at 100 µM;
Figure 5).
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Table 2. Effects of selected endogenous and exogenous KAT inhibitors on the de novo synthesis of
KYNA from L-KYN in live L. reuteri.

Putative Substrates and Inhibitors KYNA Production
(% of Control)

Glutamine (10 mM) 109.5 ± 1.2

α-Aminoadipate (10 mM) 110.9 ± 3.4

Aspartate (10 mM) 74.7 ± 3.7 **

AOAA (1 mM) 0.3 ± 0.6 ****

BFF-122 (1 mM) 30.3 ± 8.4 ****

PF-04859989 (100 µM) 8.8 ± 2.0 ****

Bacteria (108 CFU/mL) were incubated for 3 h with 100 µM L-KYN and the respective test compounds (concentra-
tions are indicated) as described in the text. Control values: 47.0 ± 2.7 fmoles/µL. Data are the mean ± SEM of
3–6 experiments. ** p < 0.01, **** p < 0.0001 vs. control values (one-way ANOVA, followed by Bonferroni’s post
hoc test).
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(B). L. reuteri (108 CFU/mL) was incubated for 3 h with 100 µM L-kynurenine. Control values:
48.4 ± 2.8 fmoles/µL. See text for experimental details. Data are the mean ± SEM of 3 experiments.

We also studied the pro-cognitive and antioxidant compound N-acetylcysteine (NAC),
which inhibits mammalian KAT II both in vitro and in vivo [57]. NAC showed only weak
activity, with less than 40% inhibition of KYNA neosynthesis at 10 mM (n = 6; p < 0.05;
Student’s t-test). To examine, more generally, the possible involvement of oxidative pro-
cesses in the de novo formation of KYNA from L-KYN in live L. reuteri, we then tested the
antioxidant ascorbic acid (500 µM) under the same experimental conditions. Ascorbic acid
had no significant effect on KYNA production (n = 3; p > 0.05; Student’s t-test).

Finally, we examined the ability of several 2-oxoacids, which are established co-
substrates of KATs and readily stimulate KYNA synthesis in mammalian tissues [58].
When added to the incubation buffer at a final concentration of 5 mM, only some of the
compounds significantly enhanced L-KYN conversion to KYNA in the live bacteria, with
α-ketoisovalerate having the greatest effect of the 2-oxoacids tested (increase to ~190%
of control values; p < 0.0001). In contrast, the inclusion of oxaloacetate in the incubation
medium unexpectedly caused a reduction in KYNA neosynthesis (p < 0.05) (Table 3).
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Table 3. Effects of various oxoacids (5 mM) on the neosynthesis of KYNA from L-KYN in live L. reuteri.

2-Oxoacids KYNA Production
(% of Control)

Pyruvate 131.8 ± 11.1

α-Ketoglutarate 123.7 ± 16.4

α-Ketoisocaproate 151.0 ± 9.6 **

α-Ketoisovalerate 188.7 ± 12.6 ****

Oxaloacetate 57.6 ± 4.9 *

Live L. reuteri (108 CFU/mL) was incubated for 3 h with 100 µM L-KYN and the respective test compounds
as described in the text. Control values: 51.2 ± 1.9 fmoles/µL. Data are the mean ± SEM of 4–6 experiments.
* p < 0.05, ** p < 0.01, **** p < 0.0001 vs. control values (one-way ANOVA, followed by Bonferroni’s post hoc test).

2.5. KYNA Production in Homogenized Bacteria

To examine the de novo formation of KYNA from L-KYN in lysed cells, sonicated
bacterial tissue was incubated under conditions that are optimal for the mammalian KAT
II enzyme [59]. L-KYN was readily converted to KYNA and, as in live bacteria, 10 mM
glutamine caused only a small, non-significant reduction in KYNA neosynthesis from
L-KYN in the homogenate (cf. Tables 2 and 4). However, the addition of α-aminoadipate or
aspartate (both at 10 mM) had stronger effects in the homogenized bacteria, with reductions
in KYNA formation of ~20% and ~70%, respectively (p < 0.05 and p < 0.0001). Notably,
in contrast to their quantitatively different effects in live bacteria, the two synthetic KAT
II inhibitors BFF-122 and PF-04859989 (both at 1 mM) had similar potency in bacterial
homogenates (~95% and ~88% inhibition, respectively) (both p < 0.0001) (cf. Tables 2 and 4).

Table 4. Effects of selected KAT substrates and inhibitors on KYNA synthesis from L-KYN in
homogenized bacteria.

Putative Substrates and Inhibitors KYNA Production
(% of Control)

Glutamine (10 mM) 89.1 ± 3.7

α-Aminoadipate (10 mM) 79.6 ± 1.8 *

Aspartate (10 mM) 28.5 ± 2.2 ****

BFF-122 (1 mM) 5.9 ± 1.7 ****

PF-04859989 (1 mM) 12.2 ± 3.3 ****

Lysed L. reuteri (108 CFU/mL) was incubated for 3 h with 100 µM L-KYN and the respective test compounds
(concentrations are indicated). See text for experimental details. Control values: 112.1 ± 2.8 fmoles/µL. Data are
the mean ± SEM of 3–9 experiments. * p < 0.05, **** p < 0.0001 vs. control values (one-way ANOVA, followed by
Bonferroni’s post hoc test).

3. Discussion

The present study was designed to evaluate the role of the probiotic bacterium
L. reuteri in regulating KP metabolism and, in particular, its ability to synthesize KYNA,
3-HK and ANA from KYN. We demonstrated that L-KYN rapidly entered the bacterial
cells, but its uptake was not affected by other substrates of mammalian LAT. Although we
were able to detect endogenous levels of both KYNA and ANA in live bacteria, our find-
ings revealed that L-KYN is preferentially metabolized to KYNA, which is then promptly
released into the extracellular milieu.

Interestingly, we did not observe de novo formation of KYNA from tryptophan under
our experimental conditions. Although not examined in the present study, L. reuteri, like
several other intestinal bacteria, may, therefore, preferentially convert tryptophan to a
number of biologically active indoles instead of forming KP metabolites [14]. On the
other hand, L. reuteri could generate KYNA from D-KYN, though with lower efficiency
than from L-enantiomer. This finding clearly deserves further scrutiny and may be of
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(patho)physiological relevance in view of the fact that bacteria, unlike eukaryotes, have
the ability to synthesize D-amino acids [51,60]. Also of interest in this context, D-KYN is a
better precursor of KYNA in L. reuteri than in rodents or humans [61,62].

In mammals, L-KYN enters cells through LATs, which are able to transport both
branched (valine, leucine, isoleucine) and aromatic (tryptophan, phenylalanine) amino
acids, all of which compete for entrance into the cells [48,49]. Although L-KYN was shown
here to rapidly enter the bacterial cells, its uptake was not inhibited by tryptophan or other
presumably competing amino acids. Similarly, the LAT inhibitor BCH, which effectively
interferes with L-KYN uptake in both rat brain slices in vitro and mouse brain in vivo [50],
did not affect L-KYN uptake into L. reuteri, indicating that the bacterial transporter differs
substantively from the mammalian LAT.

Although not studied systematically so far, attempts to examine enzymatic L-KYN
degradation in individual bacteria have revealed remarkable qualitative strain differences.
For example, both Cytophaga hutchinsonii and Pseudomonas fluorescens express kynurenine
3-monooxygenase, the enzyme responsible for the synthesis of 3-HK [63,64], Pseudomonas
fluorescens also contains kynureninase to produce ANA [65,66], and Pseudomonas aeruginosa
is capable of enzymatically producing all three primary L-KYN metabolites, i.e., KYNA,
3-HK and ANA [37] (cf. Figure 1). In the present study, we observed that L. reuteri
preferentially converts L-KYN to KYNA and appears to contain very little kynureninase and
kynurenine 3-monooxygenase. These results also suggest that the low endogenous levels
of 3-HK and ANA in L. reuteri may be related to non-enzymatic degradative processes [67]
and, in the case of ANA, may involve alternative synthetic routes [68].

Although the presence of KAT in bacteria has been known for decades [69], the exam-
ination of bacterial KYNA neosynthesis has attracted only limited interest so far [37,38,70].
The dominant conversion of L-KYN to KYNA seen in L. reuteri prompted us to study this
mechanism in greater detail. The fact that ascorbic acid did not significantly reduce the
bacterial formation of KYNA suggested that KYNA synthesis from L-KYN in L. reuteri was
not caused by the non-enzymatic oxidation of L-KYN [71,72] but was mainly enzymatic in
nature. Although confirmed in principle by the very effective blockade of KYNA forma-
tion by AOAA, the mechanism of bacterial KYNA production showed major qualitative
differences from mammalian cells, however [59]. Thus, glutamine, a highly competitive
substrate of mammalian KAT I (= glutamine aminotransferase), was unable to inhibit the
de novo KYNA production in both live and homogenized bacteria, even at a high concen-
tration (10 mM). Similarly, 10 mM α-aminoadipate, a competing substrate of mammalian
KAT II (=α-aminoadipate aminotransferase), did not interfere with KYNA formation from
L-KYN in live L. reuteri and caused only a small decrease (~20%) in homogenized bacte-
ria. Interestingly, though, two synthetic inhibitors of mammalian KAT II (BFF-122 and
PF-04859989; [55,56] substantially reduced KYNA production. These results, as well as the
modest but significant effects caused by the addition of aspartate, a relatively weak inhibitor
of mammalian KAT II [73], suggest that bacterial enzyme(s) bearing some similarity to
mammalian KAT II or KAT IV [53] account for the neosynthesis of KYNA from L-KYN in
L. reuteri. The distinct nature of this enzymatic process, which is further supported by the
fact that several 2-oxoacids known to serve as amino-acceptors of mammalian KATs [74]
failed to show the expected effects in the present study, clearly requires further clarification.
Notably, future experiments should consider the growth rate and gene activity of L. reuteri,
which were not taken into account in the present study.

The present results raise the possibility that KYNA plays a role in the remarkable
beneficial effects of L. reuteri administration in both humans and rodents. Thus, through its
antioxidant properties and/or by targeting several receptors with critical roles in both phys-
iology as well as pathology, an elevation in KYNA levels may have considerable functional
consequences in both the periphery and brain (cf. Introduction). For example, increased
formation and release of KYNA by L. reuteri may regulate the enteric nervous system [75],
affect the growth and viability of probiotic bacteria in the digestive system [76], alleviate var-
ious gastrointestinal pathologies [77] and have anti-inflammatory effects by inhibiting Th17
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cell differentiation and the increase in TNFα in monocytes and leukocytes [20,78]. Notably,
though the mechanistic link clearly needs to be investigated further, KYNA generated by
L. reuteri—alone or in combination with other probiotics—may also participate in the atten-
uation of depressive-like symptoms associated with chronic stress [41] and in the reduction
of obesity-related behavioral impairments and related microglial activation [42,43,46].

4. Materials and Methods
4.1. Materials

L. reuteri (F 275T = ATCC 23272T = DSM 20016T = JCM 1112T = LMG 9213T = LMG
13557T) bacteria were obtained from the American Type Culture Collection (Manassas, VA,
USA). 3H-L-kynurenine (3H-KYN) (16 Ci/mmol) was purchased from Amersham (Buck-
inghamshire, UK). Aminooxyacetic acid (AOAA), aspartate, α-aminoadipate, glutamine,
pyruvate, α-ketoglutarate, α-ketoisocaproate, α-ketoisovalerate, oxaloacetate, 2-amino-2-
norbornanecarboxylic acid (BCH) and PF-04859989 were obtained from Sigma-Aldrich
(St. Louis, MO, USA). L-Kynurenine sulfate (L-KYN) was acquired from Sai Advantium
(Hyderabad, India) and D-kynurenine sulfate (D-KYN) from Shanghai Hanhong Chemical
Co. (Shanghai, China). BFF-122 [(S)-(-)-9-(4-aminopiperazine-1-yl)-8-fluoro-3-methyl-6-oxo-
2,3,5,6-tetrahydro-4H-1-oxa-3a-azaphenalene-5-carboxylic acid] was kindly provided by
Dr. Y. Kajii (Mitsubishi-Tanabe Pharma Corp., Yokohama, Japan). All other chemicals used
were purchased from commercial suppliers and were of the highest available purity.

4.2. Preparation of the Bacteria

L. reuteri bacteria were grown on deMan, Rogosa and Sharpe (MRS) agar (Hardy
Diagnostics, Santa Maria, CA, USA) for 24 h at 37 ◦C. The bacteria were then transferred to
an MRS broth (Hardy Diagnostics) and quantified by serial dilution plating and counting
colonies. Bacteria were diluted to 1010 or 109 CFU/mL for storage, aliquoted and frozen at
−80 ◦C. For all assays, bacterial aliquots were thawed at room temperature, centrifuged
(6000× g, 2 min), rinsed with cold sterile Hank’s Balanced Salt Solution (HBSS; containing
1.0 g/L glucose, 0.011 g/L phenol red and 0.35 g/L sodium bicarbonate, pH 7.1–7.5; H9269;
Sigma-Aldrich) and then resuspended in HBSS and diluted to the concentrations used in
the respective assays.

The viability of the bacteria under standard experimental conditions (108 CFU/mL
live bacteria in HBSS, 100 µM KYN, 3 h incubation) was evaluated by serial dilution plating
and counting colonies.

4.3. L-KYN Uptake by Live Bacteria
3H-KYN was purified by high-performance liquid chromatography (HPLC) prior to

its use in uptake experiments [79]. L-KYN uptake was assessed by incubating 109 CFU/mL
live L. reuteri in HBSS at 37 ◦C for 5 to 180 min in the presence of 0.2 µCi of 3H-KYN (20 µL),
100 µM non-radioactive L-KYN (10 µL) and water (replaced by dissolved test compounds
when indicated), in a total volume of 200 µL. Blank values were routinely obtained by
incubating the bacteria on ice. Inactivated bacteria (cells heated for 2 min at 100 ◦C before
incubation) were examined in some experiments. Incubations were performed using a
Roto-Therm H2020 Fixed Speed Incubated Tube Rotator (Benchmark Scientific, Edison, NJ,
USA) at 24 rpm.

Following incubation, the assay mixture was immediately centrifuged (6000× g,
2 min), and the supernatant was discarded. The remaining pellet was placed on ice,
and residual radioactivity was eliminated by adding 500 µL of cold HBSS, gentle mixing
and further centrifugation (6000× g, 2 min). After removal of the supernatant, the pellet
was suspended in 200 µL HBSS and transferred to vials containing 10 mL scintillation fluid.
Radioactivity was measured by liquid scintillation spectrometry (Packard Tri-Carb 2200CA
LCA, Perkin Elmer, Boston, MA, USA).
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4.4. KYNA, 3-HK and ANA Production by Live Bacteria

De novo synthesis of KYNA, 3-HK and ANA from L-KYN by live bacteria was assessed
by incubation at 37 ◦C in a total volume of 200 µL [160 µL of bacteria in HBSS, 20 µL of
L-KYN and 20 µL of water (replaced by KAT inhibitors or 2-oxoacids in some experiments)]
using a Roto-Therm H2020 Fixed Speed Incubated Tube Rotator at 24 rpm. Incubation times
(1, 2 or 3 h), bacterial density (107–109 CFU/mL) and L-KYN concentrations (10–1000 µM)
varied during method development. The reaction was terminated by the addition of 40 µL
of 50% trichloroacetic acid (TCA). Samples were then centrifuged (15,800× g, 10 min), and
the supernatant was removed and analyzed as detailed below. Blanks were obtained by
incubating bacteria in the absence of L-KYN.

To measure intracellular KYNA, the pellet containing the bacterial cells was resus-
pended in 200 µL of water and sonicated. After centrifugation (15,800× g, 5 min), KYNA
was determined in the supernatant.

4.5. KYNA Synthesis in Lysed L. reuteri Cells

The neosynthesis of KYNA was also examined in homogenized L. reuteri cells. To this
end, frozen bacteria were thawed and centrifuged (6000× g, 10 min). The MRS broth was
replaced with 0.5 M Tris-acetate buffer (pH 8.0) to obtain a final bacterial concentration
of 108 CFU/mL, and the solution was sonicated to lyse the bacterial cells. Assays were
performed in a total volume of 200 µL [80 µL of sonicated 108 CFU/mL bacteria, 100 µL
of assay cocktail (100 µM L-KYN, 80 µM pyridoxal-5′-phosphate and 1 mM pyruvate in
150 mM Tris-acetate buffer, pH 7.4) and 20 µL of water (replaced by KAT inhibitors in some
experiments)]. Blanks were obtained by adding the non-specific aminotransferase inhibitor
AOAA (final concentration: 1 mM) to the solution. After incubation for 3 h at 37 ◦C, the
reaction was terminated by the addition of 20 µL of cold 50% trichloroacetic acid (TCA)
and 1 mL 0.1 N HCl. Samples were kept on ice and centrifuged (15,800× g, 10 min), and
KYNA was analyzed in the supernatant.

4.6. KYNA, 3-HK and ANA Measurement

KYNA quantification was performed by high-performance liquid chromatography
(HPLC) with fluorescent detection. In total, 20 µL of the supernatant was injected onto a
BDS Hypersil C18 column (100 mm × 4.6 mm, particle size 3 µm; Thermo Fisher Scientific,
Waltham, MA, USA) with a mobile phase consisting of 3% acetonitrile, 250 mM sodium
acetate and 50 mM zinc acetate (pH 6.2) at a flow rate of 1 mL/min. Fluorescence detection
was performed using a Perkin Elmer Series 200a instrument (Perkin Elmer, Shelton, CT,
USA) (excitation: 344 nm, emission: 398 nm). The retention time was approximately 8 min.

3-HK quantification was performed by HPLC with electrochemical detection. To
this end, 20 µL of the supernatant was injected onto a C18 reverse phase column (HR-80;
80 mm × 4.6 mm; particle size 3 µm; Thermo Fisher Scientific) with a mobile phase
consisting of 1.5% acetonitrile, 0.9% trimethyl amine, 0.59% phosphoric acid, 0.27 mM
EDTA and 8.9 mM sodium heptane sulfonic acid at a flow rate of 0.5 mL/min. 3-HK was
detected electrochemically using an HTEC 500 detector (Eicom, San Diego, CA, USA) and
had a retention time of approximately 11 min.

For ANA detection, 20 µL of the supernatant was applied to a 5 µm C18 reverse phase
column (Adsorbosil; 150 mm × 4.6 mm; Dr. Maisch GmbH, Ammerbuch, Germany) using
a mobile phase containing 100 mM sodium acetate (pH 5.8) and 1% acetonitrile at a flow
rate of 1.0 mL/min. ANA was detected fluorimetrically in the eluate (excitation: 340 nm;
emission: 410 nm; 2475 fluorescence detector; Waters, Milford, MA, USA). The retention
time was approximately 6 min [80].

4.7. Statistical Analysis

All data are expressed as the mean ± SEM. Statistical analyses were performed using
Graphpad Prism 9 (San Diego, CA, USA). Student’s t-test or one-way ANOVA followed by
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Bonferroni’s post hoc test was used to determine significance in selected experiments. A
p value < 0.05 was considered significant.

5. Conclusions

In summary, the present in vitro study not only provided further evidence of the well-
established ability of gut microbiota to metabolize the major tryptophan metabolite L-KYN
but revealed that L. reuteri, in contrast to other bacteria, preferentially synthesizes KYNA,
which is then promptly released into the extracellular milieu. Notably, an assessment of
the underlying biochemical mechanisms revealed substantive qualitative differences from
mammalian KP metabolism. As the administration of L. reuteri has remarkably beneficial
effects in both animals and humans and since KYNA is increasingly understood to play
substantive roles in mammalian biology, our results may have significant translational
implications. Future studies should, therefore, be designed to manipulate KYNA produc-
tion in L. reuteri and selected other bacteria by pharmacological and genetic means and to
examine the physiological and pathological consequences of such bacterial modifications
in the host in vivo.
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