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Abstract: This work is aimed at relationships which govern zinc and copper uptake by four popular
medicinal herbs: basil (Ocimum basilicum L.), borage (Borago officinalis L.), common nettle (Urtica
dioica L.) and peppermint (Mentha piperita L.). They are often grown in soils with significant copper
or zinc levels. Herbs were cultivated by a pot method in controlled conditions. Manganese, iron,
copper and zinc concentrations were determined by High-Resolution Continuum Source Flame
Atomic Absorption Spectrometry. The efficiency of photosynthesis was estimated by measuring the
chlorophyll content, water use efficiency, net photosynthesis, intercellular CO2, stomatal conductance,
and transpiration rate. Phenolic compounds were determined by the Folin–Ciocalteu method.
Analysis of variance showed that herbs grown in soil treated with copper exhibited a lower iron
content in roots, while manganese behaved in the opposite way. The only exception was borage, where
a decrease in the manganese content in roots was observed. Both copper and zinc supplementations
increased the total content of phenolics, while the highest increases were observed for common nettle
and basil. Peppermint and borage responded less to supplementation. In the majority of samples,
zinc and copper did not significantly affect the photosynthesis. Herbal extracts from common nettle
and basil had unique antioxidant properties and may be good free radical scavengers.

Keywords: heavy metals; polyphenols; herbs; photosynthesis

1. Introduction

Heavy metals play a significant role in the growth and development of plants. Never-
theless, either their deficiency or excess can cause disorders in plant growth and develop-
ment by affecting important physiological processes in plants [1].

The main sources of heavy metal contamination of soil are mining, exhaust emis-
sions, sewage irrigation [2] and the continuously growing chemicalization of agriculture.
However, in many places around the world, deficiencies of essential heavy metals are
observed in agricultural crops. This phenomenon is often observed in alkaline soils, where
the availability of microelements for plants may be quite limited indeed [3].

Zinc (Zn) and copper (Cu) are essential plant micronutrients [4]. Zinc is a structural
component of zinc finger proteins and is pivotal for the synthesis of photosynthetic pig-
ments like chlorophyll [5]. Food and Agriculture Organization of the United Nations (FAO)
projects on the assessment of the level of microelements in agricultural soils around the
world raise the problem of global zinc deficiency in crops [6]. Increasing the soil concentra-
tion of zinc in soils with a substantial deficit of this element brings a number of agronomic
benefits in plant cultivation and productivity.

Copper acts as an essential cofactor of several enzymes that play key functions in
plant cell metabolism including the respiration, photosynthesis, and scavenging of reactive
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oxidative species (ROS) [7,8]. On the other hand, the redox properties of copper may
contribute to its toxicity. Redox cycles between Cu2+ and Cu+ can increase the production
of highly toxic hydroxyl radicals with subsequent damage to cells at the level of lipids,
membranes, nucleic acids, proteins and other biomolecules [9]. Copper usually binds to
proteins and has the ability to initiate oxidative damage and disrupt important cellular
processes [10].

Therefore, significant changes in the content of copper or zinc in the soil are reflected
by their respective levels in plant tissues. Above certain concentrations, those elements act
as stressors and prompt the production of ROS [11]. In response, plants synthesize phenolic
compounds which are effective free radicals scavengers [12].

Medicinal herbs and food species are important sources of bioactive compounds.
Following the World Health Organization (WHO), almost 80% of populations heavily
depend on herbal therapies [13]. In the polluted environment inhabited by people living
in stressing conditions, there is a continuous demand for cheap and safe antioxidants
with pronounced free radicals scavenging ability. They are represented by phenolic acids,
phenolic diterpenes, flavonoids, and essential oils [14]. Plants containing these compounds
are widely used in gastronomy, cosmetic industries, perfumery, and the pharmaceutical
industry as well as in herbal medicine [15]. Preliminary studies indicate that they respond
to heavy metal stress with the diverse magnitudes [16,17].

Basil (Ocimum basilicum L.) from the Lamiaceae family is a valuable herb that is used in
medicine, food processing and cosmetics [18,19]. It contains a significant level of phenolic
acids and flavonoid glycosides [20]. Basil has antispasmodic, antidiabetic, antibacterial,
antifungal and antioxidant properties [21,22]. Borage (Borago officinalis L.) is an annual
herb in the flowering plant family Boraginaceae. Its medicinal value is highly appreciated
by either the contemporary pharmaceutical industry or traditional medicine. It is used as
an effective anti-inflammatory agent in the prevention of colds, bronchitis and respiratory
infections [23,24]. Moreover, borage lowers blood cholesterol levels and helps to fight
digestive and cardiovascular disorders [25,26]. Common nettle (Urtica dioica L.) is a spice
from the nettle family (Urticaceae). It is a medicinal, cosmetic, edible and feed plant [27].
Nettle has antihemorrhagic properties, increases the number of red blood cells, regulates
sugar levels and replenishes the deficiencies of vitamins and mineral salts [28]. Peppermint
(Mentha piperita L.) belongs to the Lamiaceae family in the genus Mentha [29]. The herbal
raw material are leaves (Menthae piperitae folium) containing mainly mint oil, ascorbic
acid, carotene, rutin, apigenin, betaine, oleanic and ursulic acids. Peppermint is used for
gastrointestinal ailments, migraines and upper respiratory tract diseases. It has antibacterial
and calming properties [30,31]. The quality of herbs, their extracts and essential oils
strongly depends on the plants’ development and their growing conditions [32]. Herb
crops require appropriate fertilization, and the number of permissible plant protection
products is very limited.

The goal of this work was to describe relationships which govern zinc and copper
uptake by four popular medicinal herbs. The plant metabolism was to be assessed by
gasometric analysis. Finally, we aimed at cultivation conditions which prompt the synthesis
of phenolic compounds. The latter are useful medicinal substances and may be used as
plant stress indicators.

2. Results
2.1. Soil Analysis

The soil used for growing herbs was acidic (pH 5.3) and belonged to organic soils
(86%). The concentrations of heavy metals in this soil did not exceed the limit values
(Table 1) in agreement with the international standards [33,34].
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Table 1. Heavy metals content in the soil used in the work. The number of samples n = 5, probability
level p = 0.05.

Metals Bioavailable Forms
(µg/g)

Pseudo-Total Forms
(µg/g)

Limit Values
(µg/g) *

Mn 75.7 ± 1.0 108 ± 0.6 not applicable
Fe 1323 ± 46 2035 ± 190 not applicable
Cu 9.46 ± 0.06 16.7 ± 0.1 150
Zn 61.8 ± 0.8 93.3 ± 0.39 300

* according to [33,34].

2.2. Plants Analysis
2.2.1. Heavy Metals Uptake by Herbs

Heavy metal concentrations in the above-ground parts and roots of herbs are presented
in Tables 2 and 3. Iron, copper and zinc accumulated in the roots of all cultivated plants,
while manganese accumulated mainly in the above-ground parts. The only exception is
peppermint. To assess the impact of all applied treatments on the concentration of heavy
metals in cultivated herbs, one-way ANOVA analysis was used at the probability level
p = 0.05 (Table 4). Calculations showed that both copper and zinc influence the content of
manganese and iron in all tested plants. Copper supplementation triggers a decrease in the
manganese content in the above-ground parts of borage, common nettle and peppermint.
The exception was basil, where an increase in the content of the latter element was observed.
It is notable that the addition of copper limited the iron levels in the above-ground parts
of all herbs. Zinc supplementation decreased the manganese and iron contents in the
above-ground parts of herbs. The ANOVA analysis (Table 5) clearly showed that herbs
which had been grown in the soil treated with copper exhibited a lower iron content in
roots. Manganese behaved in the opposite way. The only exception was borage, where a
decrease in the manganese content in the roots was observed.

Table 2. Heavy metals contents in above-ground parts of herbs cultivated in soils under copper and
zinc supplementations. The number of samples n = 5, probability level p = 0.05. 50Cu = 50 µg/g
Cu; 50Zn = 50 µg/g Zn. Specific pairs of letters as given in parentheses illustrate the statistically
significant differences between treatments as computed with the Tukey’s HSD test for separate metal
and plant combinations.

Treatments
Metal Contents in Above-Ground Parts (µg/g)

Mn Fe Cu Zn

Basil

Control 59.7 ± 3.1 (aa) 148 ± 11 (ba) 10.8 ± 1.8 (ca) 73 ± 5 (da)
50Cu 66.3 ± 4.7 (aa) 121 ± 6 (bb) 47.2 ± 3.1 (cb) 52 ± 7 (db)
50Zn 45.1 ± 3.9 (ab) 104 ± 7 (bc) 7.61 ± 1.22 (ca) 191 ± 10 (dc)

Borage

Control 52.8 ± 2.5 (ea) 80.4 ± 6.2 (fa) 10.1 ± 0.8 (ga) 56.7 ± 4.8 (ha)
50Cu 29.8 ± 2.1 (eb) 71.2 ± 5.1 (fb) 29.4 ± 1.9 (gb) 60.2 ± 5.0 (hb)
50Zn 30.6 ± 2.1 (eb) 65.4 ± 6.8 (fc) 8.53 ± 0.88 (gc) 138 ± 8 (hc)

Common nettle

Control 69.7 ± 6.7 (ia) 103 ± 6 (ja) 7.42 ± 0.44 (ka) 29.1 ± 2.8 (la)
50Cu 58.2 ± 7.1 (ib) 95 ± 7 (jb) 28.5 ± 1.9 (kb) 33.8 ± 2.8 (la)
50Zn 47.5 ± 6.3 (ic) 101 ± 7 (ja,jb) 8.12 ± 0.73 (ka) 94.6 ± 9.1 (lb)

Peppermint

Control 63.3 ± 3.1 (ma) 115 ± 11 (na) 7.35 ± 0.72 (oa) 48.6 ± 3.7 (pa)
50Cu 49.6 ± 3.7 (mb) 108 ± 9 (na,nb) 31.8 ± 5.8 (ob) 34.2 ± 3.3 (pb)
50Zn 33.7 ± 2.9 (mc) 92.6 ± 7 (nb) 6.39 ± 2.52 (oa) 105 ± 5 (pc)
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Table 3. Heavy metals content in roots of herbs cultivated in soils under copper and zinc supplemen-
tation. The number of samples n = 5, probability level p = 0.05. 50Cu = 50 µg/g Cu; 50Zn = 50 µg/g
Zn. Specific pairs of letters as given in parentheses illustrate the statistically significant differences
between treatments as computed with Tukey’s HSD test for separate metal and plant combinations.

Treatments
Metal Content in Roots (µg/g)

Mn Fe Cu Zn

Basil

Control 31.2 ± 2.1 (aa) 198 ± 6 (ba) 15.9 ± 1.9 (ca) 109 ± 6 (da)
50Cu 70.5 ± 4.3 (ab) 181 ± 5 (bb) 113 ± 5 (cb) 92.1 ± 7.2 (db)
50Zn 17.1 ± 3.4 (ac) 138 ± 7 (bc) 13.2 ± 2.0 (cd) 287 ± 12 (dc)

Borage

Control 40.8 ± 2.5 (ea) 114 ± 6 (fa) 11.5 ± 0.8 (ga) 62.7 ± 4.8 (ha)
50Cu 32.4 ± 2.1 (eb) 85.8 ± 5.1 (fb) 37.4 ± 1.9 (gb) 70.2 ± 5.0 (hb)
50Zn 40.6 ± 1.9 (ea) 75.4 ± 6.8 (fc) 10.1 ± 0.9 (gc) 154 ± 8 (hc)

Common nettle

Control 49.7 ± 6.7 (ia) 172 ± 6 (ja) 9.42 ± 0.44 (ka) 31.1 ± 2.8 (la)
50Cu 68.2 ± 7.1 (ib) 125 ± 7 (jb) 28.5 ± 1.9 (kb) 23.8 ± 2.8 (lb)
50Zn 57.5 ± 6.3 (ic) 137 ± 7 (jc) 7.12 ± 0.73 (kc) 114 ± 9 (lc)

Peppermint

Control 71.3 ± 7.1 (ma) 175 ± 9 (na) 8.34 ± 0.78 (oa) 63.6 ± 7.7 (pa)
50Cu 91.6 ± 8.7 (mb) 128 ± 7 (nb) 43.8 ± 5.8 (ob) 44.2 ± 3.3 (pb)
50Zn 83.7 ± 2.9 (mc) 142 ± 8 (nc) 9.32 ± 2.56 (oa) 115 ± 6 (pc)

Table 4. The one-way ANOVA for manganese, iron, copper, and zinc contents in above-ground parts
of herbs cultivated in soil under copper and zinc supplementations. Critical Snedecor’s F value is
Fcryt = 3.8853, probability level p = 0.05.

Basil Borage Common Nettle Peppermint

Above-Ground Parts

Mn p = 3.85 × 10−6

F = 41.9357
p = 1.47 × 10−8

F = 115.2513
p = 4.95 × 10−8

F = 93.0262
p = 1.70 × 10−9

F = 167.6868

Fe p = 1.21 × 10−8

F = 119.1513
p = 2.48 × 10−7

F = 69.7012
p = 2.02 × 10−2

F = 5.4899
p = 2.12 × 10−3

F = 10.7391

Cu p = 6.45 × 10−11

F = 387.6501
p = 1.52 × 10−9

F = 204.5946
p = 5.19 × 10−10

F = 254.4199
p = 5.04 × 10−11

F = 407.4172

Zn p = 1.17 × 10−11

F = 546.103
p = 3.21 × 10−9

F = 175.8112
p = 1.60 × 10−10

F = 322.7082
p = 1.11 × 10−9

F = 218.2207

Table 5. The one-way ANOVA for manganese, iron, copper, and zinc contents in roots of herbs culti-
vated in soil under copper and zinc supplementations. Critical Snedecor’s F value is Fcryt = 3.8853,
probability level p = 0.05.

Basil Borage Common Nettle Peppermint

Roots

Mn p = 8.23 × 10−13

F = 613.7908
p = 2.92 × 10−4

F = 17.3007
p = 1.31 × 10−7

F = 78.1844
p = 5.46 × 10−7

F = 60.3707

Fe p = 7.51 × 10−9

F = 129.5797
p = 2.69 × 10−8

F = 103.6419
p = 1.14 × 10−9

F = 179.6911
p = 8.17 × 10−8

F = 85.0893

Cu p = 5.49 × 10−13

F = 1010.294
p = 3.28 × 10−8

F = 109.3599
p = 4.32 × 10−10

F = 264.0011
p = 1.04 × 10−7

F = 86.1670

Zn p = 5.72 × 10−11

F = 397.1455
p = 4.88 × 10−11

F = 409.9500
p = 7.27 × 10−9

F = 148.8850
p = 1.17 × 10−7

F = 84.1723

2.2.2. Photosynthesis Parameters

The metabolism of herbs was estimated using photosynthesis indicators, i.e., the index
of chlorophyll content in leaves, water use efficiency (WUE), net photosynthesis activity,
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stomatal conductance, transpiration rate and intercellular CO2 concentration (Figure 1).
Those parameters clearly showed that herbs were in reasonable growth conditions. The
influence of copper or zinc on the chlorophyll content in herbs varies greatly and was
dependent on the plant species. A clear decrease was observed only for the common nettle.
In peppermint and borage grown in soil with the addition of metals, the content chlorophyll
increased. The WUE clearly showed that the analyzed herbs reacted on metals introduced
into the soil in quite different ways. The photosynthesis parameters of the analyzed herbs
treated with copper or zinc were strictly dependent on the plant species. A common nettle
grown on soil supplemented with copper or zinc showed a decrease in the intensity of
the photosynthesis process. The opposite situation was observed for peppermint. Basil
and borage behaved in a more diverse way. An increase in intercellular CO2 content was
observed in all analyzed herbs after supplementation with copper and zinc. The mass of
common nettle, peppermint and basil-treated zinc or copper (Figure 2) decreased slightly.
The only exception was borage grown in soil supplemented with zinc.
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Figure 1. The chlorophyll content (A), water use efficiency (B), net photosynthesis (C), intercellular
concentration CO2 (D), stomatal conductance (E), transpiration (F). Specific letters illustrate the
statistically significant differences as computed with Tukey’s HSD test. Error bars correspond to the
S.D. The number of samples n = 5, probability level p = 0.05.
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Figure 2. The fresh mass of herbs (A) and dry mass of herbs (B) cultivated on soil with additives.
Specific letters demonstrate the statistically significant differences as computed with Tukey’s HSD
test. Error bars correspond to the S.D. The number of samples n = 5, probability level p = 0.05.

2.2.3. Total Phenolic Compounds Content

Figure 3 presents the total phenolic compounds (TPCs) content as determined by the
Folin–Ciocalteu method. Both copper and zinc supplementation increased the total content
of phenolic compounds in stinging nettle and basil.
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Figure 3. The total phenolic compounds in herbs cultivated in soil with copper and zinc supplemen-
tation. Specific letters demonstrate the statistically significant differences as computed with Tukey’s
HSD test. Error bars correspond to the S.D. The number of samples n = 5, probability level p = 0.05.
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The content of phenolic compounds in common nettle increased by 53% after copper
supplementation and by 57% when the zinc treatment was applied. For basil, those values
were 38% (copper supplementation) and 28% (zinc supplementation), respectively, while
no significant differences were observed for peppermint and borage.

3. Discussion

It is well known that heavy metals in the soil environment tend to migrate to the
rhizosphere and are subjected to the uptake by plant roots there. Subsequently, they are
transported via xylem and phloem to the upper parts of the plant [35]. Our investigations
clearly show that the impact of heavy metals on herbs is quite diverse and heavily depends
on individual species. Significant antagonistic interactions between zinc and copper were
observed in all of the herbs investigated. In particular, the zinc uptake could be inhibited
by the increased copper content in roots. This result may indicate that the similar carrier
sites are involved in the absorption and transport mechanisms of both metals [36].

In particular, Behtash et al. [37] examined the effect of copper and zinc on the morpho-
physiological characteristics of spring squash. Increased zinc content was observed in the
presence of small copper concentrations, while the low zinc levels prompted the copper
uptake. The authors pointed out that copper in high concentrations directly had affected
the reaction centers of the photosystem and had interfered with photosynthetic processes by
annihilating the photosynthetic pigments, membrane stability and photosynthetic enzymes.

It is common knowledge that any disturbances in the photosynthesis process adversely
affect the quality of crops. For this reason, the antagonistic interaction of zinc and copper
may significantly reduce the effects of copper toxicity. However, we did not observe
this effect along the applied copper supplementation. Zinc contents in the aerial parts of
cultivated herbs varied greatly depending on the plant species [37]. The diverse interactions
of copper and zinc have been described many times. Le et al. [38] examined the interaction
of both those elements and found that the presence of zinc reduces the toxicity of copper,
while the presence of copper does not affect the toxicity of zinc. Moreover, results may be
biased by interactions with other ions, e.g., zinc is transported through root cells by the ZIP
family of transporters, which can also bind iron [39–41].

Kabata-Pendias and Pendias [42] report that zinc interferes more with the uptake and
transport of iron than copper. This is likely due to competition between Zn2+ and Fe2+ ions
during uptake by plant roots and interference in chelation processes. High levels of copper
in the plant decrease the iron content. The optimal copper–iron ratio varies for different
plant species. In particular, the uptake and transport of iron are greatly influenced by the
concentrations and proportions of other heavy metals [43]. Iron is considered an element
that plays a key role in the mechanisms of photosynthesis [44].

It is quite common knowledge that heavy metals induce stress to plants and prompt
multidirectional metabolic disorders which further limit photosynthesis and biomass
productivity. Thus, the reduced weight of plants grown in the soil with increased copper or
zinc levels may result from oxidative stress, a limited absorption of essential elements and
reduced metabolism [45]. Nevertheless, it should be remembered that the response of plants
to stress is closely related to plant species and the level of heavy metals in the cultivation
environment. Our research clearly shows that common nettle is the most sensitive to the
presence of these additives. However, modifications of the root system may also affect the
final weight of particular herbs [46].

Heavy metals may limit the uptake of nutrients, the content of photosynthetic pig-
ments, enzymatic activity and protein biosynthesis [47]. However, several studies indicate
that the plant stress induced by toxic elements may induce secondary metabolism [48,49].
The plant response to stress caused by heavy metals affects their stomata. The latter are
specialized pores in the epidermis of plant cells involved in the process of photosynthesis,
respiration and transpiration. According to the literature data, the exposure of plants to
heavy metals may cause damage to the structure and function of stomata and ultimately
lead to changes in the physiology and ecology of plants [50]. The reasons for stomatal
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closure in plants are complex and partially may be related to the concentration of heavy
metals and the duration of this contamination [51,52]. Moreover, heavy metals may affect
the carbon dioxide concentrations in the plant tissues [53]. In response, plants may increase
stomatal conductance to meet their respiratory needs. In addition, the accumulation of
heavy metals can lead to the leakage of potassium ions from the plant, negatively affecting
the plant’s ability to regulate stomatal closure [54]. We clearly observed this phenomenon
in basil and peppermint after supplementation with copper and zinc (Figure 1). In all of
the analyzed herbs grown in soil with the addition of metals, an increase in intercellular
CO2 content was observed.

Physiological processes related to water absorption and nutrient uptake significantly
influence the growth and development of plants [55,56]. The literature data [57] clearly
show that a significant increase in the content of heavy metals in the cultivation media
reduces the water content in plant organs. However, particular plant species use specific
mechanisms to maintain plant water balance [58]. Our results showed clearly that WUE
values changed substantially for each cultivated plant after the copper or zinc addition.

Upon uptake, heavy metals penetrating plant tissues prompt an increase in reactive
oxygen species (ROS), which further lead to redox balance disturbance [59,60]. Increased
levels of superoxide anion (O2−) and hydrogen peroxide (H2O2) cause a further peroxi-
dation of membrane lipids and the destruction of oxidative cells [61]. ROS are typically
produced in plant cell chloroplasts, mitochondria, and subcellular structures [62]. In re-
sponse to stress, plants may adapt to it or reduce the ROS level by changing the activity of
antioxidant enzymes in their tissues [63,64]. Low levels of ROS can activate plant defense
reactions, which leads to an increased activity of antioxidant enzymes. However, when ROS
levels exceed the ability of the antioxidant defense system, oxidative damage occurs [65].

Polyphenols are compounds naturally existing in plants, and they are involved in
natural plant antioxidant activity. They are scavengers of free radicals either in plant or
human body environments [66]. Our results clearly showed that the addition of copper
or zinc to the soil increased the total content of phenolic compounds in common nettle
and basil. However, they responded to applied supplementations in diverse ways. It is
well documented that plants grown in contaminated soils react to stress conditions by
synthetizing phenolic compounds [66–68]. Moreover, Mleczek et al. [41] determined that
only high levels of copper and zinc prompted a significant increase in the total phenolics.

4. Materials and Methods
4.1. Soil Analysis and Preparation for Cultivation

The soil used to grow herbs was taken from the agricultural area located in Lagiewniki,
Poland, according to standards [69] The soil was dried and passed through a 2 mm stainless
steel sieve. The potentiometric method was used in pH determination [70]. The content
of organic matter was estimated by the gravimetric method [71]. The bioavailable forms
of metals were analyzed in 0.5 mol/L HCl extracts. Pseudo-total metals contents in soil
were determined in solution obtained by microwave decomposition in a mixed HNO3
(65%) and HCl (36%). The Anton Paar Multiwave 3000 (Graz, Austria) apparatus was used.
Metal concentrations were determined by the High Resolution-Continuum Source Flame
Atomic Absorption Spectrometry (HR-CS FAAS) with the Analytik Jena ContrAA 300 (Jena,
Germany) apparatus. Each sample was analyzed five times.

The air-dried soil was weighed (200 g) into plastic containers. The first series of
soil without added metals was a reference (Control). The remaining two series were
supplemented with solution of zinc or copper in the form of Cu(NO3)2 and Zn(NO3)2. The
metal concentrations in these samples were increased by 50 µg/g Cu (50Cu) or 50 µg/g Zn
(50Zn), respectively. Copper and zinc supplementations were calculated to be consistent
with the amounts of those elements which are being introduced to soil with fertilizers used
in herbal agriculture.
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4.2. Plant Material Preparation

Four herbs were cultivated, i.e., basil, borage, common nettle, and peppermint. Each
plant was grown in three series of five replicates (control, samples with the addition of
50 µg/g Cu (50Cu) and samples with the addition of 50 µg/g Zn (50Zn)). The seeds of all
plants came from the P.H. Legutko company. Herbs were cultivated in a greenhouse under
controlled conditions: temperatures 23 ± 2 and 16 ± 2 ◦C for day and night, respectively;
the relative humidity was limited to 70–75%; the photosynthetic active radiation (PAR)
during the 16 h photoperiod was restricted to 400 µmol/m2 s. Plant cultivation was carried
out for three months. After determining the parameters of photosynthesis, all plants were
cut, dried in the air and homogenized.

4.3. Photosynthesis Parameters

All measurements were collected five times from plants from each pot. The content of
chlorophyll in leaves was measured by Konica Minolta SPAD-502 (Tokyo, Japan) in the red
and the near-infrared regions. The activity of net photosynthesis (PN), the stomatal conduc-
tance (GS), the intercellular concentration of carbon dioxide (Ci), and the transpiration (E)
were measured with the gas analyzer TPS-2 (Portable Photosynthesis System, Amesbury
MA, USA).

4.4. Determination of Total Phenolic Compounds in Herbs by Folin–Ciocalteu Method

The commonly used Folin–Ciocalteu method with gallic acid as the standard was used
to measure the total phenolics content in herbs [72]. The boiling water (50 mL) was used
to extract dried herbs (1 g). The absorbance measurement was made at a wavelength of
765 nm on the Specol 11, Carl Zeiss (Jena, Germany) instrument.

4.5. Determination of Heavy Metals in Herbs

The metals in roots and above-ground parts of herbs contents were measured in
mineralizates of plant. The same protocol as used for soil analysis was applied.

The quality assurance and quality control (QA/QC) of metals in plant samples were
assessed by determining the metal content in the INCT-MPH-2 certified reference material
containing a mixture of selected Polish herbs (Table S1).

4.6. Data Analysis

All parameters were determined in parallel for five independent samples. The statis-
tical analysis was made separately for each herb. Bartlett and Hartley tests were used to
check the equality of variances (STATISTICA 10 PL package). The normality of the data
sets was assessed using the Shapiro–Wilk test [73,74]. The Tukey HDS post hoc test was
used to assess statistically significant differences among individual parameters. One-way
ANOVA was used to identify significant differences in manganese, iron, copper and zinc
contents in the above-ground parts and roots of herbs cultivated in soil with copper and
zinc supplementations.

5. Conclusions

The addition of copper or zinc to the soil increased the polyphenol content in common
nettle and basil. However, this influence varied substantially depending on the plant
species. In most plant samples, it did not significantly affect the photosynthesis. Herbal
extracts from common nettle and basil had unique antioxidant properties and may be good
free radical scavengers. Investigations on increasing the content of polyphenols in plants
are important for their common medical use. On the other hand, determining the safe
levels of metals supplemented to the soil in order to increase phenolic compounds in herbs
is crucial to obtain proper pharmaceutical materials.

Supplementary Materials: The supporting information can be downloaded at https://www.mdpi.
com/article/10.3390/ijms25073612/s1.
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