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Abstract: Originally discovered in C. elegans, LIN28 is an evolutionarily conserved zinc finger RNA-
binding protein (RBP) that post-transcriptionally regulates genes involved in developmental timing,
stem cell programming, and oncogenesis. LIN28 acts via two distinct mechanisms. It blocks the
biogenesis of the lethal-7 (let-7) microRNA (miRNA) family, and also directly binds messenger RNA
(mRNA) targets, such as IGF-2 mRNA, and alters downstream splicing and translation events. This
review focuses on the molecular mechanism of LIN28 repression of let-7 and current strategies to
overcome this blockade for the purpose of cancer therapy. We highlight the value of the LIN28/let-7
pathway as a drug target, as multiple oncogenic proteins that the pathway regulates are considered
undruggable due to their inaccessible cellular location and lack of cavities for small molecule binding.
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1. Introduction

Mature microRNAs (miRNAs) are cytosolic short single-stranded RNAs (ssRNAs)
of approximately 22 nucleotides (nts) in length. Generation of miRNAs requires process-
ing by nuclear RNase Drosha followed by cytoplasmic RNase Dicer (Figure 1). In the
nucleus, Drosha binds DGCR8 to form the microprocessor complex, which cleaves a long
primary miRNA (pri-miRNA) into a characteristic hairpin-like structure known as pre-
miRNA [1–3]. Exportin-5 then transports the pre-miRNA to the cytosol and Dicer trims
the cytosolic pre-miRNA into a final ~22-nt miRNA [4–7]. The mature miRNA binds an
Argonaute protein to form an RNA-induced silencing complex (RISC), which utilizes the
miRNA as a guide to target complementary 3′-untranslated regions (3′-UTRs) of messenger
RNAs (mRNAs) and suppress the expression of the mRNAs through diverse mechanisms,
such as mRNA degradation and translational repression, a phenomenon termed RNA
interference (RNAi) [8–10].

The lethal-7 (let-7) family of miRNAs, including let-7a-1, let-7a-2, let-7a-3, let-7b, let-7c,
let-7d, let-7e, let-7f-1, let-7f-2, let-7g, let-7i, and miR-98 in humans, regulate development
and act as tumor suppressors by targeting oncogenes including ras, HMGA, JAK, STAT3,
NIRF, and c-Myc, which in their 3′ UTRs contain complementary sequences to the seed se-
quence GAGGUA in let-7 family members [11–14]. Because post-transcriptional repression
of let-7 biogenesis by LIN28 generally upregulates tumorigenesis, LIN28 is regarded as
an oncoprotein [15,16].

In vertebrates there are two LIN28 paralogs, LIN28A and LIN28B, which are aberrantly
expressed in numerous human cancers, including T-cell lymphoma, neuroblastoma, breast
cancer, and hepatoblastoma [15,17–19]. LIN28A and LIN28B utilize distinct mechanisms
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to block let-7 miRNA biogenesis (Figure 1) [20,21]. Whereas LIN28B sequesters let-7 pri-
miRNA (pri-let-7) to disable its cleavage by the Drosha-DGCR8 microprocessor complex
in the nucleus, LIN28A resides in the cytoplasm and acts on let-7 pre-miRNA (pre-let-7)
through a terminal uridylyltransferase (TUTase)-dependent mechanism. More specifically,
LIN28A recruits TUT4/Zcchc11 to uridylate pre-let-7 at its 3′ end [22–24]. Oligouridylated
pre-let-7 (upre-let-7) cannot be processed by Dicer due to its elongated tail and will undergo
degradation by the DIS3L2 exonuclease [25,26]. Lifting the blockade of let-7 miRNA
biogenesis by LIN28 may therefore attenuate or prevent tumorigenesis.
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Figure 1. LIN28 Inhibits let-7 miRNA Biogenesis and Contributes to Cancer. In the nucleus, human 
LIN28B sequesters pri-let-7 and as a result, the Drosha-DGCR8 microprocessor fails to generate pre-
let-7, thereby arresting let-7 biogenesis. LIN28A (CSD—cold-shock domain; ZKD—zinc knuckle do-
main) binds to pre-let-7 after its nuclear export. Given the cytoplasmic localization of LIN28B in 
some cell types, LIN28B inhibition of mature let-7 biogenesis can also occur in the cytoplasm. 
LIN28A/B recruits TUT4/Zcchc11, which oligouridylates pre-let-7 at its 3′ end. Oligouridylated pre-
let-7 then undergoes exonuclease degradation by DIS3L2. LIN28A/B binding to pre-let-7 could in-
terfere with Dicer cleavage, providing the mechanism for TUTase-independent repression. Without 
this inhibition, pre-let-7 undergoes processing by Dicer to yield mature let-7 miRNA, which consti-
tutes part of RISC and inhibits multiple oncogenes through RNAi. 

In vertebrates there are two LIN28 paralogs, LIN28A and LIN28B, which are aber-
rantly expressed in numerous human cancers, including T-cell lymphoma, neuroblas-
toma, breast cancer, and hepatoblastoma [15,17–19]. LIN28A and LIN28B utilize distinct 
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Figure 1. LIN28 Inhibits let-7 miRNA Biogenesis and Contributes to Cancer. In the nucleus, human
LIN28B sequesters pri-let-7 and as a result, the Drosha-DGCR8 microprocessor fails to generate pre-let-
7, thereby arresting let-7 biogenesis. LIN28A (CSD—cold-shock domain; ZKD—zinc knuckle domain)
binds to pre-let-7 after its nuclear export. Given the cytoplasmic localization of LIN28B in some
cell types, LIN28B inhibition of mature let-7 biogenesis can also occur in the cytoplasm. LIN28A/B
recruits TUT4/Zcchc11, which oligouridylates pre-let-7 at its 3′ end. Oligouridylated pre-let-7 then
undergoes exonuclease degradation by DIS3L2. LIN28A/B binding to pre-let-7 could interfere with
Dicer cleavage, providing the mechanism for TUTase-independent repression. Without this inhibition,
pre-let-7 undergoes processing by Dicer to yield mature let-7 miRNA, which constitutes part of RISC
and inhibits multiple oncogenes through RNAi.
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It is important to mention that there exist contrasting viewpoints regarding the sub-
cellular localization of LIN28B. For example, Piskounova et al. [20] showed that LIN28B
possesses unique signals for localization in both the nucleolus and the nucleus, whereas
Guo et al. [27], Molenaar et al. [28], and Hafner et al. [29] found that LIN28B is mainly
located in the cytoplasm, indicating a potential for translocation into the nucleus in a
manner dependent on the cell cycle. Thus, given that LIN28B localization varies in differ-
ent cells, including cell lines where LIN28B is strictly cytoplasmic, its inhibition of let-7
biogenesis could still occur in the cytoplasm (Figure 1). Additional research is required
to comprehensively elucidate the precise subcellular localization of LIN28B, which can
potentially differ based on the specific cell type.

2. Structural Basis for Interaction of Let-7 MicroRNAs with LIN28

To identify the specificity of the interaction of let-7 microRNA with LIN28, some
structural data have been obtained. One major mechanism by which LIN28 selectively
modulates let-7 microRNAs is based on the involvement of LIN28 binding domains. LIN28
contains two RNA binding domains, namely an N-terminal cold-shock domain (CSD) and
zinc knuckle domain (ZKD) that contains two zinc knuckles (CCHC-type) [30]. Both the
CSD and ZKD recognize two distinct regions of the RNA and have been shown to have
roles to play in RNA binding and let-7 processing (Figure 2) [31–34].
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Figure 2. Involvement of LIN28A CSD and ZKD in let-7 pre-miRNA binding and processing. Using
their CSD and ZKD binding elements, let-7 miRNA precursor recruits LIN28A, resulting to their
3′uridylation by TUTase and eventual degradation by DIS3L2.

By identifying the structures of three LIN28A–pre-let-7 complexes, Nam et al. [35]
reported a bipartite interaction between LIN28A and its let-7 family partners. They dis-
covered that in the central stem-loop structure in pre-let-7, the CSD inserts into the loop
at one end, and the two ZKD modules recognize a GGAG motif at the other end. With-
out compromising affinity or specificity, the flexible linker connecting the CSD and the
two ZKD molecules can accept different sequences and lengths among the LIN28-regulated
let-7 family members. When linked together, these domains are adequate to limit let-7
processing. There are two possible paths for processing pre-let-7 after LIN28 is bound.
First, as LIN28 bends GGAG and positions itself in a certain conformation on one of the
strands, it may function as a “wedge” to melt a portion of the double-stranded mature area.
Therefore, Dicer may be unable to appropriately identify its substrate. Second, because of
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the position of the zinc knuckle binding domains, the volume of the ZKD, and the location
of its N terminus, which the interdomain linker would have to cross in order to reach the
CSD, LIN28 is likely to collide with the Dicer dsRNA-binding domains and obscure one of
the cleavage sites.

Furthermore, Loughlin et al. [36] sought to understand how LIN28B specifically
recognizes pre-let-7 terminal loops by determining the structure of the ZnF domains of
LIN28 bound to RNA. The obtained solution’s structure reveals a somewhat degenerate
5′-NGNNG-3′ consensus-binding sequence that permitted the ZnFs of LIN28 to recognize
all pre-let-7 miRNAs. The structure, which showed the interacting elements in the RNA
and the protein, enabled the definition of a new consensus motif (5′-NGNNG-3′). Thus,
by specifically recognizing these motifs, the ZnFs of LIN28 are sufficient for selective
recognition of the pre-let-7 family [37].

While the zinc knuckle domain (ZKD) binds a GGAG-like element in the precur-
sor to coordinate LIN28A/B recognition, the cold-shock domain (CSD) was shown by
Ustianenko et al. [38] to recognize a (U)GAU motif. More importantly, they found that
this motif partitions the let-7 microRNAs into two subclasses, precursors with both CSD
and ZKD binding sites (CSD+) and precursors with ZKD but no CSD binding sites (CSD).
On further study, they demonstrated that CSD binding sites amplify the regulatory ef-
fects of LIN28. Specifically, LIN28 in vivo recognition, and subsequent 3′ uridylation and
degradation, of CSD+ precursors is more efficient, leading to their stronger suppression in
LIN28-activated cells and cancers.

Summarily, LIN28 CSD and ZKD recognize distinct sequence motifs, and are both
required for high-affinity interactions of LIN28 with let-7 pre-miRNAs.

3. Mechanistic Studies on the Regulation of Cancer Progression via the
LIN28/Let-7 Axis

LIN28A, an RNA-binding protein and LIN28B, its homolog, play major roles in
cell growth and germ lineage [39]. LIN28A and LIN28B control gene regulatory net-
works through multiple mechanisms, the best-studied being the regulation of LIN28 on
let-7 [21,40]. Regulation via the LIN28/let-7 axis is such that LIN28 and let-7 have op-
posite effects on developmental progression [41]. In order to promote differentiation
programming, each of the let-7 family members decrease expression of genes that promote
stemness, proliferation, and migration, whereas LIN28A/B derepresses these genes in
a let-7-dependent way to maintain a pluripotent phenotype [42]. This provides a let-7-
dependent mechanism of oncogene upregulation; as such, the LIN28/let-7 axis has been
shown to regulate cancer development in various ways (Figure 3). In this section, we review
different let-7-dependent mechanisms of LIN28A/B function across different tumor types.
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3.1. Modulation of Self-Renewal Capacity of Cancer Stem Cells

Cancers may arise from rare self-renewing tumor-initiating cells (T-IC), and miRNAs
can regulate cell-fate decisions [43,44]. Surprisingly, studies have shown that let-7 can
control the tumorigenicity and self-renewal of breast cancer cells. Yu et al. [45] compared
miRNA expression in self-renewing and differentiated cells from breast cancer lines, and in
breast BT-IC and non-BT-IC from 1◦ breast cancers. They found that let-7 miRNAs were
markedly reduced in BT-IC and increased with differentiation. Low let-7 helped maintain
the undifferentiated status and proliferative potential of mammospheric cells from a cell
line and of 1◦ tumor BT-IC. These results suggest a mechanism whereby repression of
let-7 by LIN28A and LIN28B may help to confer self-renewal capacity on cancer stem
cells (CSC). Similarly, Yang et al. [46] showed that the self-renewal and differentiation of
mammary gland epithelial progenitor cells are regulated by a LIN28/let-7 loop. They
discovered that a LIN28B/let-7 regulatory loop regulates ALDH1+ cancer stem cells and
that LIN28B maintains the population of ALDH1+ tumor cells by controlling let-7. In
another study, Albino et al. [47] demonstrated that a crucial factor in the cell transformation
and proliferation of prostate CSC was the deregulation of the LIN28A/B–let-7 axis with
decreased let-7 microRNA synthesis. They found links between the LIN28/let-7 microRNA
axis, the CSC subpopulation in prostate cancer, and the ETS transcription factor ESE3/EHF.
The findings showed that a tumorigenic and stem-like phenotype in prostate cancer is
promoted by the activation of the LIN28/let-7 axis caused by the loss of ESE3/EHF.

3.2. Regulation of Aerobic Glycolysis to Promote Cancer Progression

Altered metabolism plays an important role in promoting malignant tumor characteris-
tics. Given that cancer-specific metabolism is mainly responsible for the growth advantage
of cancer cells [48,49], studies have been carried out to try to understand the mechanisms
by which the LIN28/let-7 axis regulates glucose metabolism. In a study by Ma et al. [50],
it was found that LIN28A and LIN28B enhance aerobic glycolysis while let-7 suppresses
it by targeting pyruvate dehydrogenase kinase 1 (PDK1). This finding demonstrates a
novel pathway to mediate aerobic glycolysis of cancer cells even in ambient oxygen levels,
independent of hypoxia or hypoxia-inducible factor-1 (HIF-1). This discovery indicates
that the LIN28/let-7 axis promotes the growth of cancer by facilitating aerobic glycolysis.
Another study by Gibadulinova et al. [51] demonstrated that an increase of let-7 miRNAs in
CAIX-suppressed cells simultaneously caused a decrease in LIN28A/B protein levels, along
with downstream metabolic pathways (PDK1), eventually resulting in the attenuation of
glycolysis. Overall, they demonstrated that during CAIX-mediated adaptation to hypoxia
and acidosis in carcinogenesis, glycolytic metabolism is increased and stem cell markers are
expressed more when the LIN28/let-7 axis is regulated by CAIX. Ackermann et al. [52] also
reported a cancer-type metabolic shift induced via a LIN28B/let-7 axis in mice. Specifically,
liver-enriched inhibitory protein (LIP) activates LIN28B through repression of the let-7
microRNA family. Moreover, they showed that transgenic mice overexpressing LIP have
reduced levels of let-7 and increased LIN28B expression, which is linked to skin hyperplasia
and metabolic reprogramming, as evidenced by primary bone marrow cells. This work
demonstrates that LIP is both a regulator of the let-7/LIN28B regulatory circuit and an
inducer of cancer type metabolic reprogramming.

3.3. Mediation of Cancer Cell Death and Evasion of Immune Destruction

The potential roles and underlying mechanisms of the LIN28/let-7 axis in apoptosis
during cancer has been demonstrated. Using BGC-823 gastric cancer cells, Song et al. [53] re-
ported that the overexpression of LIN28A was inversely correlated with the downregulated
expression of let-7a, and markedly suppressed the proliferation, migration, and cell cycle
progression, and induced apoptosis. Consistently, Zhang et al. [54] showed that silencing
LIN28A/B promotes apoptosis in colorectal cancer cells by upregulating let-7c targeting of
antiapoptotic BCL2L1. Furthermore, studies have shown that cancer cell immune evasion
may be regulated via the LIN28/let-7 Axis. A study by Chen et al. [55] demonstrated
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that let-7 post-transcriptionally suppressed programmed death ligand-1 (PD-L1), which
is a transmembrane immune protein that interacts with the T-cell inhibitory receptor pro-
grammed cell death protein-1 (PD-1). The upregulation of LIN28A/B in most cancer cells
results in the inhibition of the biogenesis of let-7, thus promoting PD-L1 expression. This
regulation of PD-L1 suggests that the LIN28/let-7 loop can affect cancer progression.

3.4. Mediation of Tumor-Associated Inflammation

Studies have suggested a strong association between inflammation and different
types of cancer, and inflammatory molecules can provide growth signals that promote
the proliferation of malignant cells [56]. Particularly, the transcription factor NF-κB that
regulates the expression of antiapoptotic genes and activates different proinflammatory
cytokines and chemokines, seems to be a key molecular link between inflammation and
oncogenesis initiation and progression [57,58]. Iliopoulos et al. [59] reported that NF-κB
mediated an inflammatory response that directly activates LIN28B transcription and rapidly
reduces let-7 microRNA levels. They showed that let-7 directly inhibits IL6 expression,
resulting in higher levels of IL6 than achieved by NF-κB activation. This suggests that the
LIN28A/B and let-7 loop is a key switch linking inflammation to cell transformation.

3.5. Regulation of Radio- and Chemo-Resistance in Cancer

Resistance to radiation and chemotherapy is a major obstacle for the effective treat-
ment of cancer, and the LIN28/let-7 axis has been shown to regulate this resistance.
Lv et al. [60] demonstrated the association of LIN28A/B with resistance to paclitaxel, a
first-line chemotherapy drug. In their study, in comparison to the MCF7, Bcap-37, or SK-
BR-3 cancer cell lines, which exhibited low levels of LIN28 expression, the T47D cancer cell
line, which expresses LIN28 abundantly, was more resistant to paclitaxel. The sensitivity to
paclitaxel treatment was improved in LIN28A high-expression T47D cells when LIN28A
was knocked down; however, stable expression of LIN28 in breast cancer cells substan-
tially reduced the sensitivity to paclitaxel treatment, leading to a considerable increase in
paclitaxel IC50 values. The same research group also reported that the T47D cancer cell
line is more resistant to radiation than MCF7, Bcap-37 or SK-BR-3 cancer cell lines [61].
In another study by Yin et al. [62] on radio- or chemo-resistance in NSCLC cells, it was
demonstrated that by controlling the NSCLC cells’ capacity for single-cell proliferation,
let-7 downregulation and LIN28A/B upregulation enhanced resistance to radiation or
cisplatin. The LIN28A/B–let-7 axis was also found to modulate the radiosensitivity of
cancer cells through the activation of K-Ras. In a study by Oh et al. [63], the inhibition of
LIN28A/B resulted in the overexpression of let-7a, which subsequently attenuated K-Ras
expression and radiosensitized A549 and ASPC1 cells.

4. Pharmacological Modulation of the LIN28/Let-7 Axis for Cancer Therapy

To suppress let-7 biogenesis, LIN28 sequesters pri-let-7 or induces pre-let-7 degra-
dation. In return, let-7 can target the 3′ UTR of LIN28 mRNA to downregulate LIN28
expression, creating a double-negative feedback loop [64,65]. Given that let-7 is tumor-
suppressive, increasing let-7 levels will likely attenuate tumorigenesis, especially that
driven by LIN28. Indeed, administration of let-7 prevents tumor formation in a mouse
model of non-small-cell lung cancer (NSCLC) and LIN28B knockout and knockdown effec-
tively upregulate let-7 levels and curb Wilms tumors and hepatoblastomas in mice [66–70].
These studies have established the genetic and epigenetic basis for modulating the LIN28B/
let-7 axis for cancer therapy. Current strategies to upregulate let-7 activity trifurcate into
gene therapy with let-7 mimics, short modified oligoribonucleotides known as looptomirs,
and small-molecule inhibitors of LIN28 (Figure 4). Here, we briefly discuss advances
in let-7 mimics and looptomirs and focus on the discovery and mechanisms of several
LIN28 inhibitors.
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Figure 4. Pharmacological inhibition of LIN28-driven oncogenesis. (A) Domain architecture of human
LIN28A and LIN28B, which share an N-terminal CSD (magenta) and a C-terminal ZKD (green) The
residue numbers are denoted atop. (B) Let-7 mimics enhance tumor suppression by replenishing let-7,
the level of which is decreased by LIN28-mediated oligouridylation and degradation by nuclease
DIS3L2 (grey) (PDB ID: 4PMW). (C) Looptomirs hinder (red cross) LIN28 binding to pre-let-7 without
blocking downstream pre-let-7 processing by Dicer, thereby promoting let-7 maturation. (D) Small
molecules LI71 and TPEN inhibit (red cross) LIN28 by targeting its CSD and ZKD, respectively.
Crystal structure of human LIN28A in complex with pre-let-7f-1 (yellow) (PDB ID: 5UDZ). Zn2+ ions
(blue) are visible near the ZKD. The GGAG motif in pre-let-7f-1 is indicated near its 3′ end.

4.1. Gene Therapy

Because let-7 is tumor-suppressive and has multiple oncogene targets, using gene
therapy to replenish let-7 has potential as a cancer therapy [71–73] (Figure 4B). As a proof
of concept, Wang et al. showed that let-7i mimics of 22 base pairs (bps) in length potently
inhibit the growth and migration of A549 cells, results that are consistent with those from
Ling et al., who demonstrated that let-7a-mimic treatment hinders epithelial–mesenchymal
transition, cell mobility, and expression of VEGF-C and MMP9 in esophageal squamous cell
carcinoma (ESCC) cells [74,75]. Taken together, these studies raise hope for the development
of anti-cancer therapeutics using let-7 mimics and shed light on a general direction of
engineering miRNA analogs for tuning biological pathways. However, there remains the
issue of how to deliver small RNA molecules specifically and effectively, including miRNA
mimics. More studies are therefore needed to develop successful delivery methods.

4.2. Looptomirs

Antisense oligoribonucleotides are another class of let-7-targeting therapeutics
(Figure 4C). Using an RNA-based, enzyme-linked immunosorbent assay (ELISA), Roos et al.
described a 13-nt looptomir, dubbed L29-13, that binds to pre-let-7a with high affinity and
without blocking downstream Dicer [76]. L29-13 competitively antagonizes LIN28A/B re-
cruitment and inhibits cancerous proliferation in hepatocellular carcinoma (HCC)-derived
Huh7 and HepG2 cells, laying the groundwork for the development of small molecules
that target the LIN28/pre-let-7 interaction. Looptomirs and small-molecule inhibitors both
aim to disrupt LIN28/pre-let-7 interaction and promote let-7 generation, the former prefer-
ably targeting pre-let-7, the latter LIN28. Although more let-7-specific looptomirs await
development, several studies have demonstrated the ability of looptomirs to modulate
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maturational processing of miRNAs, highlighting looptomirs as a promising strategy in
LIN28/let-7-targeting cancer therapy [77,78].

4.3. Small-Molecule Inhibitors

Following the discovery of let-7 mimics and looptomirs as potential therapeutic agents,
researchers have reported several small-molecule inhibitors of LIN28, including Compound
1632 and Compound 1, discovered through fluorescence resonance energy transfer (FRET)-
based screens [79–83]. The molecular mechanisms of inhibition for these compounds are
not yet well understood, making it difficult to optimize these compounds to improve
potency and reduce toxicity.

Biochemical and structural efforts allowed us to make significant progress towards
the discovery and mechanistic elucidation of LIN28 inhibitors (Table 1). Crystal structures
of LIN28/pre-let-7 complexes demonstrate that the N-terminal cold-shock domain (CSD)
and the C-terminal Cys-Cys-His-Cys (CCHC) zinc knuckle domain (ZKD) support a bi-
partite RNA-protein interaction, and therefore establish the molecular basis for pre-let-7
suppression (Figure 4A,D) [37,84]. The CSD binds to and structurally remodels pre-let-
7 at its terminal loop, whereas the ZKD specifically binds to a conserved GGAG motif
abutting the terminal loop (Figure 4D) [35–37,85]. Both domains of LIN28 and the GGAG
motif of pre-let-7 are required to block LIN28-mediated recruitment of Zcchc11/TUT4
and pre-let-7 processing by Dicer. Although the high-affinity CSD/pre-let-7 interface is
larger than the corresponding ZKD/pre-let-7 interface, mutations in either the CSD (such
as F73A, G90A, and G119A) or ZKD (such as Y140A) restore pre-let-7 maturation into let-7,
demonstrating that targeting the domains with small molecules, individually or in concert,
has therapeutic potential [35,37].

Using a fluorescence polarization assay, Wang et al. identified six small molecules
that inhibit LIN28A/B–pre-let-7 binding and LIN28A/B-mediated oligouridylation of
pre-let-7 [86]. Among the six inhibitors, LI71 and TPEN were extensively characterized
and exhibited different molecular mechanisms. While LI71 acts by competing for the
RNA-interacting site in the CSD, TPEN destabilizes the ZKD by chelating ZKD-bound
Zn2+, changing the conformation of ZKD. Direct interaction between LI71 and the LIN28
CSD was detected by saturation transfer difference (STD) spectroscopy, and mutational
analysis revealed that residue K102 of the CSD contributes to binding of LI71 to CSD. The
fact that LI71 downshifts the melting temperature of the LIN28/pre-let-7 complex by 3 ◦C
provides further evidence for competitive binding. A crystal structure of LIN28 with bound
LI71 will further elucidate the LI71 mechanism of action. TPEN, by contrast, is a Zn2+

chelator in cells and thus may capture LIN28 ZKD-bound Zn2+ and induce destabilizing
conformational changes. Indeed, residues in the zinc knuckles, such as C139 and C161,
and in the GGAG-binding surface, such as Y140, are drastically rearranged following
TPEN treatment, shown using 1H-15N heteronuclear single quantum coherence (HSQC)
spectroscopy. With a low in vitro IC50 of 2.5 µM, TPEN is highly toxic to cells and, therefore,
its cellular efficacy awaits evaluation. In comparison, LI71 has an IC50 of 50–100 µM in
human leukemia and mouse embryonic stem cells.

Compound 1, identified by Lim et al., and LI71 are similar because both compounds
contain a benzoic acid moiety, suggesting that this group may represent a molecular scaffold
for LIN28 inhibitors [83,86]. Consistently, 5-(methylamino)nicotinic acid (MNA), which
consists of a benzoic acid-like moiety and minimal other groups, also blocks LIN28A/B
activity in vitro and in HeLa cells, albeit with relatively high IC50s [86]. This shared feature
raises hopes for fragment-based drug development using MNA as a minimal scaffold, and
for the design of more potent benzoic acid analogs that inhibit LIN28.
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Table 1. Pharmacological strategies to modulate the LIN28/let-7 axis.

Strategy Selected Agent Mechanism of Action Cellular Effect Reference

Let-7 mimics

Let-7i mimic Restoration of let-7i level Inhibition of the growth and
migration of lung cancer cells [74]

Let-7a mimic Restoration of let-7a level
Suppression of Wnt signaling in

esophageal squamous cell
carcinoma (ESCC) cells

[75]

Looptomirs L29-13
Antagonization of
LIN28A docking at

pre-let-7a-2

Restoration of let-7 synthesis
and inhibition of growth and

clonogenic potential in
hepatocarcinomatous cells

overexpressing LIN28B

[76]

Small-molecule
inhibitors

Compound 1

Prevention of LIN28A
binding to pre-let-7a-1

through unknown
molecular mechanism

Enhancement of let-7 production
in LIN28-expressing cancer cells

(LIN28A and LIN28B)
[83]

6-hydroxy-DL-DOPA

Prevention of LIN28A
binding to pre-let-7g

through unknown
molecular mechanism

N/A [87]

SB/ZW/0065

Prevention of LIN28A
binding to pre-let-7g

through unknown
molecular mechanism

N/A [87]

Compound 1632

Prevention of LIN28B
binding to pre-let-7a-2

through unknown
molecular mechanism

Reduction in let-7 level and
tumor sphere formation in

LIN28-expressing cancer cells;
induction of mouse embryonic

stem cell differentiation

[88]

TPEN

Chelation of LIN28A
ZKD-bound Zn2+ and

destabilization of
LIN28A ZKD

N/A [86]

LI71
Competition for the

pre-let-7f-1 interaction
site of LIN28A CSD

Suppression of LIN28 activity
and restoration of mature let-7

level in leukemia cells (LIN28B)
and embryonic stem

cells (LIN28A)

[86]

Gossypol (LI11)

Prevention of LIN28A
binding to pre-let-7f-1

through unknown
molecular mechanism

N/A [86]

MNA (LI101)

Putatively by
competition for the

pre-let-7f-1 interaction
site of LIN28A CSD

Suppression of LIN28 function
in HeLa cells expressing LIN28A

or LIN28B
[86]

Trisubstituted
pyrrolinones (C902)

Putatively by
competition for the

pre-let-7f-1 interaction
site of LIN28A CSD

Increase in mature let-7 levels in
human choriocarcinoma cell line

JAR cells
[81]

Compound 4j (GG-43)

Prevention of LIN28
binding to pre-let-7
through unknown

molecular mechanism

Compound 4j barely showed any
inhibitory activity in human

choriocarcinoma cell line
JAR cells

[82]
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5. Outlook for LIN28/Let-7-Targeting Therapy

Although rationally designed and theoretically feasible, LIN28/let-7-targeting ther-
apeutics may face significant challenges in clinical applications. It is known that double-
stranded oligonucleotides exhibit poor cellular permeability and therefore transmembrane
penetration of let-7 mimics may need to rely on engineered vehicles [89]. Commonly
used gene delivery strategies to restore tumor-suppressing miRNAs or mimics include
liposomes, non-viral vectors, and viral vectors [90–93]. Viral vectors are often problematic
because they are time-consuming, costly, and immunogenic, and are nonspecifically in-
tegrated into the host genome. Systemic delivery of a let-7 mimic with a lipid emulsion
formulation leads to efficient take-up by lung tissue and a drastic decrease in tumor burden
in a Kras-activated autochthonous mouse model of NSCLC [94]. There also exist ample
polymeric nanoparticle-based strategies for improving systemic circulation, local retention,
cell permeability, and immunocompatibility of small-molecule cancer therapeutics [95,96].
These bioengineering approaches for drug delivery may prove valuable as more LIN28
inhibitors are being discovered.

Besides conquering delivery issues, one needs to strike a balance between potency
and the safety of small-molecule inhibitors of LIN28. As a potent Zn2+ chelator, TPEN
can nonspecifically compete for Zn2+ in cells and therefore exhibits high cytotoxicity. The
observation that cancer cells express LIN28 at a higher level than normal cells, such that
TPEN may more readily kill cancer cells, potentially alleviates this adverse effect, but
structure-based drug design may be necessary to modify TPEN and improve its specificity
to LIN28 before clinical application [97–101]. For such LIN28 inhibitors as LI71 [86] and
Compound 1 [83], which are minimally toxic on cell lines, functional group modifications
through medicinal chemistry may boost potency [102,103].

6. Conclusions

Many oncoproteins, including RAS and MYC, are considered undruggable because
cavities for binding of small molecules are absent or subcellular localization
inaccessible [104–107]. While suboptimal therapeutic efficacy may have dampened the
passion for discovering inhibitors of many oncoproteins, the importance of miRNAs in
oncogene regulation presents potential high-value targets for cancer therapy [108–110].
Therapeutic intervention at the miRNA level bypasses the undruggable proteins and
provides an indirect means to downregulate oncogene expression. The three strategies
described offer great promise for modulating the LIN28/let-7 axis, whether by utilizing
let-7 mimics to induce the silencing of oncogenes by offsetting the loss of let-7 due to
exonuclease degradation; using let-7-targeting looptomirs to promote let-7 maturation
by preventing the docking of LIN28 to pre-let-7; or utilizing small-molecule inhibitors to
hinder oncogenesis by disrupting the binding of LIN28 to pre-let-7.

Although this review has focused on let-7 miRNAs, LIN28 can also impact the levels
of non-let-7 miRNAs. For instance, Nowak et al. [111] elucidated the regulatory role of
LIN28A in modulating miRNA-9, underscoring the importance of considering these targets
in therapeutic strategies targeting the LIN28 pathway. Similarly, Tan et al. [112] sheds light
on the broader regulatory network governed by LIN28 by showing that LIN28B expression
level is a key variable that sets the magnitude of protein translation. As molecular mecha-
nisms of the LIN28/let-7 network continue to be elucidated and drug targets shift from
oncoproteins to their miRNA regulatory machinery, successful therapeutic intervention
will rely on synergistic advances in LIN28 structure-based drug discovery, pharmaceutical
chemistry, and small-molecule drug and gene delivery.
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