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Abstract: (1) Mesenchymal stem cells (MSCs) are a valuable cell model to study the bone pathology of
Osteogenesis Imperfecta (OI), a rare genetic collagen-related disorder characterized by bone fragility
and skeletal dysplasia. We aimed to generate a novel OI induced mesenchymal stem cell (iMSC)
model from induced pluripotent stem cells (iPSCs) derived from human dermal fibroblasts. For the
first time, OI iMSCs generation was based on an intermediate neural crest cell (iNCC) stage. (2) Skin
fibroblasts from healthy individuals and OI patients were reprogrammed into iPSCs and subsequently
differentiated into iMSCs via iNCCs. (3) Successful generation of iPSCs from acquired fibroblasts
was confirmed with changes in cell morphology, expression of iPSC markers SOX2, NANOG, and
OCT4 and three germ-layer tests. Following differentiation into iNCCs, cells presented increased
iNCC markers including P75NTR, TFAP2A, and HNK-1 and decreased iPSC markers, shown to
reach the iNCC stage. Induction into iMSCs was confirmed by the presence of CD73, CD105, and
CD90 markers, low expression of the hematopoietic, and reduced expression of the iNCC markers.
iMSCs were trilineage differentiation-competent, confirmed using molecular analyses and staining for
cell-type-specific osteoblast, adipocyte, and chondrocyte markers. (4) In the current study, we have
developed a multipotent in vitro iMSC model of OI patients and healthy controls able to differentiate
into osteoblast-like cells.

Keywords: induced mesenchymal stem cells; cell model; osteoblast; bone; skeletal dysplasia; Osteogenesis
Imperfecta

1. Introduction

Osteogenesis Imperfecta (OI) is a rare genetically heterogeneous connective tissue
disorder characterized mainly by fragile bones and skeletal dysplasia. Up to 85% of patients
have a pathogenic variant in the COL1A1 or COL1A2 gene which code for two collagen

Int. J. Mol. Sci. 2024, 25, 3417. https://doi.org/10.3390/ijms25063417 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms25063417
https://doi.org/10.3390/ijms25063417
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-4682-0402
https://orcid.org/0000-0001-5399-676X
https://orcid.org/0000-0003-4091-7115
https://orcid.org/0000-0003-4416-3875
https://doi.org/10.3390/ijms25063417
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms25063417?type=check_update&version=1


Int. J. Mol. Sci. 2024, 25, 3417 2 of 20

chain α1 (I) and one collagen chain α2 (I), respectively, forming the triple helix of the
collagen type I protein. Hundreds of different pathogenic variants have been identified
in the collagen type I genes, leading to a wide range of OI phenotypes. Collagen type I
pathogenic variants can be divided into two categories based on their molecular effect,
namely haploinsufficiency (HI), originating from whole-gene deletions, nonsense, and
frameshift mutations, and the dominant negative (DN) defect, arising from missense
mutations [1]. Patients with HI of collagen type I produce a reduced amount of protein
(i.e., quantitative defect), while patients with DN pathogenic variants produce structurally
abnormal collagen type I (i.e., qualitative defect). HI results mostly in milder OI phenotypes
(OI type 1), while the DN defects most often lead to more severe phenotypes (OI type 2–4).
Considering that collagen type I is produced by osteoblasts, they are the responsible cell
type for OI presentation in bone. Their crucial anabolic role in the maintenance of bone
mass, necessitates their study for the in-depth understanding of OI pathophysiology [2].

Osteoblasts can be obtained from bone tissue using invasive procedures like bone
biopsies and orthopedic surgeries, which entail distress and risks to the patient. Moreover,
osteoblasts can be directly differentiated from mesenchymal stem cells (MSCs) found in
many different tissues (e.g., bone marrow, adipose tissue, umbilical cord blood, amniotic
fluid, placenta, dental pulp, tendons, synovial membrane, and skeletal muscle) [3]. How-
ever, primary MSCs have a number of limitations restricting their use in the research of
rare bone disorders. These include their limited cell proliferative capacity and differenti-
ation potential during long-term culture [4,5] as well as the scarce availability of donors,
isolation and expansion challenges. In addition, there is significant donor-specific variation,
which affects the proliferation and differentiation potential of the cells [4,6,7]. In order to
circumvent the aforementioned limitations, efforts have been made to generate bone cell
models from the less invasively obtained skin fibroblasts, a collagen-producing cell type,
which can mimic the disease mechanism [8]. However, fibroblasts fail to differentiate into
distinct mesenchymal lineages. As an alternative, induced mesenchymal stem cells (iMSCs)
were employed to overcome these limitations [9,10]. The iMSCs have infinite growth and
differentiation properties, adapting these cells to maintenance in long-term culturing and
gene editing [4]. Furthermore, iMSCs can be used not only for the study of the disease’s
pathophysiology but also for drug screening and cell therapy purposes [4,11–14]. At least
six clinical trials investigating the safety, tolerability, and efficacy of iMSC exist to date [9].
There is still no consensus about the assessment of the clinical quality and safety of this
new cell type; thus, general MSC criteria are applied to iMSCs as well.

The generation of iMSCs from fibroblasts can be performed via different pathways.
By transfecting the “Yamanaka factors” Klf4, Sox2, Oct3/4, and c-Myc, fibroblasts are
reprogrammed into induced pluripotent stem cells (iPSCs) [15]. The iPSCs can then be
directed towards iMSCs based on different protocols [4]. One approach is to expose the
iPSCs, seeded either as a monolayer or grown into embryoid bodies, to variations of MSC
culture medium, such as Dulbecco’s Modified Eagle Medium (DMEM) or α-Minimum
Essential Medium (α-MEM) with 10–15% fetal bovine serum (FBS) [12,13,15–18]. However,
iMSCs developed in such a direct way showed a diminished differentiation potential [4].
On the contrary, the imitation of the natural embryonic development of MSCs leads to
the generation of iMSCs with more predictable properties and functions [4]. Although
the developmental origin of MSCs is still not completely understood, based on the latest
studies, it can be hypothesized that MSCs are derived from the lateral plate mesoderm,
from which most adipose and skeletal tissues of the body originate [3]. Nevertheless, in
the embryonic trunk stage, MSC-like cells are formed from the neuroepithelium through a
neural crest intermediate stage [3,19]. Neural crest cells (NCCs) originate at the interface
between the neural tube and the epidermis and migrate extensively to form a plethora of
different cells besides the mesenchymal precursor cells such as neurons, glia, melanocytes,
and endocrine cells [20–22]. The NCCs forming the mesenchymal precursor cells most
likely derive from the cranial neural crest [21]. This has stimulated the development
of protocols for the differentiation of iPSCs into iMSCs through NCC lineage [4,23,24].
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In this process, the activation of the canonical Wnt signaling pathway and concomitant
suppression of the Activin A/Nodal and Bone Morphogenetic Protein (BMP) signaling,
also called dual SMAD inhibition, is critical for driving the pluripotent stem cells into
the induced neural crest cells (iNCC) stage [20,23,25]. Wnt signaling can be activated by
the addition of a small molecule inhibitor of glycogen synthase kinase 3 (GSK3) such as
(2′Z,3′E)-6-bromoindirubin-3′-oxime (BIO) or CHIR99021 [23]. BMP signaling is inhibited
by Noggin or Dorsomorphin by binding to the activin-receptor like kinase (ALK)1/2/3/6.
Finally, the Activin A/Nodal/TGFβ signaling can be suppressed by SB431542 via blocking
the phosphorylation of the ALK4/5/7 receptors [23,25–27]. The subsequent differentiation
into iMSCs is achieved by administering MSC medium, namely αMEM with FBS and
fibroblast growth factor 2 (FGF-2) [4,28].

In this study, we aimed to develop a multipotent iMSC model based on patient-derived
iPSCs reprogrammed from dermal fibroblasts with DN and HI COL1A1 pathogenic variants.
iMSCs from three healthy control and three OI patient cell lines were generated for the
first time via the iPSC-iNCC intermediate stage. The developed iMSCs were subsequently
differentiated into functional osteoblast-like cells, as confirmed by gene expression of
cell-type-specific markers and mineralization assay.

2. Results
2.1. Morphological Modifications of Induced Pluripotent Stem Cells, Induced Neural Crest Cells,
and Induced Mesenchymal Stem Cells

Fibroblasts of three healthy donor control cell lines (C1, C2 and C3), one HI OI patient
(P1), and two DN OI patients (P2 and P3) were differentiated into iPSCs (Table S1). iPSCs
present typical compact colonies with distinct borders. After neural induction of the iPSCs’
single cell culture, cells gradually proliferated and changed morphologically into larger
slightly triangular cells with some protrusions. During mesenchymal induction, cells
elongated into fibroblast-like spindle-shaped cells (Figure 1a). No difference in morphology
was observed between the patient (P1, P2, and P3) and control (C1, C2, and C3) cell lines.
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Figure 1. Differentiation of induced pluripotent stem cells (iPSCs) into induced mesenchymal
stem cells (iMSCs) via induced neural crest cells (iNCCs) stage. (a) Micrographs showing the cell
morphology of the subsequent differentiation stages from iPSCs (scale bar 100 µm) into single cell
iPSCs (scale bar 100 µm) iNCCs (scale bar 100 µm) and iMSCs (scale bar 200 µm). (b) The visual
representation of a protocol of the differentiation from iPSCs to iNCCs and iMSCs.
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2.2. Characterization and Comparison of Induced Pluripotent Stem Cells to Primary Embryonic
Stem Cells

RT-qPCR analysis of the pluripotency genes SRY-Box Transcription Factor 2 (SOX2),
Homeobox Transcription Factor Nanog (NANOG), and Octamer-Binding transcription fac-
tor 4 (OCT4) revealed expression levels in the OI patient and control iPSCs lines comparable
to expression of these markers in human embryonic stem cells (hES) (Figure 2a). Character-
ization of the iPSCs using immunocytochemistry, stainings for OCT4, T cell receptor alpha
locus 60 (TRA-1-60), T cell receptor alpha locus 81 (TRA-1-81), and the 3-germ layer test
(data not shown) demonstrated the successful reprogramming of the fibroblasts into iPSCs
of all six cell lines. A routine Global Screening Array (GSA) did not show major allelic
changes in the generated iPSC clones, whereas the presence of pathogenic OI variants
(Table S1) in OI iPSCs was confirmed with Sanger sequencing (data not shown).

2.3. Characterization of Induced Neural Crest Cells

Overall downregulation of SOX2, NANOG, and OCT4 was observed in the iNCCs
compared to the iPSCs (Figure 2a) supporting the neural crest induction of the six former
iPSC cell lines. The NCC expression profile was confirmed with the upregulation of
Low Affinity Neurotrophin Receptor P75NTR (P75NTR), Transcription Factor AP-2 Alpha
(TFAP2A), and paired box 6 (PAX6) in iNCCs compared to the iPSCs (Figure 2b). In
contrast to our expectations, human natural killer-1 (HNK-1) expression did not display any
difference in iNCCs compared to iPSCs (Figure 2b). High heterogeneity in the expression
of iPSC and NCC markers by iNCC was observed between different cell lines and also
between induction rounds.

Flow cytometry (FACS) showed a substantial P75NTR+ cell population in all but two
out of six cell lines (C1 and C2) in which, in comparison to the other four cell lines, a
significant part of the cell population presented HNK-1+ (72.5% and 73.4%, respectively)
(Figure 3, Table 1). It has to be noted, that the total number of cells was modest for C2
(Figure 3). Almost no P75NTR+/HNK-1+ cells were observed in any of the cell lines
(Figure 3, Table 1). Additionally, scarcely any PAX6 positive cells were present (Figure 3,
Table 1). In combination with the gene expression data, flow cytometry findings confirmed
the iNCC phenotype as indicated by the considerable presence of P75NTR+, HNK-1+, and
scarce PAX6+ cell populations.
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Figure 2. Relative mRNA expression of cell-type-specific marker expression in induced pluripotent 
stem cells (iPSCs), induced neural crest cells (iNCCs), and induced mesenchymal stem cells (iMSCs). 
(a) Corresponding iPSCs and iNCCs of healthy controls (C1, C2, C3), OI patients (P1, P2, and P3), 
and a human embryonic stem cell line (hES) were compared for mRNA expression of pluripotent 
stem cell markers SOX2, NANOG, and OCT4. (b) Relative mRNA expression levels of corresponding 
iPSCs, iNCCs, and iMSCs (C1, C2, C3, P1, P2, and P3) and primary bone-marrow MSCs (hMSCs) 
were compared for expression of iNCC cell markers P75NTR, HNK-1, and TFAP2A and neuro-ecto-
derm marker PAX6. (c) mRNA expression levels of corresponding iNCCs and iMSCs and hMSCs 
were compared for iMSC markers CD73, CD105, and CD90. Relative mRNA expression levels of the 
COL1A1 gene were also shown for iPSCs, iNCCs and iMSCs, hMSC and hES. Gene expression is the 
normalized relative expression against TBP. Standard deviation (SD) is shown per iNCC and iMSC 
group (n = 3), no SD is present for iPSCs, hES and hMSC (n = 1). Statistical significance is indicated 
on the graphs (p-values ≤ 0.05 (*), ≤0.01 (**), ≤0.001 (***), ≤0.0001 (****)). 
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Figure 2. Relative mRNA expression of cell-type-specific marker expression in induced pluripotent
stem cells (iPSCs), induced neural crest cells (iNCCs), and induced mesenchymal stem cells (iMSCs).
(a) Corresponding iPSCs and iNCCs of healthy controls (C1, C2, C3), OI patients (P1, P2, and P3), and
a human embryonic stem cell line (hES) were compared for mRNA expression of pluripotent stem cell
markers SOX2, NANOG, and OCT4. (b) Relative mRNA expression levels of corresponding iPSCs,
iNCCs, and iMSCs (C1, C2, C3, P1, P2, and P3) and primary bone-marrow MSCs (hMSCs) were
compared for expression of iNCC cell markers P75NTR, HNK-1, and TFAP2A and neuro-ectoderm
marker PAX6. (c) mRNA expression levels of corresponding iNCCs and iMSCs and hMSCs were
compared for iMSC markers CD73, CD105, and CD90. Relative mRNA expression levels of the
COL1A1 gene were also shown for iPSCs, iNCCs and iMSCs, hMSC and hES. Gene expression is the
normalized relative expression against TBP. Standard deviation (SD) is shown per iNCC and iMSC
group (n = 3), no SD is present for iPSCs, hES and hMSC (n = 1). Statistical significance is indicated
on the graphs (p-values ≤ 0.05 (*), ≤0.01 (**), ≤0.001 (***), ≤0.0001 (****)).
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the P75NTR+ cells and Q2 indicates the P75NTR+/HNK-1+ and P75NTR+/PAX6+ cells, respectively;
Q3 presents the HNK-1+ and PAX6+ cells, respectively; and Q4 presents the P75NTR-/HNK-1− and
P75NTR−/PAX6− cells, respectively.

Table 1. The percentages of single-stain (P75NTR+, HNK-1+ and PAX6+) and double-stained cells
(P75NTR+/HNK-1+ and P75NTR+/PAX6+) in healthy control (C1, C2, C3) and OI patients (P1, P2,
and P3) induced neural crest cells (iNCCs) from flow cytometry (FACS) analysis.

Cell Line P75NTR+ P75NTR+/HNK-1+ HNK-1+ P75NTR-/HNK-1−
C1 0.70% 0.86% 72.5% 26.0%
C2 2.57% 2.97% 73.4% 21.1%
C3 52.0% 1.76% 4.48% 41.8%
P1 67.8% 3.47% 0.84% 27.9%
P2 24.4% 1.13% 2.37% 72.1%
P3 46.6% 2.18% 9.68% 41.6%

Cell Line P75NTR+ P75NTR+/PAX6+ PAX6+ P75NTR-/PAX6−
C1 1.38% 0.18% 7.25% 91.2%
C2 3.38% 2.16% 13.1% 81.4%
C3 52.7% 1.00% 0.52% 45.7%
P1 69.7% 1.49% 0.22% 28.5%
P2 23.9% 1.58% 1.06% 73.4%
P3 48.1% 0.69% 0.39% 50.9%

2.4. Characterization and Comparison of Induced Mesenchymal Stem Cells to Primary Human
Mesenchymal Stem Cells and Hematopoietic Stem Cell

After the mesenchymal induction of iNCCs into iMSCs P75NTR, HNK-1 and PAX6
relative gene expression dropped, whereas TFAP2A expression remained to be overall
consistent (Figure 2b). The relative expression of MSC-specific markers CD73, CD105, and
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CD90 in generated iMSCs was equivalent to primary human bone marrow mesenchymal
stem cells (hMSC) (Figure 2c). Furthermore, all three markers were already detectable at
the iNCC stage, however, with a lower expression degree. The human hematopoietic stem
cell (hHSC) expression profile (CD45, CD14, CD34, and CD79α) was significantly lower in
the healthy control and patient iMSCs, as well as in hMSCs in comparison to hHSCs, with
the exception of CD34 expression in C3 and the hMSCs (Figure S1). As expected, all iMSC
cell lines and hMSC intensively expressed COL1A1, whereas it was moderately expressed
in iNCC cell lines and almost undetectable in iPSCs and hES (Figure 2c). A trend of lower
expression of COL1A1/COL1A2 ratio in HI OI patient cell lines compared to control iMSCs
was observed (data not shown). Similarly to iNCCs, iMSCs showed greater variability
compared to iPSC cell lines.

2.5. Osteogenic Induction and Mineralization Assay of OI and Healthy Control Induced
Mesenchymal Stem Cells

In response to osteogenic induction, iMSC cell lines showed an increase in alkaline
phosphatase (ALP) activity compared to non-induced cells on both day 21 and 28 (Figure 4a,
Table S2). Alizarin red staining confirmed the presence of mineralization of both patient
and control iMSCs on day 21 and 28 to a certain extent (Figure 4a, Table S2). Reduced
mineralization of patient iMSCs compared to control iMSC cell lines was seen on day 28.
On day 21 and 28, the hMSCs showed higher mineral deposition in vitro, compared to
iMSC cell lines (Figure 4a).

Gene expression analysis revealed the presence of early and mature osteoblast mark-
ers ALP, RUNX family of transcription factor 2 (RUNX2), COL1A1, and bone gamma-
carboxyglutamate protein (BGLAP) on day 21 and 28 after the osteogenic induction of both
control and patient cell lines (Figure 4b,c). The expression of osteopontin (OPN) did not
change, or reduce as a consequence of osteogenic induction (Figure 4b,c). No difference
in the expression of the MSC markers CD73 and CD90 between iMSCs with or without
osteogenic induction at day 21 and 28 was observed (Figure S2A,B). Generally, OI iMSCs
showed higher expression of CD105 on day 21 compared to the control iMSCs (Figure S2A).
At the same timepoint, a significant increase in the relative gene expression of CD105
caused by osteogenic induction in patient cell lines (P2 and P3) was detected.
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Figure 4. Cont.
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Figure 4. Characterization of induced osteoblasts. (a) Osteogenic induction of induced mesenchymal
stem cells (iMSC) cell lines was analyzed with Alizarin Red (AR) staining for calcium deposition and
Alkaline Phosphatase (ALP) staining to measure osteoblast activity on day 21 and day 28. Repre-
sentative images for control, haploinsufficient (HI) patient and dominant negative (DN) patient are
shown. Relative mRNA expressions of osteoblast (ALP, RUNX2, BGLAP, OPN, COL1A1) and mes-
enchymal stem cell (MSC) markers (CD73, CD105, and CD90) were compared in non-differentiated
and differentiated iMSCs (healthy controls (C1, C2, C3), OI patients (P1, P2, and P3)), and primary
osteoblasts (Prim OB) on (b) day 21 and (c) day 28 of the differentiation). Relative gene expression was
normalized against TBP. Standard deviation (SD) is presented per cell line (n = 3); no SD is present for
the primary osteoblasts (n = 1). Statistical significance is indicated on the graphs (p-values ≤ 0.05 (*),
≤0.01 (**), ≤0.001 (***)).

2.6. Adipogenic and Chondrogenic Induction of OI and Healthy Control Induced Mesenchymal
Stem Cells

Adipocyte differentiation was verified with the formation of lipid vesicles stained with
Sudan III, following iMSCs culturing with adipocyte differentiation medium (Figure 5a).
Following differentiation, a clear difference in morphology between the two conditions was
noted. Compared to hMSCs, which achieved a mature adipocyte stage, lipid vesicles formed
in iMSCs were mostly of small size, indicating pre-adipocyte stage of the iMSCs (Figure 5a,
Table S3). This is corroborated by the low expression level of Fatty Acid-Binding Protein 4
(FABP4) and Peroxisome Proliferator-Activated Receptor-Gamma (PPARy) compared to
hMSCs (Figure 5b). Although, on the gene expression level, no differences were present
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between patient and control cell lines, higher number of lipid vesicles were present in OI
cell lines compared to healthy controls (Table S3).
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Figure 5. Characterization of induced adipocytes. (a) Adipogenic differentiation of induced mesen-
chymal stem cells (iMSC) cell lines was analyzed with Sudan III staining, where orange indicates 
stained lipid vesicles (scale bar size 50µm). Representative images of control, haploinsufficient (HI) 
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Figure 5. Characterization of induced adipocytes. (a) Adipogenic differentiation of induced mes-
enchymal stem cells (iMSC) cell lines was analyzed with Sudan III staining, where orange indicates
stained lipid vesicles (scale bar size 50 µm). Representative images of control, haploinsufficient (HI)
patient, dominant negative (DN) patient, and primary bone marrow mesenchymal stem cells (hMSC)
are shown. (b) Relative mRNA expression of adipocyte markers (FABP4 and PPARy) was compared
in non-differentiated and differentiated iMSCs (healthy controls (C1, C2, C3), OI patients (P1, P2, and
P3)), and hMSC. Relative gene expression was normalized against TBP. Standard deviation (SD) is
shown per cell line (n = 3); no SD is present for hMSC (n = 1). Statistical significance is indicated on
the graphs (p-values ≤ 0.0001 (****)).

Chondrocyte differentiation was validated using Alcian blue positive micromasses.
A blue staining of micromasses after chondrogenic induction was spotted (Figure 6a,
Table S4). After stimulating the iMSCs with chondrocyte differentiation medium, a trend
of chondrocyte marker (ACAN, SOX9, COL2A1, and COL10A1) upregulation was detected.
A general tendency of reduced expression of chondrogenic markers in DN OI patients, but
not in HI OI and control cell lines, can be appreciated (Figure 6b).
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Figure 6. Validation of induced chondrocyte phenotype. (a) Chondrogenic differentiation of in-
duced mesenchymal stem cells (iMSC) lines was analyzed with Alcian blue; blue staining indicates 
sulfated proteoglycans deposits (scale bar size 100µm). Representative images for control, haploin-
sufficient (HI) OI patient, dominant negative (DN) OI patient, and primary bone marrow mesen-
chymal stem cells (hMSC) are shown. (b) Relative mRNA expression of chondrocyte markers 
(ACAN, SOX9, COL10A1, and COL2A1) was compared in non-differentiated and differentiated iM-
SCs (healthy controls (C1, C2, C3), OI patients (P1, P2 and P3)), and hMSC. Relative gene expression 
was normalized against TBP. Standard deviation (SD) is shown per cell line (n = 3); no SD is present 
for hMSC (n = 1). Statistical significance is indicated on the graphs (p-values ≤ 0.05 (*), ≤0.01 (**), 
≤0.0001 (****)). 
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Figure 6. Validation of induced chondrocyte phenotype. (a) Chondrogenic differentiation of induced
mesenchymal stem cells (iMSC) lines was analyzed with Alcian blue; blue staining indicates sulfated
proteoglycans deposits (scale bar size 100 µm). Representative images for control, haploinsufficient
(HI) OI patient, dominant negative (DN) OI patient, and primary bone marrow mesenchymal stem
cells (hMSC) are shown. (b) Relative mRNA expression of chondrocyte markers (ACAN, SOX9,
COL10A1, and COL2A1) was compared in non-differentiated and differentiated iMSCs (healthy con-
trols (C1, C2, C3), OI patients (P1, P2 and P3)), and hMSC. Relative gene expression was normalized
against TBP. Standard deviation (SD) is shown per cell line (n = 3); no SD is present for hMSC (n = 1).
Statistical significance is indicated on the graphs (p-values ≤ 0.05 (*), ≤0.01 (**), ≤0.0001 (****)).

3. Discussion

In the present study, we have established an in vitro induced cell model for OI via the
reprogramming of fibroblasts into iPSCs with the subsequent differentiation into iNCCs,
and eventually iMSCs. To our knowledge, we demonstrate for the first time the use of
an iNCC intermediate stage for the generation of OI iMSCs. The model was validated
using gene expression analysis and trilineage (osteoblast-, adipocyte-, chondrocyte-like
cells) differentiation competence. This model can be utilized for the study of osteoblast
differentiation and mineralization, regulation of collagen type I synthesis, as well as testing
potential therapeutic interventions in an OI-specific molecular background. World biobanks
of OI osteoblast/MSC cell models are scarce, whereas fibroblast cell models do not fully
represent the pathophysiological state of OI in mineralized tissue. Thus, it is crucially
important for the development of pharmacological and advanced therapies of OI and other
rare bone disorders to explore alternative cellular differentiation models like iMSCs, which
are an invaluable source of human patient material.

Following the differentiation of iPSCs into iNCCs, an increase in the expression of
the iNCC gene (P75NTR, TFAP2A) and protein (P75NTR, HNK-1) markers emerged, with
modest expression of PAX6 for both mRNA and at protein level. During embryonic
development, neural crest stem cell populations are diverse in the expression of NCC
markers depending on their phase of development. It has been demonstrated that migra-
tory NCCs are high in P75NTR and TFAP2A expression, while only a few of these cells
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express HNK-1 [29]. This may indicate that iPSCs may be potentially prone to producing
a heterogeneous iNCC population in response to culture for iNCC derivation. This can
be potentially explained by the gene expression heterogeneity of iPSCs inside a colony,
influence of culture confluency, and difference in exposure to growth factors during differ-
entiation. Future efforts will focus on achieving a pure iNCC population, such as cranial
NCCs needed for mesenchymal lineage differentiation, as this might result in a lower
variability on the iMSC stage [30].

The MSC markers CD105, CD73, and CD90, included in the MSC-defining criteria of
the ISCT, were expressed in the differentiated iMSCs. Additionally, a lack of or reduced
expression of the hematopoietic stem cell markers CD45, CD34, CD14, and CD79α was
also successfully demonstrated in all cell lines. Interestingly, the MSC markers CD73,
CD105, and CD90 were also present in iNCCs. This is in line with the study of Menendez
et al. demonstrating, using FACS analysis, the presence of CD105 and CD90 markers
in iNCCs before differentiation into iMSCs; Curchoe et al. also indicated that around
13% of early migratory neural crest stem cells expressed CD73 [23,31]. Although an overall
decrease in iNCC markers was noted in our iMSCs lines, the relative gene expression of
TFAP2A was still present at some level. Fan et al. demonstrated that TFAP2A enhances the
osteogenic differentiation potential of MSCs, and knock-out TFAP2A mouse models have
shown craniofacial defects; hence, it can be speculated that a certain level of TFAP2A may
contribute to the osteogenic potential of the iMSCs [32–34].

This study demonstrated variability between cell lines at the iNCC and iMSC stage.
The largest difference in iNCC marker expression was noticed in the FACS analysis between
control cell lines C1, C2, and the rest of iNCC cell lines. C1 and C2 were mostly HNK-1-
positive in comparison to the other cell lines, which were instead detected to be mainly
P75NTR-positive. Interestingly, these two cell lines at the iMSC stage also demonstrated
higher relative expression levels of CD73 and CD105 compared to the other cell lines,
suggesting that the iNCC stage properties can affect the differentiation into iMSCs. This
finding did not translate further to the trilineage differentiations of the iMSCs. A possible
reason for the distinct properties of these two control cell lines (C1 and C2) could be the
different reprogramming methods used for iPSC generation, namely lentivirus (C1 and
C2) and Sendai virus (C3, P1, P2, and P3). A study of Nishino et al. presented evidence of
epigenetic differences between reprogramming vectors for iPSCs. The use of the Sendai
virus was able to maintain the epigenetic profile of the iPSCs closer to those of embryonic
stem cells compared to retrovirus-reprogrammed iPSCs (lentivirus) [35]. As such, epigenetic
profiling can be one of the key elements affected following differentiation of direction and
the capacity of the cell line. In order to improve the quality of induced stem cell cultures, the
effect of the epigenetics should be further investigated and taken into account. However,
the difference in reprogramming methods did not translate into variability in our trilineage
differentiations, and did not appear to effect other iMSC characteristics.

The differentiation properties of iMSCs were investigated using trilineage differen-
tiation into osteoblasts, adipocytes, and chondrocytes. We demonstrated that the iMSCs
differentiated into early osteoblast-like cells based on the increased expression of the early
osteoblast markers RUNX2 and ALP and a notable trend of increased mRNA expression of
the late osteoblast markers BGLAP and COL1A1 after osteogenic induction at day 21 and 28.
This was also confirmed with the overall increased osteoblast activity demonstrated with
ALP staining (Figure 4a). All cell lines stained positive for Alizarin red, and the presence of
mineralized nodules was noted. However, the mineralization of the iMSCs was reduced
compared to the primary bone marrow-derived hMSCs. Variability was noted between the
cell lines after osteogenic induction. This could be a result of the variability at the iMSC
stage between the different cell lines and the subsequent level of osteogenic differentiation
which affected mineralization. The osteogenic differentiation into osteoblast-like cells
was performed with human platelet lysate which has been shown to promote the MSC
expansion rate without compromising their differentiation capacity [36,37]. Nonetheless,
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studies about the use of human sera are rare; hence, it is still not completely known which
factors are present and how they interact with MSC biology [36].

The iMSCs displayed decreased the adipogenic potential compared to bone marrow
MSCs. Although iMSCs morphologically resembled adipocytes, the vesicles were smaller
and the gene expression of adipocyte-specific markers was lower compared to hMSCs. It
could be hypothesized that they do not differentiate any further than an early-adipocyte
stage. In contrast, the iMSCs were capable of differentiating to chondrocytes, as demon-
strated with the increased gene expression of chondrocyte markers and the positive Alcian
blue staining. Our data indicate a preference of the iMSCs to differentiate into osteoblast-
like cells and chondrocytes. The reduced trilineage potential and variability has been
demonstrated before in previous iMSC studies and may be explained by the parental origin
of the iPSCs and iMSC generation methodology [38–40]. The creation and comparison of
iMSCs from fibroblasts from the gingiva, lung, and periodontal ligament showed differ-
ences at the iMSC stage and trilineage differentiation potential [16]. Regarding the impact
of iMSC generation methodology, Glaeser et al. compared iMSCs of two different method-
ologies, namely iMSCs generated directly from iPSCs and iMSCs generated via an iNCC
stage, to compare their potential to promote bone formation in cranial defects in vivo. They
demonstrated that the iNCC-iMSC coated allografts promoted a more efficiently repair of
cranial bone defect than the iMSC generated directly from iPSCs [13,41]. Finally, variability
in the potential for trilineage differentiation is enriched by the heterogeneity of the iMSC
population. Inter-individual disparities between our developed iMSCs after osteogenic,
adipogenic and chondrogenic induction may also offer the opportunity to explore and
understand personalized differences via this human in vitro model.

Primary MSCs have the advantage of being an unmodified patient-specific cell model
to investigate patient-specific pathologies and testing of therapies. However, they certainly
can also present drawbacks such as heterogeneity which can be instigated using inherited
tissue memory and the effect of the microenvironment and the cell population in different
differentiation stages [9,10]. This can be exacerbated by differences in handlings and culture
conditions by ensuing a potential bias to certain cell types [10]. Additionally, the collection
of MSCs is invasive and low-yield, depending from which tissue they are harvested, and
the access to patients is limited. Also, bone marrow MSCs lose their proliferation and
differentiation potential in vitro much faster than iMSCs, and the quality of the cells is
dependent on the age of the donor and can be variable [9,42]. As such, the iMSCs are a
captivating alternative source. It has been demonstrated that the reprogramming to iPSCs
rejuvenates the iMSCs and results in reduced heterogeneity compared to primary MSCs [9].
The iPSCs can be generated from many different easily acquired cell types, such as skin
fibroblasts, and can be used to upscale iMSCs [4]. As aforementioned, although these
advantages nominate iMSCs as a good alternative to primary MSCs, several obstacles still
need to be addressed, such as the iMSC heterogeneity based on the parental tissue and
generation method. Still, as OI is a very genetically and phenotypically heterogeneous
disease, the creation of OI patient-specific iMSCs is crucial to investigate the patient-specific
underlying pathology and to test precision therapies.

In the current study, we have successfully created iMSCs and subsequently osteoblast-
like cells from a healthy control and OI patient fibroblasts. iMSCs show a difference in the
adipogenic potential between the patients and control cell lines. On average, the patient
cell lines presented more and larger lipid vesicles compared to the control cell lines. Our
results are in line with findings in the Brtl mouse, a model for moderate to severe DN OI,
in which the skewing of MSCs to adipocytes instead of osteoblasts was observed [43]. This
also correlates with conclusions of Kareto et al., who showed an increase in the expression
of adipocyte function genes and thus hypothesized increased adipogenic differentiation of
OI bone marrow MSCs at the cost of the osteogenic differentiation pathway [44]. A trend
of reduced chondrogenic expression in DN OI chondrocyte-like cells induced from iMSCs
aligns with deficient growth plate chondrocytes in OIM mice with DN OI, but not HI OI
Mov13 mice [45,46].
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OI iPSC-iMSC generation has been previously performed in limited studies, all of
which made use of direct iMSC induction from embryoid bodies [47–50]. Although differ-
ences in the trilinear differentiation potential of control and OI iMSC cannot be appreciated
to the fullest extent in these studies due to lack of staining and/or gene expression data,
our study shares in common the identification of lower osteogenic differentiation capacity
in the developed OI iPSC-iMSCs.

Further investigation is needed to evaluate iMSC suitability for OI research, including
patient-specific differences and the stability of iMSC and subsequent osteoblast-like cell
properties in long-term cultures. Additionally, the iMSC characterization can benefit
from assessment of MSC markers with FACS analysis, to improve the consistency of
the results and allow better evaluation of the OI pathology with this cell differentiation
model. Furthermore, MSCs are also known for their paracrine properties, which have been
demonstrated to alter the tissue microenvironment to aid in tissue repair [51,52]. As such,
it would be interesting to measure paracrine factors in the conditioned media to ensure
that the iMSCs have the same properties as MSCs. Finally, it is necessary to characterize
and investigate the differences in bone regeneration potential between the control iMSCs
and the different patient-derived iMSCs in 3D and in vivo environments.

4. Materials and Methods
4.1. Cells

Primary dermal fibroblasts were obtained from skin biopsies of patients. Permission
was granted beforehand by the local medical ethics committee (Amsterdam UMC, VUmc)
and all experiments were performed in accordance with local guidelines and regulations.
Informed consent was obtained from all participants and/or their legal guardians. Primary
human dermal fibroblasts were cultured in Ham’s F-10 Nutrient Mix medium (Gibco,
Grand Island, NY, USA, 31550-031) supplemented with heat-inactivated 10% FBS (Gibco,
Grand Island, NY, USA, 10270-106) and 1% penicillin/streptomycin (PEN/STREP, Gibco,
Grand Island, NY, USA, 15140-122). All cell lines used in this study tested negative for
mycoplasma. All cell lines were cultured at 37 ◦C with 5% CO2 in a humidified atmosphere
unless differently stated.

4.2. Induced Pluripotent Stem Cells Induction and Validation

Earlier, established fully characterized control iPSC cell lines from anonymous donors
(C1, C2 and C3) were used (Table S1) [53]. Fibroblasts from OI patients (P1, P2, and P3) were
reprogrammed into iPSC lines as described previously [54]. Briefly, iPSCs were generated
using the overexpression of OCT4, SOX2, KLF4, and C-MYC introduced by Sendai virus
using the Sendai virus kit Invitrogen TM CytoTune TM- iPS 2.0 Sendai Reprogramming
Kit (Life technologies, Carlsbad, CA, USA, A16518) [54]. iPSC lines were confirmed for
pluripotency using PCR, immunocytochemistry (OCT3/4, SSEA4, TRA-1-60 and TRA-1-81),
karyotyping, and/or trilineage differentiation (STEMdiff TM Trilineage differentiation,
Stem cell, 05230). iPSCs were cultured with Essential 8 medium (E8, Gibco, Grand Island,
NY, USA, A1517001) supplemented with 1% PEN/STREP (Gibco, Grand Island, NY, USA,
15140-122) on matrigel-coated six-well plates (Matrigel, six-well suspension culture plate,
vWR, Radnor, PA, USA, 657185). Medium was refreshed daily, and cells were passaged
once a week using Gentle Cell Dissociation reagent (StemCell Technologies, Vancouver, BC,
Canada, 100-0485) according to the manufacturer’s protocol. Cells were split 1:10–1:50 to a
new well for further maintenance. The iPSCs were cultured in an environment of 37 ◦C,
5% CO2, and 5% O2 in a humidified atmosphere.

4.3. Induction of Induced Pluripotent Stem Cells into Induced Mesenchymal Stem Cells via
Induced Neural Crest Cells’ Stage

The route of iPSCs to iNCCs differentiation is presented on Figure 1a,b. The iPSCs
were harvested with accutase-solution (Millipore, Burlington, MA, USA, sf006) and seeded
on Matrigel (hESC-qualified matrix, LDEV-free, Corning, New York, NY, USA, 354277) at
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200,000–300,000 cells/well in a six-well plate (vWR, Radnor, PA, USA, 734-2323) containing
Mouse embryonic fibroblast (MEF) conditioned media (CMMEF, R&D systems, Minneapo-
lis, MN, USA, AR005) supplemented with PEN/STREP (Gibco, Grand Island, NY, USA,
15140-122). iNCC differentiation was initiated once the cells were at least 70% confluent
with KSR medium. The KSR medium consist of knock-out medium, KSR (Gibco, Grand
Island, NY, USA, 10828-028), MEM NEAA 100x (Gibco, Grand Island, NY, USA, 11140-035),
GlutaMAX (Life technologies, Carlsbad, CA, USA, 35050-038), PEN/STREP (Gibco, Grand
Island, NY, USA, 15140-122), and Beta-mercapto-ethanol (Gibco, Grand Island, NY, USA,
21985023) supplemented with 10 uM SB431542 (Bio-connect, Huissen, The Netherlands,
S1067_50 mg), 1 uM Dorsomorphin (Selleckchem, Houston, TX, USA, S7306), and 1 uM
CHIR99021 (Stemcell technologies, Vancouver, BC, Canada, 72052). Medium was changed
on the first 3 days after which the KSR medium is slowly replaced by N2 medium on days
5, 7, 9, 11 (25%, 50%, 75%, 100%, respectively). N2 medium which consists of DMEM/F12
(Gibco, Grand Island, NY, USA, A1517001) supplemented with 1% N2 supplement (Life
Technologies, Carlsbad, CA, USA, 17502001) and 1% PEN/STREP (Gibco, Grand Island,
NY, USA, 15140-122). On day 12, the medium was replaced with N2 medium supplemented
with 10 ng/mL FGF2 (PeproTech, Cranbury, NJ, USA, 100-18B) and 10 ng/mL EGF (Pe-
proTech, Cranbury, NJ, USA, AF-100-15). The cells were harvested with accutase-solution
(Millipore, Burlington, MA, USA, sf006) and seeded on 15 µg/mL Poly-L-ornithine hy-
drobromide (Sigma-Aldrich, Burlington, MA, USA, P3655-100 mg), 1 µg/mL mLaminin
(Sigma, Burlington, MA, USA, L2020-1 mg), and 10 µg/mL Fibronectin (Sigma, Burlington,
MA, USA, F1141-2 mg) at 200,000 cells in a six-well plate (vWR, Radnor, PA, USA, 734-2323)
for further maintenance. The iNCCs were cultured in an environment of 37 ◦C, 5% CO2,
and 5% O2 in a humidified atmosphere [20].

The iNCCs were plated on Matrigel at 200,000 cells in a six-well plate (vWR, Rad-
nor, PA, USA, 734-2323) containing N2 medium. iMSC induction was started once the
cells reach 50% confluency by replacing the medium with α-MEM+GlutaMAX (Gibco,
Grand Island, NY, USA, 32561-029) supplemented with 10% FBS (Gibco, Grand Island,
NY, USA, 10270-106), 1% PEN/STREP (Gibco, Grand Island, NY, USA, 15140-122), and
10 ng/mL FGF2 (PeproTech, Cranbury, NJ, USA, 100-18B). The medium was replaced twice
a week for 21 days and split every week. The cells were cultured on Matrigel for the first
two weeks and then seeded on plastic in a T75 flask (Nunc, Roskilde, Denmark, 156499).
After differentiation, iMSCs were cultured in an environment of 37 ◦C and 5% CO2 in a
humidified atmosphere.

4.4. Induction from Induced Mesenchymal Stem Cells to Osteoblast, Adipocyte, and Chondrocyte
Cell Stage

The iMSCs were seeded in 12-well plate (Greiner bio-one, Frickenhausen, Germany,
665 180) with a density of 25,000 cells per well, after at least overnight cell attachment
using the following conditions for 21 days. As the control medium, we used the cul-
ture iMSCs medium, consisting of α-MEM+GlutaMAX (Gibco, Grand Island, NY, USA,
32561-029) supplemented with 10% FBS (Gibco, Grand Island, NY, USA, 10270-106),
1% PEN/STREP (Gibco, Grand Island, NY, USA, 15140-122). As the osteogenic medium,
we used α-MEM+GlutaMAX (Gibco, Grand Island, NY, USA, 32561-029), 90 µg/mL
2-phospho-L-ascorbic acid trisodium (Sigma, Burlington, MA, USA, 49752-10G), 5 mM
B-glycerophosphate disodium salt hydrate (Sigma, Burlington, MA, USA, G5422-100G),
0.2% Heparin (LEO Pharma, Amsterdam, The Netherlands), 5% human platelet lysate
(Stemcell thechnologies, 06962), 200 nM dexamethasone (Merck, Burlington, MA, USA,
D4902-500 mg), and 1% PEN/STREP (Gibco, Grand Island, NY, USA, 15140-122). During
differentiation, the culture medium was changed twice a week. After 21 days, the medium
was removed and washed with DPBS (Gibco, Grand Island, NY, USA, 14190-094).

The adipogenic differentiation was performed as following: the iMSCs were seeded
in a 24-well plate (Greiner bio-one, Frickenhausen, Germany, 662160) with a density of
20,000 cells per well. After 48 h, the cells were induced for 21 days. The adipogenic differen-
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tiation medium contained α-MEM+GlutaMAX (Gibco, Grand Island, NY, USA, 32561-029)
supplemented with 10% FBS (Gibco, Grand Island, NY, USA, 10270-106), 3.5 mg/mL
D-glucose (Merck, Burlington, MA, USA, 8337), 10 µg/mL insulin (Sigma, Burlington,
MA, USA, I2643), 0.1 µM dexamethasone (Sigma, Burlington, MA, USA, D4902), 0.5 mM
3-Isobutyl-1-methylxanthine (IBMX, Sigma, Burlington, MA, USA, I5879), 200 µM in-
domethacin (Sigma, Burlington, MA, USA, I7378), and 1% PEN/STREP (Gibco, Grand
Island, NY, USA, 15140-122). As non-induction medium during adipogenic and osteogenic
induction experiments, the ordinary iMSC culture medium was used, consisting of α-
MEM+GlutaMAX (Gibco, Grand Island, NY, USA, 32561-029) supplemented with 10% FBS
(Gibco, Grand Island, NY, USA, 10270-106), 1% PEN/STREP (Gibco, Grand Island, NY,
USA, 15140-122) for iMSCs, and MSC growth media 2 (PromoCell, Heidelberg, Germany,
C-28009) for hMSCs. The culture medium was changed twice a week.

The chondrogenic differentiation was performed in accordance with the PromoCell
protocol for the chondrogenic differentiation of primary MSCs. Briefly, the iMSCs were
seeded in a 96-well U-bottom plate (Greiner bio-one, Frickenhausen, Germany, 650185)
with a density of 200–300,000 cells per well. After 48 h, the chondrogenic induction was
started with the chondrogenic differentiation medium (PromoCell, Heidelberg, Germany,
C-28012) for three weeks. As the non-induction control medium, we used Dulbecco’s
Modified Eagle’s medium–low glucose (Sigma-Aldrich, Burlington, MA, USA, D6046-
500 mL) supplemented with 10% FBS (Gibco, Grand Island, NY, USA, 10270-106) and
1% PEN/STREP (Gibco, Grand Island, NY, USA, 15140-122) for iMSCs and MSC growth
media 2 (PromoCell, Heidelberg, Germany, C-28009) for hMSCs. The culture medium was
changed twice a week.

4.5. Staining of Osteogenic Differentiation

We performed two different stainings, Alkaline phosphatase and Alizarin red solution
staining at day 21 and 28, as described elsewhere [55]. Briefly, after fixation with 10% forma-
lin for 15 min at room temperature, the cells were washed twice with demi-water. For the
ALP staining, the cells were incubated with NBT/BCIP (Sigma-Aldrich, Burlington, MA,
USA, B6404-100 mL) until staining was satisfactory. Lastly, the cells were washed multiple
times with demi-water and analyzed. For the AR staining, the cells were incubated with
the 2% Alizarin red solution (Sigma-Aldrich, Burlington, MA, USA, A5533-25G) for at least
20 min at room temperature. Afterwards, the cells were washed with demi-water and
analyzed. The amount of mineralization was qualitatively analyzed using microscopy.

4.6. Staining of Adipogenic Differentiation

After 21 days, the medium was removed and the cells were washed with DPBS (Gibco,
Grand Island, NY, USA, 14190-094). The Sudan III staining stains red intracellular lipid
vesicles, and it was performed in accordance with the PromoCell protocol. Shortly, cells
were fixated for 30 min at room temperature with Saccomanno Fixation solution (Morphisto,
Hessen, Germany, 13881.00250) and then washed with distilled water. Afterwards, the cells
were incubated in 60% isopropanol for 5 min at room temperature. Subsequently, they
were incubated with diluted Sudan III staining solution (Morphisto, Hessen, Germany,
10396.00500) at room temperature for 15 min. Finally, the cells were washed multiple
times with distilled water and covered with PBS before being examined swiftly. Adipocyte
morphology was scored using microscopy.

4.7. Staining of Chondrogenic Differentiation

After 21 days, the medium was removed and cells were washed twice with DPBS
(Gibco, Grand Island, NY, USA, 14190-094). Alcian blue staining was performed in accor-
dance with the PromoCell protocol. After fixation with the Saccomanno Fixation solution
(Morphisto, Hessen, Germany, 13881.00250), for three hours at room temperature, the cells
were washed twice with distilled water. The cell micromasses were stained in the dark for
45 min at room temperature with the Alcian blue staining solution (Sigma, Burlington, MA,
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USA, A3157). Next, the cells were washed twice with the destaining solution, consisting of
60% ethanol (98–100%) and 40% acetic acid (98–100%), for 10 min. Finally, micromasses
were examined in the DPBS blue color indicative of proteoglycans. The staining was
evaluated using microscopy.

4.8. Gene Expression Analysis

The total RNA was purified using a Quick-RNA miniprep kit of Zymo research (Zymo
research, Irvine, CA, USA, R1055). The total RNA (140 ng) was transcribed to cDNA with a
SuperScript Vilo cDNA synthesis kit (Invitrogen, Carlsbad, CA, USA, 11754050) in 20 µL
final volume. The gene expression was tested using a quantitative real-time PCR (qPCR)
analysis in 10 µL volume in duplicates with LightCycler® 480 SYBR Green I Master (Roche,
Basel, Switzerland, 4887352001) and performed with the LightCycler® 480 System (Roche,
Basel, Switzerland) according to the program presented in Table S5A. The list of primers
(Integrated DNA technologies, IDT, Coralville, IA, US) is supplied in Table S5B. Raw data
were analyzed with the LightCycler® 480 Software, version 1.5 (Roche, Basel, Switzerland).
Expressions of target genes were normalized towards the housekeeping TATA-box binding
protein (TBP) gene. The relative gene expression was calculated with the ∆∆Ct method.

4.9. Flow Cytometry and Analysis

Approximately 300,000 iNCCs were centrifuged at 300× g for 5 min. The supernatant
was removed, and the samples were stained for 30 min at 4 ◦C with a viability staining
(Table S6). After washing with PBS, cells were incubated with 1% heat-inactivated (HI) FBS
(Gibco, Grand Island, NY, USA, 10270-106) for again 30 min at 4 ◦C. After blocking, the
cells were stained with primary surface antigen antibodies, P75 and CD57 (Table S6), for
30 min at 4 ◦C in the dark. Afterwards, the cells were washed twice with staining buffer
(DPBS (Gibco, Grand Island, NY, USA, 14190-094) + 1% HI-FBS). The cells were fixed and
permeabilized by incubating with the fixation/permeabilization solution (BD biosciences,
Franklin Lakes, NJ, USA, 554714) for 20 min at 4 ◦C. Subsequently, the cells were washed
twice with BD Perm/Wash buffer (BD biosciences, Franklin Lakes, NJ, USA, 554714). Then,
the cells were incubated with the primary antibodies for the intracellular protein PAX6
(Table S6) for 30 min at 4 ◦C in the dark. Lastly, the cells were washed twice more with BD
Perm/Wash buffer (BD biosciences, Franklin Lakes, NJ, USA, 554714), and, finally, they
were resuspended in staining buffer prior to flow cytometry analysis. The flow cytometry
acquisition was performed on a Attune CytPix Flow Cytometer (Lasers: BRVY).

The analysis was performed using FlowJo (v10.7.1, Ashland, OR, US) on Windows 10.
All fcs files were automatically compensated using the corresponding single-color controls.
Fluorescence minus one (FMO) controls were used to determine the positive gate of each
marker. The percentage of P75NTR, HNK-1, and PAX6 positive population in stained
iNCCs was further analyzed using the percentage of the parent gate. The gating strategy
can be found below and was consistently used for all flow cytometry data, including
the control and patients’ fcs files. The cleaning gates used prior to define the population
of interest include FSC-H vs. FSC-A; to remove the doublets, FSC-A/SSC-A; Live dead
marker, to discriminate the viable iNCCs; SSC-A vs. FSC-A, used to remove debris and
select the population of interest.

4.10. Statistical Analysis

mRNA expression data were analyzed using two-way ANOVA and one-way ANOVA
GraphPad Prism version 9 (GraphPad Software Inc., San Diego, CA, USA). Graphs were
generated using GraphPad Prism version 9 (GraphPad Software Inc., San Diego, CA, USA).

5. Conclusions

In conclusion, we generated iMSCs and subsequent osteoblast-like cells from both
control and OI patient cell lines. The iMSCs presented the potential to generate osteoblast-
like cells, early adipocytes, and chondrocytes. Although we noted differences between



Int. J. Mol. Sci. 2024, 25, 3417 17 of 20

control and patient cell lines in osteogenic and adipogenic potential, such as increased
adipogenic potential in patient iMSCs, reduced chondrogenic gene expression in DN OI
iMSCs, and osteoblast properties attributed to OI pathology (reduced collagen expression
and mineralization), further characterization is still needed to explore the differences
between the control, HI, and DN OI patient cell lines. Creation of patient-specific iMSCs
provides a minimally invasive model, overcoming the limitations of primary cell culture OI
models and opening new possibilities to examine patient-specific osteoblast-like cells, and
their collagen production and processing, screen pharmaceutical compounds, and develop
therapies in a patient-specific molecular setting.
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