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Abstract: Kernel row number (KRN) is a crucial trait in maize that directly influences yield; hence,
understanding the mechanisms underlying KRN is vital for the development of high-yielding
inbred lines and hybrids. We crossed four excellent panicle inbred lines (CML312, CML444, YML46,
and YML32) with Ye107, and after eight generations of selfing, a multi-parent population was
developed comprising four subpopulations, each consisting of 200 lines. KRN was accessed in
five environments in Yunnan province over three years (2019, 2021, and 2022). The objectives of this
study were to (1) identify quantitative trait loci and single nucleotide polymorphisms associated
with KRN through linkage and genome-wide association analyses using high-quality genotypic
data, (2) identify candidate genes regulating KRN by identifying co-localized QTLs and SNPs, and
(3) explore the pathways involved in KRN formation and identify key candidate genes through
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses.
Our study successfully identified 277 significant Quantitative trait locus (QTLs) and 53 significant
Single Nucleotide Polymorphism (SNPs) related to KRN. Based on gene expression, GO, and KEGG
analyses, SNP-177304649, SNP-150393177, SNP-135283055, SNP-138554600, and SNP-120370778,
which were highly likely to be associated with KRN, were identified. Seven novel candidate genes at
this locus (Zm00001d022420, Zm00001d022421, Zm00001d016202, Zm00001d050984, Zm00001d050985,
Zm00001d016000, and Zm00014a012929) are associated with KRN. Among these, Zm00014a012929
was identified using the reference genome Mo17. The remaining six genes were identified using the
reference genome B73. To our knowledge, this is the first report on the association of these genes with
KRN in maize. These findings provide a theoretical foundation and valuable insights into the genetic
mechanisms underlying maize KRN and the development of high-yielding hybrids through heterosis.

Keywords: maize; candidate gene; GWAS; QTL; KRN; GO/KEGG analysis; Mo17

1. Introduction

Kernel row number (KRN) is a critical factor in maize yield and is an important trait
for improving maize inbreds and developing high-yielding hybrids. The KRN of maize
is a quantitative trait with high heritability that serves as a key indicator for evaluating
the quality of inbred lines. Therefore, gathering genetic information about KRN is of great
significance for maize breeding. Previous studies have shown that KRN is a quantitative
trait controlled by multiple genes, and over 100 KRN-related QTLs have been identified in
maize [1,2].

Since Thornsberry et al. [3] successfully introduced the genome-wide association study
(GWAS) method into plant genetics research, GWAS has become a widely adopted method
in various crops to identify loci associated with traits of interest. Maize, a cross-pollinated
crop with rapid linkage disequilibrium decay, is well suited for association analysis. The
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development of molecular markers has significantly enhanced the effectiveness of QTL
mapping for KRN [4]. Numerous studies have employed QTL mapping for KRN, revealing
that the loci influencing KRN are distributed across all ten maize chromosomes. Using
different mapping populations, more than 200 QTLs associated with KRN have been
identified [5–14]. For instance, Lu et al. [13] conducted a study using a population of
397 F2:3 individuals across seven different environments and detected a significant KRN-
related QTL, QTLqKRN7. Tian et al. [15] detected a major KRN-associated QTL, qKRN10,
using three BC5F2:3 populations. Cai et al. [16] used an F2:3 population to identify three
major QTLs associated with KRN in three different environments. In addition to identifying
QTLs associated with KRN, researchers have conducted fine mapping to narrow the QTL
interval, leading to the discovery of candidate genes. Calderon et al. [17] used a BC2S3
population to locate a KRN-related QTL and identified seven candidate genes located
within a 203 kb region in the QTL. Bai et al. [18] detected a KRN-related QTL, qKRN5.04,
and 10 candidate genes within a 300 kb region of the QTL. Although several candidate
genes associated with KRN have been identified, only a limited number of functional genes
associated with this trait have been successfully cloned. Liu et al. [19] and Wang et al. [20]
achieved significant milestones by fine mapping and cloning KRN4 and KRN1, respectively,
in maize. Furthermore, Chen et al. [21] made a notable contribution by identifying KRN2, a
gene that displays variation between domesticated maize and its wild ancestor, teosinte.
KRN2 serves as a pivotal quantitative trait locus for kernel row number in maize, with
selection pressures in noncoding upstream regions resulting in decreased KRN2 expression.
This reduction correlates with an augmented grain number, which is facilitated by an
increase in the KRN.

Previous studies have revealed that relying solely on a single approach, such as GWAS
or QTL mapping, has significant limitations for identifying candidate genes that regulate
KRN. In recent years, researchers have increasingly combined two or more mapping meth-
ods to mine candidate genes associated with target traits. Xiao et al. [22] mapped the QTLs
affecting ear traits in ten different recombinant inbred line (RIL) populations using three
methods. They then validated and fine-mapped four new QTLs using candidate gene asso-
ciation analysis, expression QTL analysis, and heterozygous inbred line validation. They
successfully fine-mapped the QTLs associated with KRN. Similarly, Liu et al. [23] employed
a combination of linkage and association mapping to unravel the genetic architecture of
maize KRN and evaluated phenotypic predictability using the detected loci. A GWAS study
revealed 31 associated SNPs representing 17 genomic loci with effects in at least one of the
five individual environments. In another study, Fei et al. [24] utilized a nested association
mapping (NAM) population consisting of 1617 RILs and identified five QTLs related to
KRN via joint linkage mapping (JLM). These QTLs were further validated through linkage
mapping (SLM) and GWAS. They identified three cloned KRN genes through a QTL assay,
and two new KRN-related QTLs, qKRN4.2 and qKRN9.1, were successfully identified.
Understanding the genetic basis of maize KRN and identifying candidate genes that control
KRN are crucial for breeding high-yielding inbred lines and hybrids. Although previous
studies have identified numerous KRN-associated genes [25–35], few have applied GO
and KEGG analyses in GWAS and QTL studies for candidate gene selection. Additionally,
studies on the association between KRN and tropical inbred lines are limited. In this study,
four excellent inbred lines with high genetic variation in KRN (CML312, CML444, YML32,
and YML46) were selected from the Suwan and non-Reid heterotic groups of tropical
regions as donor parents. These inbred lines were hybridized with the elite maize inbred
line, Ye107, from the Reid heterotic group, to develop a multi-parent population. The
KRN phenotypic data were collected in five different environments using this multi-parent
population. Subsequently, GWAS analysis and QTL mapping were conducted on the
655 RILs, followed by GO and KEGG enrichment analyses. The objectives of this study
were to (1) utilize high-quality genotypic data to perform linkage and GWAS analyses of
KRN in a multi-parent maize population to identify QTLs and SNPs associated with maize
KRN, (2) identify candidate genes associated with KRN based on co-localized SNP and
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QTL information, and (3) combine the results of GO and KEGG enrichment analyses to
identify the pathways involved in KRN formation and identify key candidate genes.

2. Results
2.1. Phenotypic Analysis of KRN in the Multi-Parent Population

KRN data were collected from a multi-parent population consisting of 655 RILs across
five different environments. The environments were as follows: two in 2019 at Dehong
(19DH) and Baoshan (19BS), two in 2021 at Jinghong (21JI) and Yanshan (21YS), and one
in 2022 at Yanshan (22YS). As shown in Table 1, the range of KRN variation in 19DH was
from 6.5 to 16.67, with an average KRN of 12.16. For 21YS, the range was from 6 to 16, with
an average of 11.9; for 22YS, the range was from 9 to 19.5, with an average of 12.76. At
21JH, the range spanned from 8 to 20, with an average of 13.24. In 19BS, the range was
5.33 to 16.67 with an average of 11.82. Phenotypic data across the environments revealed
high broad-sense heritability for KRN, reaching 61.94% (Table 1, Figure 1).

Table 1. Phenotypic variation in KRN across five environments in the multi-parent population †.

Environment Min Max AVE SD CV(%) H2

(%)

19DH 6.5 16.67 12.1647 1.46912 12.07691106

76.8
19BS 5.33 16.67 11.8247 1.54526 13.06806938
21YS 6 16 11.9313 1.83939 15.41650951
21JH 8 20 13.2378 1.59104 12.01891552
22YS 9 19.5 12.7630 1.70710 13.37538196

†, CV: coefficient of variation; H2: broad-sense heritability; SD: standard deviation.
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Figure 1. KRN variations in the multi-parent population in the five environments. 19BS for Baoshan
in 2019; 19DH for Dehong in 2019; 21JH for Jinghong in 2021; 21YS for Yanshan in 2021; 22YS for
Yanshan in 2022. In Figure 1, in the boxplot, the horizontal line in the middle represents the median,
the upper and lower lines of the box refer to 75th and 25th quartiles, respectively, and the whiskers
for each box indicate the minimum and maximum values within the box plot range (whiskers).
Significance levels are denoted as follows: “***” ≤ 0.0001, “*” ≤ 0.01, “NS” ≥ 0.05.
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2.2. Structure Analysis of the Multi-Parent Population

To mitigate the impact of population stratification during GWAS analysis, we em-
ployed a mixed linear model (MLM) that incorporated both the population structure (Q)
and kinship matrix (K) to reduce false positives, as suggested in a previous study [36]. We
analyzed 590,816 high-quality SNPs using the Plink v1.9 software and performed a genetic
similarity analysis using Tassel5. The resulting phylogenetic tree grouped the 655 RILs
into four subpopulations (Figure 2). Additionally, we conducted principal component
analysis (PCA) using R v 4.3.0 software, which initially divided the 655 RILs into four
populations, labeled sub-pop1 to sub-pop4 (Figure 2). However, because the sub-pop4 and
sub-pop1 groups overlapped, they were merged into one population. Thus, the 655 RILs
were classified into three groups: sub-pop2, sub-pop3, and sub-pop1_sub-pop4 (Figure 3).
This result is consistent with the “three heterotic group” theory in maize that has been used
to improve breeding efficiency [37–39]. This also confirmed the accuracy of classifying the
maize lines into different heterotic groups based on their combining ability and grain yield.
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2.3. Genome-Wide Association Analysis for KRN

We obtained genotyping data for 590,816 high-quality SNPs for GWAS analysis to
identify the loci associated with KRN. GWAS was performed using both genotyping and
phenotypic data from the five environments, utilizing the MLM model implemented in
GEMMA software (https://github.com/genetics-statistics/GEMMA/releases, accessed
on 1 June 2023). Using the formula −log10 (1/SNP number), we established a significant
threshold of five. By applying this threshold, we identified 53 SNPs associated with KRNs
across five environments associated with 38 genes. (Figure 4a–d and Table S1). Based on
our stringent significant threshold, we identified the SNPs across various environments.
In the 19DH environment, six SNPs were detected that were located on chromosomes
5 and 7. These SNPs collectively accounted for 8.8% and 6.4% of the phenotypic variance
explained (PVE), respectively. Additionally, one SNP located on chromosome 6 in the
19BS environment contributed to 3.2% of the PVE. Furthermore, two SNPs were identified
in the 21YS environment, located on chromosomes 2 and 8. In the 21JH environment,
41 SNPs were identified that were distributed across chromosomes 1, 2, 3, 4, 5, 6, 8, and
10, explaining a phenotypic variance ranging from 4.7% to 21%. In the 22YS environment,
three SNPs were identified on chromosome 10, explaining 14.9% of PVE. Notably, these
SNPs were not co-localized across the environments.
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2.4. Detection of Candidate Genes

In the GWAS analysis, 53 significant SNPs were identified, and these SNPs explained
KRN variation ranging from 3.24% to 21.01% (Table S1). Among these SNPs, seven had
a phenotypic variation explained (PVE) of over 10%, and 14 genes were located within
the range of 20 kb upstream and downstream of these seven SNPs (Table 2). In maize,
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KRN is largely influenced by the following tissues: meristem_16–19_day, ear primordium
(2–4 mm), ear primordium (6–8 mm), and female spikelets. Among the genes listed in
Table 3, Zm00001d016202 encodes an E3 ubiquitin protein ligase found in ear primordium [40],
meristem, and COP1 proteins. COP1 is crucial in plant biology and participates in light
signal transduction and growth regulation as an E3 ubiquitin ligase. It interacts with
various proteins to control the expression of light-responsive genes, thereby influencing
photomorphogenesis, flowering time, and photoperiod-related development. Based on
functional annotation and expression analysis, Zm00001d016202 is regarded as a potential
candidate gene regulating kernel row number (KRN). However, the remaining 13 genes
did not appear to play a specific role in KRN regulation.

Table 2. Genes associated with SNPs explaining >10% KRN variation and their expression in tissues
relevant to KRN † [40–51].

Gene ID Env SNP Chr
PVE
(%) Function

Expression (FPKM)

Meristem_
16–19

Ear_Primordium
(2–4 mm)

Ear_Primordium
(6–8 mm)

Female_
Spikelet

Zm00001d007924

21YS 242858336 2 17.74

Cytochrome P450 41 NA NA NA NA

Zm00001d007925
Cyclic

nucleotide-gated ion
channel 18

NA NA NA NA

Zm00001d025694

22YS 126528998 10 14.88

Surfeit locus protein
2 [52] 58.5 73.9 63 35.7

Zm00001d025695
Tetratricopeptide-

like helical domain
superfamily

1.0 1.2 1.4 2.2

Zm00001d025696
Cellulase (Glycosyl
hydrolase family 5)

Protein
4.1 5.0 5.1 6.0

Zm00001d029702 21JH 83163645 1 21.01 glutathione
S-transferase NA NA NA NA

Zm00001d006733

21JH 215468689 2 14.31

Transcription factor
bHLH85 NA NA NA NA

Zm00001d006734 Zinc finger protein
AZF2

Not reported

Zm00001d006735 Zinc finger protein
AZF1

Zm00001d014435 21JH 46725146 5 10.57 D-xylose-proton
symporter-like 3 58.5 49.8 46 29.3

Zm00001d016202

21JH 150393177 5 10.64

E3 ubiquitin-protein
ligase COP1 0.1 0.2 0.2 NA

Zm00001d016203
Actin-related protein
2/3 complex subunit

3
20.3 11.9 11.6 11.1

Zm00001d016204
Putative ubiquitin-

like-specific protease
1B

Not reported

Zm00001d024390 21JH 68447065 10 11.15

Sec14p-like phos-
phatidylinositol
transfer family

protein

3.6 8.8 9.1 NA

†, NA indicates that the gene is not expressed in the corresponding tissue. Env, environment; SNP, single
nucleotide polymorphisms; Chr, chromosome; PVE, percentage of phenotypic variation explained.

Through a search within 20 kb upstream and downstream of SNP-177304649, two genes,
Zm00001d022420 and Zm00001d022421, were found to be co-localized in the 19DH envi-
ronment. Although Zm00001d022420 was not expressed in the meristem_16–19_day or
ear primordium, it showed an expression level of 61.5 in female spikelets. In contrast,
Zm00001d022421 was expressed in all four tissues, with the highest expression level among
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all genes. Expression levels were 122.7, 156, 124.5, and 464.8 FPKM in meristem_16–19, ear
primordium (2–4 mm), ear primordium (6–8 mm), and female spikelets, respectively. Both
Zm00001d022420 and Zm00001d022421 encode ricin B-like lectins, which are carbohydrate-
binding agglutinins involved in binding to polysaccharides with Lewis X, Lewis Y, or
lacto-N-aminoglycan structures through their agglutinin domains [53] Additionally, by
comparing with previously published genes related to ear development, we identified a bd1
(branched silkless1) gene located approximately 1 Mb downstream of SNP-177304649. The
bd1 gene leads to increased branching in the male ear, deformities, and lack of filaments in
the female ear [54,55]. Therefore, it is speculated that Zm00001d022420 and Zm00001d022421
may contribute to the reduction in KRN in maize.

Table 3. Genes corresponding to SNP-177304649 and their expression levels in KRN-related tissues †.

Gene Loc SNP Chr
PVE
(%) Function

Expression (FPKM)

Meristem_
16–19_Day

Ear_Primordium
(2–4 mm)

Ear_Primordium
(6–8 mm)

Female_
Spikelet

Zm00001d022420
19DH 177304649 7 6.79 ricin B-like

lectins
NA NA NA 61.5

Zm00001d022421 122.7 156 124.5 464.8

†, NA indicates that the gene is not expressed in the corresponding tissue. Meristem_16–19_Day: Meristem during
days 16–19.

To confirm the two candidate genes, Zm00001d022420 and Zm00001d022421, we con-
ducted haplotype analysis using the Haploview 4.2 software (Figure 5). Zm00001d022420
exhibited two haplotypes: HAP-1 (TAA) and HAP-2 (CGC). The results indicated that
in 19DH environments, HAP-2 (CGC) was not significantly higher than HAP-1 (TAA),
and Zm00001d022420 did not have a predominant haplotype. Zm00001d022421 contained
two haplotypes: HAP-1 (AA) and HAP-2 (GG). In the 19DH environment, HAP-1 (AA) was
significantly more prevalent than HAP-2 (GG) was. Therefore, HAP-1 (AA) was considered
to be the dominant haplotype for Zm00001d022421.
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2.5. Linkage Analysis
2.5.1. Parental Line Variation for KRN

To facilitate the mapping of QTLs controlling KRN, this study selected five inbred lines
with substantial differences in KRN as parents for constructing the multi-parent population.
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The KRN values of the parental lines were as follows: Ye107 had 8 rows, CML312 had
16 rows, CML444 had 16 rows, YML32 had 14 rows, and YML46 had 14 rows.

2.5.2. Construction of Linkage Maps

We constructed genetic linkage maps for two subpopulations (sub-pop3 and sub-
pop4) made from crosses between the common parent Ye107, which exhibited the lowest
KRN, and CML312 and CML444, both of which had the highest KRNs of 16. RILs from
the two subpopulations were filtered with a k-mer completeness of 0.8 and a deviation
segregation of 0.001. The filter markers were then grouped into bins, each containing
15 markers without linkage. JoinMap software (v 4.0) was used to sort the bin markers for
each subpopulation using the maximum likelihood method, and genetic distances were
calculated using the Kosambi function. Ultimately, 1802 bin markers were assigned to
the two maps (Table S2). The linkage map was visualized using the Perl SVG module,
which depicts the distribution of bins on each chromosome (Figure 6). The linkage map
of sub-pop3 had a total length of 1045.83 cM with an average marker distance of 1.07 cM.
The longest chromosome was chromosome 1, spanning 169 cM, and the shortest was
chromosome 10, measuring 33.23 cM. The linkage map of sub-pop4 had a total length
of 828.27 cM with an average marker spacing of 1.01 cM. The longest chromosome was
chromosome 4 with a length of 151.08 cM, and the shortest was chromosome 9 with a
length of 41.88 cM.

Collinearity analysis was performed by comparing marker positions on the genetic
map (Figure S2) with a physical map of the two RIL populations. The order of most markers
in both linkage maps in Figure S1 is consistent with each chromosome, indicating strong
collinearity and high mapping accuracy during linkage mapping in this study.

2.5.3. QTL Mapping

QTL mapping was performed for KRN in two subpopulations (sub-pop3 and sub-
pop4) of the multi-parent population across five different environments (19DH, 19BS, 21YS,
21JH, and 22YS). The best linear unbiased prediction (BLUP) for KRN was predicted for all
environments. Subsequently, QTL mapping was conducted for BLUP and all individual
environments for the two subpopulations using WinQTLcart 2.5 software and the com-
posite interval mapping method (Figure 7). The LOD threshold was determined based on
1000 permutations with a significance level of p ≤ 0.05 [56]. QTLs with LOD scores ≥ 2.5
were considered significantly associated with KRN. Using this threshold, 178 QTLs were
detected in five environments and BLUP for sub-pop3. These QTLs were distributed across
chromosomes 1, 3, 4, 5, 7, and 9 (Table S3). Marker 95 on chromosome 1 in 19DH had the
highest LOD (6.299). In sub-pop3, chromosome 4 had the highest number of QTL exceeding
the threshold. In contrast, no QTLs exceeding the threshold of 2.5 were detected in the BLUP
and 19DH environment for sub-pop4. However, 99 QTLs exceeding this threshold were
identified in the remaining five environments and were distributed across chromosomes 1,
2, 4, and 5, with the highest number of QTLs detected on chromosome 4 (Table S3). Among
the five environments and BLUP, mk388 on chromosome 4 in 21JH exhibited the highest
LOD (5.657). Notably, 52 stable QTLs were consistently mapped in the five environments
and BLUP in the two subpopulations (Table S4). The sub-pop3/22YS environment and
sub-pop3/BLUP shared seven QTLs. For the pop4 subpopulation, the sub-pop4/21JH and
sub-pop4/21YS environments shared one QTL, whereas the sub-pop4/19BS environment
shared another QTL.
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Figure 7. QTL analysis of two subpopulations in five different environments and BLUP. (a1–a6) QTL
mapping in sub-pop3 in five different environments and BLUP. (b1–b6) QTL mapping in sub-pop4 in
five different environments and BLUP. The red line represents the LOD threshold in subfigures (a,b)
The best linear unbiased prediction over all environments (BLUP), merged value of Yanshan in 2022
(22YS), Yanshan in 2021 (21YS), Dehong in 2019 (19DH), Baoshan in 2019 (19BS), and Jinghong in
2021 (21JH).

Across the five environments and BLUPs in the two subpopulations, we identified
677 genes, some of which were repeatedly identified in different subpopulations and
some in different environments in the same subpopulation (Table 4). For instance, on
chromosome 4, 648 genes were detected in sub-pop3 in the 21JH environment and sub-
pop4 in 22YS environment. In sub-pop3 in the 22YS environment, 29 co-located genes were
identified on chromosome 4 using BLUP. In some cases, significant QTLs were identified,
but no candidate genes were detected. For instance, sub-pop3 in the 19BS environment
and sub-pop4 in the 21YS environment shared a common QTL within the interval of
120,350,778–120,390,778 bp on chromosome 5. However, no gene was detected at this
position in the B73 reference genome. Nevertheless, when the Mo17 reference genome
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was used, we successfully detected the gene Zm00014a012929 within this QTL. This result
suggests that when no candidate gene is detected in the B73 reference genome, an alternate
reference genome can potentially be used to identify candidate genes associated with
significant QTL.

Table 4. Number of genes repeatedly identified across different environments †.

Loc Chr Start End Number of
Repeated Genes

sub-pop3/21JH 4 75,627,569 151,339,536
648sub-pop4/22YS 4 46,403,895 172,368,609

sub-pop3/22YS 4 8,043,739 18,953,659
29sub-pop3/BLUP 4 8,043,739 10,683,376

sub-pop4/21JH 4 31,671,021 31,671,020
0sub-Pop4/21YS 4 31,409,140 31,409,140

Total 677
†, Loc: location. Chr: chromosomes. Start and end: Starting and ending position of the QTL.

2.6. Joint Analysis of GWAS and QTL

By comparing the genes identified via GWAS with those obtained from QTL mapping,
we identified 18 genes consistently associated with KRN in both analyses (Table 5). Among
these genes, 11 were located on chromosome 1, two on chromosome 4, and the remaining
five on chromosome 5. These 18 genes were consistently identified using GWAS and QTL
analyses in two or more environments. For instance, in GWAS analysis conducted in the
21JH environment and QTL analysis in the pop3/19DH environment, 11 overlapping genes
(Zm00001d031666, Zm00001d031667, Zm00001d031668, Zm00001d031669, Zm00001d031709,
Zm00001d031713, Zm00001d031715, Zm00001eb036870, Zm00001eb036890, Zm00001d031648,
and Zm00001d031772) were identified. The phenotypic variation explained (PVE) by these
genes ranged from 4.73% to 8.41%. Furthermore, GWAS analysis in the 21JH environment
and QTL analysis in the pop3/21JH and pop4/22YS environments identified two genes
(Zm00001d050984 and Zm00001d050985) that were consistently associated with KRN, which
explained 6.7% of the PVE for KRN. Similarly, GWAS analysis in the 21JH environment
and QTL analysis in the pop4/21YS environment revealed four genes (Zm00001d016000,
Zm00001d016202, Zm00001d016203, and Zm00001d016204) that were consistently linked
to KRN, explaining 8.4% to 10.4% of the phenotypic variation for KRN. Interestingly, one
molecular marker showed a significant association with KRN across the three environments
through GWAS analysis in the 19DH environment, and QTL analysis in the pop3/19BS
and pop4/21YS environments. However, no candidate genes were identified when the B73
genome reference was used for analysis. Intriguingly, when the Mo17 reference genome
was used, a gene associated with KRN, Zm00014a012929, was identified, which explained
8.83% of the KRN variation. This underscores the importance of considering different
reference genomes in candidate gene annotation, as it can provide valuable insights into
the genes that regulate KRN.

To further validate the 18 co-located candidate genes, we examined their functions
and expression levels in the maizeGDB (Table 6). The data in Table 5 showed that
Zm00001d050984 and Zm00001d050985 were consistently identified in all three environ-
ments through either GWAS or QTL analysis. Zm00001d050985 is expressed in all ear-
related tissues and encodes the Ultraviolet-B (UV-B) receptor UVR8, which serves as a light
sensor in plants, detecting UV-B wavelengths. UVR8 regulates plant responses to UV-B light
and promotes plant growth and development [57,58]. Zm00001d050984 belongs to the Rab
GDI displacement factor A 2 (CHML) gene family [59,60]. It functions as a component of the
Rab geranylgeranyltransferase (RGGT) complex, which is responsible for post-translational
modifications by adding geranylgeranyl groups to the C-termini of Rab proteins. Although
Zm00001d050984 was not significantly expressed in formation-related tissues, it shared
the same SNP as Zm00001d050985. Furthermore, approximately 1 Mb downstream of this
SNP, there is an fea2 (fasciated ear 2) gene known to cause flattened cobs and irregular
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KRNs [61–63]. Therefore, we considered Zm00001d050984 and Zm00001d050985 as poten-
tial candidate genes that influence KRN. Zm00001d016000 belongs to the Myb family of
transcription factors. The 1R (R1/2, R3-MYB) subgroup of Myb transcription factors is
primarily involved in various physiological processes such as plant morphology, secondary
metabolism, circadian rhythm control, and flower fruit development [64]. It also plays a
crucial role in diverse physiological processes, including flower organ development and
pollen germination [65–68]. However, based on comprehensive analyses of gene function
and expression levels [69–72], no additional information was found for the other seven
genes (Table 6).

Table 5. Co-localized genes identified through GWAS and QTL mapping †.

Gene ID PVE
(%) GWAS-Loc Start End SNP Chr QTL-Loc

Zm00001d031666

7.02 21JH 198,109,347 198,149,347 3 1 312/19DH
Zm00001d031667
Zm00001d031668
Zm00001d031669

Zm00001d031709 6.14 21JH 199,086,836 199,126,836 4 1 312/19DH

Zm00001d031713
8.41 21JH 199,202,030 199,242,030 5 1 312/19DHZm00001d031715

Zm00001eb036870 6.48 21JH 199,294,176 199,334,176 6 1 312/19DH

Zm00001eb036890
4.73 21JH 199,315,283 199,355,283 7 1 312/19DHZm00001d031648

Zm00001d031772 5.57 21JH 201,335,723 201,375,824 8 1 312/19DH

Zm00001d050984
6.70 21JH 135,263,055 135,303,055 1 4 312/21JH 444/22YSZm00001d050985

Zm00001d016000 8.40 21JH 138,534,600 138,574,630 2 5 444/21YS

Zm00001d016202
10.64 21JH 150,373,177 150,413,177 1 5 444/21YSZm00001d016203

Zm00001d016204

Zm00014a012929 8.83 19DH 120,35,0778 120,390,778 1 5 312/19BS 444/21YS
†, PVE: phenotypic variance explained. GWAS-Loc: environment in GWAS. Start and end: Starting and ending
position of the QTL. SNP: Number of Single Nucleotide Polymorphism in the interval from start to end. Chr:
chromosome. QTL-Loc: Environment in QTL.

Table 6. Functional annotation and expression levels of co-located genes † [35,40,42,67,68,71–80].

Gene Chr Function
Expression (FPKM)

Meristem_16–
19

Ear_Primordium
(2–4 mm)

Ear_Primordium
(6–8 mm) Female_Spikelet

Zm00001d031666 1 Probable aldo-keto
reductase 2 2.1 4.3 4.5 6.2

Zm00001d031667 1 Discolored-paralog2 13.3 12.3 15.2 7.8

Zm00001d031668 1
Ubiquitin

thioesterase
otubain-like

8.9 5.2 6.4 7.3

Zm00001d031669 1 O-fucosyltransferase
family protein 12.3 8.9 8.7 8.8

Zm00001d031709 1
Replication protein A
70 kDa DNA-binding

subunit B
NA NA NA NA
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Table 6. Cont.

Gene Chr Function
Expression (FPKM)

Meristem_16–
19

Ear_Primordium
(2–4 mm)

Ear_Primordium
(6–8 mm) Female_Spikelet

Zm00001d031713 1 CBL-interacting
protein kinase 19 NA NA NA NA

Zm00001d031715 1
CBL-interacting

serine/threonine-
protein kinase 9

NA 1.3 1.8 NA

Zm00001eb036870 1 Unknown
Unreported

Zm00001eb036890 1 Protein
S-acyltransferase4

Zm00001d031648 1 Protein
S-acyltransferase4 47.5 26.6 26.2 64.8

Zm00001d031772 1 Protein NtpR NA NA NA NA

Zm00001d050984 4
Rab-proteins geranyl-

geranyltransferase
component A

NA 0.2 0.2 NA

Zm00001d050985 4 Ultraviolet-B receptor
UVR8 8.7 18.8 18.1 15.7

Zm00001d016000 5 Myb-related protein
3R-1 52.3 55.5 59.3 2.6

Zm00001d016202 5 E3 ubiquitin-protein
ligase COP1 NA NA NA NA

Zm00001d016203 5
Actin-related protein
2/3 complex subunit

3
20.3 11.9 11.6 11.1

Zm00001d016204 5
Putative ubiquitin-

like-specific protease
1B

NA NA NA NA

Zm00014a012929
(mo17) 5 Unknown Unreported

† “NA” in the candidate genes column indicates currently unidentified genes.

2.7. Haplotype Analysis

Based on the co-localized candidate gene information from GWAS and QTL analyses
and the duplicated pathways obtained from KEGG/GO enrichment, we selected three
candidate genes for haplotype analysis. Zm00001d050984 and Zm00001d050985, which were
co-located in the three environments, and Zm00001d016000, which may be directly related
to KRN, were selected for haplotype analysis. Zm00001d016000 had three haplotypes
(hap-1, GGAGG; hap-2, CGAGG; and hap-3, GACAA), and there were no significant
differences among these three haplotypes. Zm00001d050984 had two haplotypes, hap-
1 (CC) and hap-2 (TT); however, the difference between the two haplotypes was not
significant. Zm00001d050985 shares the same haplotype pattern as Zm00001d050884, and
the difference between the two haplotypes was also not significant. Different haplotypes
of the same gene may affect gene function, thereby influencing maize KRN. When there
are no significant differences among the various haplotypes, they may also co-regulate the
gene and make the same contribution to gene expression (Figure 8).
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Figure 8. Haplotype analysis of Zm00001d050984, Zm00001d050985, and Zm00001d016000. (a) osi-
tions of the SNPs in the candidate gene associated with Zm00001d016000 on chromosome 5; (b) Dif-
ferential effects of three haplotypes (GGAGG, CGAGG, and GACAA) of Zm00001d016000 on KRN;
(c) Positions of the SNPs in the candidate genes associated with Zm00001d050984 on chromosome 4;
(d) Differential effects of CC/TT haplotypes of Zm00001d050984 on KRN; (e) Positions of the SNPs
in the candidate genes associated with Zm00001d050985 on chromosome 4; (f) Differential effects of
CC/TT haplotypes of Zm00001d050985 on KRN; (g) Candidate gene positions associated with KRN.

2.8. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Enrichment Analysis

To precisely identify KRN-associated genes among the large number of candidate
genes, we conducted GO and KEGG enrichment analyses to further narrow down the
candidate genes identified by GWAS and linkage analysis. GO enrichment analysis pro-
vided multiple GO terms, covering three hierarchical levels: cellular components (CC),
molecular functions (MF), and biological processes (BP) [81]. The results obtained from GO
and KEGG analyses were encouraging. In sub-pop3 for the BLUP and 22YS environments,
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despite the identification of 29 overlapping genes (Table 4), GO enrichment analysis did not
yield significant bioprocesses associated with these genes. Therefore, these 29 genes may
not be considered KRN-associated candidate genes. In the case of the sub-pop3 in the 21JH
environment and sub-pop4 in the 22YS environment, 648 co-located genes (Table 4) partici-
pated in 271 biological processes, primarily related to transport and metabolic processes.
These genes were associated with 77 cellular components, including the Golgi apparatus,
complexes, and other organelles, and 168 molecular functions involving bioregulation
and enzyme activity (Table S5 and Figure S2). In terms of biological processes (BP), the
highly correlated category was transmembrane transport, which includes processes such
as “nucleotide-sugar transmembrane transport (GO:0015780)” and “pyrimidine nucleotide-
sugar transmembrane transport (GO:0090481)”. In cellular components (CC), the highly
correlated category was complexes, including the “catalytic complex (GO:1902494)”, “ubiq-
uitin ligase complex (GO:0000151)”, “dynein complex (GO:0030286)”, “respiratory chain
complex (GO:0098803)”, and “SAGA-type complex (GO:0070461)”, among others. For
molecular function (MF), the highly correlated category included “catalytic activity, specifi-
cally acting on a glycoprotein (GO:0140103)”, “nucleotide-sugar transmembrane transporter
activity (GO:0005338)”, and “pyrimidine nucleotide-sugar transmembrane transporter ac-
tivity (GO:0015165)” (Table 7).

Table 7. The highly correlated Gene Ontology (GO) terms †.

LOC Category GO ID Description Gene Ratio p Value

Sub-pop3/21JH
and

sub-pop4/22YS

BP GO:0015780 Nucleotide-sugar transmembrane
transport 2/170 0.011210655

BP GO:0090481 Pyrimidine nucleotide-sugar
transmembrane transport 2/170 0.011210655

BP GO:0006914 Autophagy 2/170 0.013554188

BP GO:0061919 Process utilizing autophagic
mechanism 2/170 0.013554188

BP GO:0006325 Chromatin organization 4/170 0.020186478

BP GO:1901264 Carbohydrate derivative transport 2/170 0.021710384

BP GO:0015698 Inorganic anion transport 3/170 0.024541102

BP GO:0006821 Chloride transport 2/170 0.034964547

BP GO:0006497 Protein lipidation 2/170 0.054807613

BP GO:0006505 GPI anchor metabolic process 2/170 0.054807613

CC GO:0000139 Golgi membrane 2/59 0.02194791

CC GO:0098791 Golgi subcompartment 2/59 0.025312478

CC GO:0031984 Organelle subcompartment 3/59 0.0600554

CC GO:1902494 Catalytic complex 7/59 0.103515469

CC GO:0005794 Golgi apparatus 2/59 0.155306753

CC GO:0044431 Golgi apparatus part 2/59 0.155306753

CC GO:0000151 Ubiquitin ligase complex 1/59 0.166579053

CC GO:0030286 Dynein complex 1/59 0.166579053

CC GO:0098803 Respiratory chain complex 1/59 0.166579053

CC GO:0070461 SAGA-type complex 1/59 0.181653191

MF GO:0140103 Catalytic activity, acting on a
glycoprotein 3/239 0.001729669

MF GO:0005338 Nucleotide-sugar transmembrane
transporter activity 2/239 0.009752157
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Table 7. Cont.

LOC Category GO ID Description Gene Ratio p Value

Sub-pop3/21JH
and

sub-pop4/22YS

MF GO:0015165 Pyrimidine nucleotide-sugar
transmembrane transporter activity 2/239 0.009752157

MF GO:0033926
Glycopeptide

alpha-N-acetylgalactosaminidase
activity

2/239 0.011799431

MF GO:0015103 Inorganic anion transmembrane
transporter activity 3/239 0.016322483

MF GO:0008509 Anion transmembrane transporter
activity 3/239 0.023303348

MF GO:0005244 Voltage-gated ion channel activity 2/239 0.030592768

MF GO:0005247 Voltage-gated chloride channel
activity 2/239 0.030592768

MF GO:0005253 Anion channel activity 2/239 0.030592768

MF GO:0005254 Chloride channel activity 2/239 0.030592768
†, Category: categories of GO annotations, including molecular function (MF), cellular component (CC), and
biological process (BP). Gene Ratio: a fraction where the numerator is the number of genes enriched in this
GO term, and the denominator is the total number of genes used for enrichment analysis. LOC: location.
Sub-pop3/21JH: pop3 subpopulation for the 21JH environment. Sub-pop4/22YS: pop4 subpopulation for the
22YS environment.

After comparing the genes identified from GWAS and QTL analyses with GO anno-
tations, we identified the gene Zm00001d050984, which was associated with multiple GO
terms. This gene was linked to ten GO terms encompassing both BP and MF. In BP, it partic-
ipates in “intracellular signal transduction (GO:0035556), signal transduction (GO:0007165),
signaling (GO:0023052), small GTPase-mediated signal transduction (GO:0007264), and cell
communication (GO:0007154)”, indicating its involvement in various signaling pathways.
In MF, it is associated with “nucleoside-triphosphatase regulator activity (GO:0060589),
GTPase regulator activity (GO:0030695), GDP-dissociation inhibitor activity (GO:0005092),
enzyme regulator activity (GO:0030234), and molecular function regulator (GO:0098772)”,
suggesting its role in regulating enzyme activity (Table 8). This Zm00001d050984 gene
appears to be crucial for coordinating multiple signaling pathways and regulating enzyme
activity, highlighting its importance in cellular function and response to external stimuli.

Table 8. The Gene Ontology (GO) terms associated with Zm00001d050984 †.

Gene GWAS-Loc QTL Loc Description GO ID Category

Zm00001d050984 21JH
Sub-pop3/21JH

and
sub-pop4/22YS

intracellular signal transduction GO:0035556 BP
signal transduction GO:0007165 BP

signaling GO:0023052 BP
small GTPase mediated signal

transduction GO:0007264 BP

cell communication GO:0007154 BP
nucleoside-triphosphatase

regulator activity GO:0060589 MF

GTPase regulator activity GO:0030695 MF
GDP-dissociation inhibitor

activity GO:0005092 MF

enzyme regulator activity GO:0030234 MF
molecular function regulator GO:0098772 MF

†, Category: categories of GO Annotations, including molecular function (MF) and biological process (BP). 21JH:
Jinghong in 2021. Sub-pop3/21JH: the pop3 subpopulation for the 21JH environment. Sub-pop4/22YS: the pop4
subpopulation for the 22YS environment.
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After identifying the key cellular components, molecular functions, and biological
processes associated with these genes, we conducted KEGG enrichment analysis to reveal
their intricate relationships and networks. The results showed that the sub-pop3 for
the BLUP and 22YS environments shared genes enriched in eight metabolic pathways,
and the most highly correlated categories include “fatty acid elongation (zma00062)”
and “ascorbate and aldarate metabolism (zma00053)”. However, the category with the
highest number of participating genes was “biosynthesis of cofactors (zma01240)”. Those
in sub-pop3 for the 21JH environment and sub-pop4 for the 22YS environment were
enriched in 72 metabolic pathways (Table S6 and Figure S2). Some of the highly correlated
categories included “butanoate metabolism (zma00650)”, “monoterpenoid biosynthesis
(zma00902)”, and “circadian rhythm—plant (zma04712)” (Table 9). The authors suggested
that genes associated with these pathways could be considered key candidate genes for
further validation.

Table 9. The Kyoto Encyclopedia of Genes and Genomes (KEGG) associated with Zm00001d050984 †.

Loc KEGGID Description Bg Ratio p Value

Sub-Pop3/21JH
and sub-pop4/22YS

zma00650 Butanoate metabolism 30/5493 0.010066583
zma00902 Monoterpenoid biosynthesis 12/5493 0.013495559
zma00770 Pantothenate and CoA biosynthesis 40/5493 0.021995592
zma00020 Citrate cycle (TCA cycle) 72/5493 0.022923456

zma00290 Valine, leucine and isoleucine
biosynthesis 22/5493 0.042859117

zma00563 Glycosylphosphatidylinositol
(GPI)-anchor biosynthesis 24/5493 0.050229291

zma04712 Circadian rhythm—plant 58/5493 0.056694817
zma01210 2-Oxocarboxylic acid metabolism 61/5493 0.064061405
zma01200 Carbon metabolism 290/5493 0.070207933

zma01040 Biosynthesis of unsaturated fatty
acids 29/5493 0.070421369

Sub-pop3/22YS
and

sub-pop4/BLUP

zma00062 Fatty acid elongation 40/5493 0.028819143
zma00053 Ascorbate and aldarate metabolism 60/5493 0.042992849

zma00040 Pentose and glucuronate
interconversions 77/5493 0.054918027

zma01250 Biosynthesis of nucleotide sugars 105/5493 0.074316114
zma00480 Glutathione metabolism 111/5493 0.07843369

zma00520 Amino sugar and nucleotide sugar
metabolism 160/5493 0.111548551

zma04626 Plant-pathogen interaction 228/5493 0.156015338
zma01240 Biosynthesis of cofactors 265/5493 0.179497585

†, Sub-pop3/21JH: the pop3 subpopulation for the 21JH environment; sub-pop4/22YS: the pop4 subpopulation
for the 22YS environment; sub-pop3/22YS and sub-pop3/BLUP: the pop3 subpopulation for the BLUP and 22YS.
BgRatio: The denominator is the total number of genes in the genes encoding proteins of the species wherever
they carry GO annotations (estimated to be the total GO gene pool), and the numerator is the number of genes
within the total number that carry GO functional annotations on the current entry.

Through GO and KEGG enrichment analyses, we compared the pathway information
with co-located genes identified by GWAS–QTL analyses. In addition to Zm00001d050984,
which has multiple GO terms, we selected two additional genes, Zm00001d016202 and
Zm00001d050985. Zm00001d016202 encodes the E3 ubiquitin protein ligase COP1. This gene
coincides with the “ubiquitin ligase complex (GO:0000151)” term in the GO analysis of sub-
pop3 in the 21JH environment and sub-pop4 in the 22YS environment. Zm00001d050985
encodes a UV-B wavelength receptor, which might be associated with the “Circadian
rhythm—plant (zma04712)” term in the KEGG analysis for the sub-pop3 in the 21JH
environment and sub-pop3 in the 22YS environment. It is possible that UVR8 signaling,
particularly in response to UV-B radiation, indirectly affects circadian clock regulation
in plants.
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3. Discussion
3.1. 18 Co-Located Genes Were Confirmed to Be Associated with KRN

Linkage analysis and GWAS have been widely used to identify candidate genes
associated with quantitative traits [82–84]. In this study, we developed a multi-parent
population comprising 655 RILs by crossing Ye107 from the Reid heterotic group with
CML312 and CML444 from the non-Reid group and YML32 and YML46 from the Suwan
heterotic group. By combining the results from GWAS and genetic linkage analyses, we
identified 18 candidate genes that were co-located in multiple environments (Table 5).
The functions of these genes were consistent with those of the GO- and KEGG-enriched
pathways. Although previous researchers have identified KRN-associated QTLs on the
same chromosomes as in this study [16,85], the physical locations of these KRN-associated
QTLs were different. Therefore, we believe that the candidate genes identified in this
study are distinct from those reported in previous studies and represent novel candidate
genes associated with KRN. Furthermore, our genetic linkage analysis results indicated
that some significant QTLS overlapped with the genes that had already been cloned
(Table S7). This finding enhances the reliability of the results of this study. In Table S7, the
QTL on chromosome 5, localized in sub-pop4/21YS, coincided with qKRN5.04 identified
by An et al. [86] who found that the Zm00001d016075 gene negatively regulated KRN.
Although our SNP–QTL co-localization did not pinpoint this gene, the gene we co-localized,
Zm00001d016000, was approximately four million bases upstream of Zm00001d016075
and belonged to the same QTL region. Therefore, we hypothesized that they may share
similar functions. Given that Zm00001d016000 is located approximately four million bases
upstream of Zm00001d016075 and falls within the same QTL region, we speculate that they
may possess analogous functions, particularly regarding the regulatory effect on KRN.

3.2. Key Candidate Genes Linked to KRN Were Identified through GO and KEGG Analysis

In this study, we conducted a comprehensive analysis to identify and validate candi-
date genes using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG),
and gene cloning data. These analyses are instrumental in the selection and validation of
potential genes associated with the traits of interest (KRN) in maize.

Previous studies have demonstrated the effectiveness of GO and KEGG enrichment
analyses in screening candidate genes. For example, Tang et al. [87] used RNA-seq to ana-
lyze the transcriptomes of near-isogenic lines and identified 1960 differentially expressed
genes (DEGs). Subsequently, the authors employed GO classification and KEGG enrich-
ment analysis to reveal the significantly enriched pathways, shedding light on the genetic
basis of KRN in maize. Notably, the Zm00001d020460 gene within the “DNA binding”
pathway emerged as a candidate gene. They further constructed an overexpression vector
for Zm00001d020460 of the YE478 haplotype, transformed the maize inbred line B104,
and observed a significant reduction in kernel width in the T1 generation of the positive
transgenic lines compared to the wild type.

In our study, we initially narrowed down gene selection by identifying identical
GO/KEGG pathways in multiple environments. We then compared the functions of
these pathways with those of co-localized genes to screen for candidate genes associated
with KRN. Notably, the “circadian rhythm—plant” term was significantly associated with
the gene Zm00001d050985, identified through GWAS and genetic linkage analysis. This
gene encodes the UV-B wavelength receptor. Similarly, the “ubiquitin ligase complex”
pathway in GO enrichment analysis corresponded to the gene Zm00001d016202, also
identified in this study, which encodes the E3 ubiquitin protein ligase COP1. Furthermore,
the co-located gene Zm00001d016000 belongs to the Myb family of transcription factors.
Although its exact function is yet to be determined, previous research has suggested
that different light wavelengths can regulate maize mesocotyl tissue growth, potentially
mediated by circadian rhythmic-related genes, thereby affecting tissue plasticity [88,89]. For
example, white, blue, and UV-B light can strongly induce anthocyanin accumulation, and
the expression of two key structural genes was high in maize mesocotyls [90]. Furthermore,
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the overexpression of cryptochrome (CRY) OsCRY1b in rice results in the shortening
of the petiole and sheath, and the inhibition of elongation by blue light is related to
the interaction between OsCRY1 and E3 ubiquitin protein ligase RFWD2 (COP1) [91].
Additionally, MYB transcription factors play an important role in the response of plants
to UV-B light [92]. MYB73 and MYB77 interact with UVR8 to regulate lateral root growth,
whereas MYB13 induces secondary flavonoid metabolism and cotyledon expansion under
UV-B irradiation. Therefore, we believe that these three genes may interact to jointly
regulate the number of rows per ear in maize. In summary, our study harnessed the power
of GO and KEGG analyses to identify three candidate genes associated with KRN. This
not only streamlined the candidate gene selection process but also offered insights into the
molecular mechanisms underlying KRN variations. Collectively, these findings collectively
contribute to our understanding of the genetic factors that influence KRN in maize.

3.3. Alternative Reference Genome May Help Identify Candidate Gene

In this study, one SNP located between 120,350,778–120,390,778 bp on chromosome 5
was consistently identified in three different environments, including GWAS in the 19DH
environment and QTL mapping in sub-pop3 for the 19BS environment, as well as in sub-
pop4 for the 21YS environment. Interestingly, when the B73 reference genome was used, no
genes were detected in proximity to this SNP. We used another commonly used reference
genome, Mo17, and identified the Zm00014a012929 gene in the same region. Therefore,
we believe that genes related to KRN in these lines may not be present in the B73 genome.
This phenomenon could be attributed to the introduction of unique gene fragments into
the temperate germplasm owing to introgression from the tropical germplasm into the
temperate germplasm. This finding underscores the potential of tropical germplasms in
improving maize germplasm, as it may carry distinct beneficial genes lacking in temperate
germplasms. The lines used in this study were from “Suwan, Reid, and non-Reid heterotic
groups”, as proposed by our research group. The presence of novel genes that control KRN
in maize from these “three heterotic groups” explains why a candidate gene was identified
when Mo17 was used as the reference genome. This outcome further validates the accuracy
of the “three heterotic group” model proposed by our research team.

Many GWAS and QTL mapping studies in maize have utilized populations that
include Mo17 and B73 or their derived lines. Zhang et al. [93] employed a B73×Mo17 (IBM)
Syn10 double haploid (DH) population to successfully identify 100 QTLs and 138 SNPs
controlling yield-related traits in maize through a combination of GWAS and QTL mapping.
In their study, 52 candidate genes were identified, with one candidate gene, SNPSYN806,
which is associated with the number of rows per spike (ERN) and is closely linked to SBP
transcription factor 7 (GRMZM2G098557) [93]. In another study focusing on the interaction
between B73×Mo17 populations, Lin et al. constructed a QTL map for starch content
and identified a major QTL, Qsta9.1, located on chromosome 9. Subsequent GWAS and
co-expression network analysis highlighted GRMZM2G110929 and GRMZM5G852704 as
potential candidate genes influencing the starch content in maize grains [94].

In contrast, some studies independently analyzed Mo17 and B73 and subsequently
compared their disparities. For example, Song et al. investigated the responses of suscepti-
ble B73 and resistant Mo17 maize strains to aphids at both metabolite and transcriptome
levels. Surprisingly, both strains exhibited time-specific responses to aphid infestation, and
even in the absence of herbivory effects, significant differences in gene expression were
observed between the two strains [95].

It is worth noting that our study adopted a different approach from the previous ones;
we used different reference genomes to identify the candidate genes. The results highlighted
that the candidate gene Zm00014a012929 was exclusively obtained using the Mo17 reference
genome and was absent when the B73 reference genome was used. This finding suggests
that utilizing different maize reference genomes, especially in cases involving diverse
maize heterosis groups, could enhance the chances of identifying pertinent candidate genes.
Consequently, this approach holds promise for future research endeavors in maize research.
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3.4. Key Candidate Genes Associated with KRN

In this study, we identified 277 significant QTLs and 38 significant SNPs that play
crucial roles in determining KRN in maize. We further annotated the genes located within
a 20 kb range upstream and downstream of these QTLs and SNPs, revealing multiple
genes related to KRN. After considering factors such as frequency of occurrence, expression
pattern, and functional annotation, and supplemented by GO and KEGG analyses, we
identified seven candidate genes associated with KRN. During GWAS analysis, a signif-
icant SNP, SNP-177304649, was consistently identified in the 19DH environment. This
SNP was associated with two genes, Zm00001d022420 and Zm00001d022421, which were
expressed in the KRN-related tissues. Additionally, a bd1 (branchedsilkless1) gene was
found downstream of this SNP. A total of 18 genes were identified through co-localization
using GWAS and genetic linkage analysis. Among these, four genes were identified as
candidate genes related to KRN. First, Zm00001d016202, annotated as the E3 ubiquitin-
protein ligase COP1 and associated with the “ubiquitin ligase complex” pathway identified
through GO annotation, exhibited a phenotypic variation of 10.64% and was expressed in
tissues related to KRN. Next, we identified Zm00001d050985, a UV-B receptor associated
with the “circadian rhythm—plant” pathway using KEGG analysis. Zm00001d050984,
which is linked to ten GO terms, appears to be crucial for coordinating multiple signaling
pathways and regulating enzyme activity, which may be closely related to the formation of
KRN. Downstream of Zm00001d050985 and Zm00001d050984, another gene, fea2 (fasciated
ear 2), was found to be associated with KRN and was expressed in KRN-related tissues.
Zm00001d016000, a transcription factor of the Myb family, is highly expressed in tissues
related to KRN [96]. Finally, for Zm00014a012929, although the gene function, expression
level, and metabolic pathway remain unclear, it was consistently co-located in most envi-
ronments in this study and was exclusively identified in the Mo17 reference genome. This
gene may not only regulate KRN but also support the validation of the “three heterotic
group” model proposed by our research group.

In conclusion, these seven candidate genes are likely to be involved in the regulation
of KRN formation in maize. Future research should focus on conducting differential gene
expression analyses and validating gene functions to confirm their role in KRN regulation
in maize. This study not only provides new genetic markers and genomic resources for
exploring the genetic structure and molecular mechanism of maize KRN but also lays a
critical foundation for validating and cloning functional genes related to maize kernel row
number formation.

4. Materials and Methods
4.1. Experimental Materials

We used Ye107, a foundational inbred line in China, as the common male parent.
Additionally, we selected four parental inbred lines, CML312, CML444, YML46, and
YML32, each characterized by significant genetic diversity in terms of KRN, as female
parents. The hybridization of these four parental inbred lines with the common male parent
Ye107 resulted in the development of four F1 hybrids. Subsequently, we conducted eight
successive generations of selfing of the four F1s using the single-seed descent method,
leading to the establishment of four distinct recombinant inbred line (RIL) subpopulations.
The F8 generation subpopulations resulting from crosses between CML312, CML444,
YML46, and YML32 with Ye107 were denoted as sub-pop1, sub-pop2, sub-pop3, and sub-
pop4, respectively. Each RIL subpopulation comprised approximately 200 recombinant
inbred lines, resulting in 655 RIL lines constituting the multi-parent population. Ye107 has
a significant position as a foundation maize parent in China. This line and its subsequent
inbred lines were categorized under the Reid group, which is a prominent heterotic group
in maize breeding in China (Table 10).
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Table 10. Parental lines used to develop multi-parent population.

Parental Lines Pedigree Heterotic Group Ecotype

Ye107 From US hybrid
DeKalb XL8 Reid Temperate

CML312 S89500-F2-2-2-1-1-B Non-Reid Tropical
CML444 P43-C9-1-1-1-1-1 Non-Reid Tropical
YML46 Selected from Suwan1 Suwan Tropical
YML32 Selected from Suwan1 Suwan Tropical

4.2. Field Experimental Design and Phenotyping

RILs of the multi-parent population were planted in Dehong (DH) and Baoshan (BS)
in Yunnan Province in 2019. The experiments were set up in a randomized complete block
design (RCBD) with two replications at each location. Each experimental plot consisted
of 4 m long rows with 0.70 m inter-row spacing. Plant-to-plant spacing was 25 cm, with
14 plants per row. Spring trials in 2021 and 2022 were conducted in Yanshan, Yunnan
Province, using a Latin square design. Each row had a length of 2.5 m, with a space of
25 cm between plants, and there were 14 plants per row, with two replications. During
the winter of 2021, the trial was conducted in Jinghong, Yunnan Province using a random
block design. Each row had a length of 2.5 m, with 14 plants per row spaced at 25 cm, with
two replications. After the maize cobs matured and dried, five ears were randomly selected
from each plot to investigate the KRN.

4.3. Phenotypic Data Analysis

Excel 2019 and IBM SPSS Statistics 20 were used to conduct the normal distribution,
variance, correlation, and coefficient of variation analyses. The coefficient of variation (CV)
was calculated using the following formula: CV = (standard deviation SD/mean) × 100%.
The R package ‘lem4’ was used to calculate heritability. Heritability (h2) was estimated
using the formula proposed by Knapp et al. [97]: h2 = σg2/(σg2 + σge2/e + σε2/re), where
σg2 represents the genetic variance, σgl2 is the variance of the genotype–environment
interaction, σe2 is the error variance, n is the number of sites, and y is the number of years.

4.4. Genotyping

The parental lines and RILs of the multi-parent population were genotyped via the
genotyping-by-sequencing (GBS) method. DNA was extracted from 655 RILs of the four
subpopulations, along with their respective parents, using the method described by Elshire
et al. [98]. After the DNA library of 300 bp size was constructed and sequenced on the
Illumina NovaSeq 6000 platform (Illumina Inc., San Diego, CA, USA) with a read length of
2 × 150 bp, the raw sequencing reads were processed to remove reads with adapters and
low-quality reads, resulting in high-quality filtered reads. Single nucleotide polymorphisms
(SNPs) and insertions and deletions (InDels) were detected using GATK software v4.1.4.0.
Subsequent association analysis was performed using 590,816 high-quality SNPs.

4.5. Structure Analysis

Phylogenetic tree analysis was conducted using Tassel v5.0 software, utilizing 590,816 high-
quality SNPs to assess the genetic relationships among the 655 RILs. Principal component
analysis was performed using R 4.3.2, and the results were visualized using the scatter-
plot3d software package.

4.6. Genome-Wide Association Analysis

Genome-wide association analysis was conducted using the GEMMA software (open
model: https://github.com/genetics-statistics/GEMMA/releases, accessed on 1 June
2023) [99], and 590,816 high-quality SNPs were used in the analysis. The analysis employed
a mixed linear model (MLM) for GWAS for both the average and BLUP values for all
environments. Significance was determined at the p < 0.0001 level using the formula

https://github.com/genetics-statistics/GEMMA/releases
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−log10 (1/Total number of SNPs) to assess the association between SNP markers and
panicle number. The distribution of markers is shown in the Manhattan plot, and the Q-Q
plot was used to evaluate the accuracy of the association analysis results.

4.7. Haplotype Analysis

Haploview v4.2 software was used to analyze genes that were consistently detected in
multiple environments whose functions were related to KRN.

4.8. Candidate Gene Screening

SNPs obtained from GWAS results were annotated using the ANNOVAR software
(v2013-05-20). Based on the annotated gene numbers, the SNPs were searched and com-
pared in maizeGDB and NCBI (http://www.ncbi.nlm.nih.gov/ (accessed on 15 September
2023)) databases, leading to the identification and functional annotation of candidate genes.

4.9. Construction of Genetic Linkage Map

The JoinMap4.0 software was used for linkage map construction. The LOD thresh-
old was determined using 1000 random permutation tests, with a significance level of
p ≤ 0.05 [100]. QTLs were considered significant if the LOD threshold was ≥2.5. Linkage
groups were defined based on the criteria of an LOD critical value ≥ 2.5, and a genetic
linkage map was constructed using eligible SNP markers. SNP markers within each linkage
group were sorted using the maximum likelihood method and unlinked markers were
excluded. The genetic distance (cM) between markers was computed using the Kosambi
mapping function. Polymorphic SNPs with distinct alleles in both parents were used to
construct genetic maps of sub-pop3 and sub-pop4. Markers showing segregation distortion
were filtered out using the Chi-square test (p < 0.001), and markers with an integrity <95%
were also excluded.

4.10. QTL Mapping Analysis

QTL mapping was conducted using the composite interval mapping (CIM) method
in Windows QTL Cartographer 2.0. Phenotypic data for KRN were integrated to the high-
density genetic linkage map, and a step distance of 0.21 cM was used to identify parental
polymorphic QTLs. The threshold was established using 1000 random permutations at a
95% confidence interval (CI). The LOD thresholds associated with flanking markers were
set to 2.5 to identify QTLs controlling KRN.

4.11. GO and KEGG Enrichment Analysis

Based on the results of linkage disequilibrium decay distance analysis, genes located
within 20kb upstream and downstream of the significant SNPs were functionally annotated
using GO and KEGG analyses. The annotation process helped further validate and identify
candidate genes associated with the target traits obtained through GWAS and QTL analyses.
The p-values for GO and KEGG analyses were calculated using the following formula:

P = 1 −
m−1

∑
i=0

(
M
i

)(
N − M
n − i

)
(

N
n

)
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