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Abstract: Clinicopathological presentations are critical for establishing a postoperative treatment
regimen in Colorectal Cancer (CRC), although the prognostic value is low in Stage 2 CRC. We
implemented a novel exploratory algorithm based on artificial intelligence (explainable artificial
intelligence, XAI) that integrates mutational and clinical features to identify genomic signatures
by repurposing the FoundationOne Companion Diagnostic (F1CDx) assay. The training data set
(n = 378) consisted of subjects with recurrent and non-recurrent Stage 2 or 3 CRC retrieved from TCGA.
Genomic signatures were built for identifying subgroups in Stage 2 and 3 CRC patients according to
recurrence using genomic parameters and further associations with the clinical presentation. The
summarization of the top-performing genomic signatures resulted in a 32-gene genomic signature
that could predict tumor recurrence in CRC Stage 2 patients with high precision. The genomic
signature was further validated using an independent dataset (n = 149), resulting in high-precision
prognosis (AUC: 0.952; PPV = 0.974; NPV = 0.923). We anticipate that our genomic signatures and
NCCN guidelines will improve recurrence predictions in CRC molecular stratification.

Keywords: colorectal cancer; prognosis; F1CDx repurposing; explainable artificial intelligence;
genomic signature

1. Introduction

Colorectal cancer (CRC) is responsible for approximately 900,000 deaths around the
world yearly, making CRC the second leading cause of death related to cancer [1]. Remark-
ably, patients with Stage 2 CRC have a different response to adjuvant chemotherapy [1–4]
and a different disease-free survival [2,4–7] to those with Stage 3 cancer. Therapeutic
indications, such as adjuvant systemic therapy (AST), have traditionally relied heavily
upon the concrete facts of clinicopathological presentations to structure the appropriate
course of treatment for patients [3]. However, the selection of the treatment in CRC can
be subjective, especially for Stage 2 patients, due to the lack of tools able to predict which
patients with early-stage cancers will benefit from the AST treatment [5,6,8].
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New technologies harnessing high-throughput molecular diagnostics have begun
to entertain alternative strategies to augment their patient selection process concerning
chemotherapy treatment regimens [9,10]. The FoundationOne Companion Diagnostic
(F1CDx, Roche) is a comprehensive genomic profiling platform, holding FDA-CMS ap-
proval, that can evaluate solid tumors for the benefit of additional targeted therapy for
patients already receiving AST [7,11–14]. The feasibility of repositioning this diagnostic
platform for calculating the probability of recurrence in CRC Stages 2 and/or 3 patients
has yet to be addressed. The extension of F1CDx towards the predictive capacities of
inferring cancer recurrence may improve treatment selection and prognostic assessments.
However, previous studies repurposing various companion diagnostics, including F1CDx,
have had limited success [11,15–17], suggesting that more robust computational methods
are required for the building of genomic signatures for patient stratification.

Exploratory data mining algorithms such as the one developed by iDAS lab (i.e.,
explainable artificial intelligence, XAI [18]) enable the collection of specific groups of
patients (i.e., subgroups) from different cohorts. The algorithm allows the interpretation of
machine learning analysis by employing a deep exploratory mining process that creates
and prioritizes potential subpopulations based on their explainable contrast patterns.
According to the analytical retentions from each observed subgroup outcome, the relational
elements consistent amongst both the clinical presentations and genetic mutations across
each subgroup can be assessed [18]. Pattern mining enables the discovery of the non-
intuitive relationships potentially able to uncover the missing link connecting cancer
progression, treatment resistance, and recurrence [3,15,19–21]. In this study, we aimed to
evaluate the translational capabilities of repurposing F1CDx and how it might examine
both the phenotypic and genomic aspects of patients to better assess their risk of recurrence,
particularly in CRC Stage 2 patients. To this end, we applied our novel XAI algorithm to
assess F1CDx test results to build a genomic signature for determining the risk of recurrence
in CRC stage 2 patients.

2. Results
2.1. Unsupervised Data Mining Algorithm Enables the Stratification of CRC Patients

Figure 1 presents an overview of the study design and analytical workflow. Our initial
dataset consisted of the F1CDx marker panel (n = 324 genes, Supplementary Table S1)
corresponding to Stage 2 (n = 212) and 3 (n = 166) CRC patients. Each CRC stage included
patients with recurrent (n = 61 and n = 51 for Stage 2 and 3, respectively) and non-recurrent
(n = 151 and n = 115 for Stage 2 and 3, respectively) cancers. The patient characteristics are
provided in Supplementary Table S2. Mutations in each panel were combined with the
most relevant clinicopathological variables (Figure 1A). Panels were implemented with
the use of our unsupervised data mining algorithm (XAI) [18] to identify novel patient
groups according to stage and recurrence. We discovered a sizable collection of subgroups
of patients with Stage 2 and 3 CRC based on the pattern mining algorithm, which identified
the best-performing genomic signatures in each CRC population subgroup (i.e., CRC Stage
2, CRC Stage 3 and CRC Stages 2 and 3 combined) (Figure 1B).

Supplementary Table S3 contains the top subgroup for each of the three groups used
in this study. The CRC stage 2 primary population subgroup was identified as MG02PS04.
The class 01 genomic signature was defined by 56 gene mutations and class 02 comprised
30 gene mutations that were absent of all mutational elements. The CRC stage 3 primary
population subgroup was identified as MG03PS19. Class 01 was defined by 11 gene
mutations and class 02 comprised 5 gene mutations absent of all mutational elements.
For CRC stages 2 and 3 combined, the primary population subgroup was identified as
MG23PS19. Class 01 was defined by 61 gene mutations and class 02 comprised 33 gene
mutations that were absent of all mutational elements. The gene composition of each
genomic signature is provided in Supplementary Table S4.
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Figure 1. Dataset overview and experimental design. (A) Training data set consisted of mutational 
and clinical data from n = 378 subjects with recurrent and non-recurrent Stage 2 or 3 CRC retrieved 
from TCGA for which genomic variables and clinical variables were available. (B) Mutational and 
clinical features were analyzed using the XAI algorithm [18]. Subgroups were scored according to 
the pattern definition (i.e., J-score), and genomic signatures identifying each subgroup were gener-
ated. The performance of such genomic signatures was assessed via disease-free survival analysis, 
biological interpretated via gene enrichment analysis and further validated using an independent 
dataset. 

2.2. Assessment of Predictive Capacity for CRC Staging 
Figure 2 depicts the performance of the top genomic signatures for classifying recur-

rent and disease-free CRC patients in each subgroup in the training cohort (i.e., TCGA 
cohort). For each genomic signature, the Receiver Operating Curve (ROC) curve analysis 
was conducted using three different methods (i.e., empiric, binomial, and nonparametric) 
and the Area Under the Curve (AUC) was calculated. The genomic signature MG02PS04 
(Figure 2A) showed high accuracy in distinguishing between recurrent and disease-free 

Figure 1. Dataset overview and experimental design. (A) Training data set consisted of mutational and
clinical data from n = 378 subjects with recurrent and non-recurrent Stage 2 or 3 CRC retrieved from
TCGA for which genomic variables and clinical variables were available. (B) Mutational and clinical
features were analyzed using the XAI algorithm [18]. Subgroups were scored according to the pattern
definition (i.e., J-score), and genomic signatures identifying each subgroup were generated. The
performance of such genomic signatures was assessed via disease-free survival analysis, biological
interpretated via gene enrichment analysis and further validated using an independent dataset.

2.2. Assessment of Predictive Capacity for CRC Staging

Figure 2 depicts the performance of the top genomic signatures for classifying recurrent
and disease-free CRC patients in each subgroup in the training cohort (i.e., TCGA cohort).
For each genomic signature, the Receiver Operating Curve (ROC) curve analysis was con-
ducted using three different methods (i.e., empiric, binomial, and nonparametric) and the
Area Under the Curve (AUC) was calculated. The genomic signature MG02PS04 (Figure 2A)
showed high accuracy in distinguishing between recurrent and disease-free CRC Stage
2 patients (AUC = 0.9551, 0.9694, and 0.9466, for empiric, binomial, and nonparametric
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ROCs, respectively). In turn, genomic signatures MG03PS19 (Figure 2B; AUC = 0.8899,
0.9169, and 0.8723) and MG23PS19 (Figure 2C; AUC = 0.8488, 0.8725, and 0.8369) displayed
high accuracy in distinguishing between recurrent and disease-free CRC Stage 3 patients
and CRC Stage 2 and 3 patients combined, respectively. Remarkably, the genomic signa-
ture produced from the CRC Stage 2 subgroup outperformed those from the other CRC
subgroups (i.e., Stage 3, and Stage 2 and 3 combined subgroups), and may have potential
clinical applications for supplementing diagnostic protocols for CRC Stage 2 patients.
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Figure 2. ROC–AUC analysis of genomic signatures. Performance assessment of the top genomic
signatures for each CRC group and their ability to infer a recurrence event in samples from the
training cohort (i.e., TCGA cohort). (A) Genomic signature MG02PS04 for CRC Stage 2 patients;
(B) Genomic signature MG03PS19 for CRC Stage 3 patients. (C) Genomic signature MG23PS19 for
Stage 2 and Stage 3 CRC patients combined. ROC: Receiver Operating Curve. AUC: Area Under the
Curve. x- and y-axes represent the values for Specificity (False Positive Rate: FPR) and Sensitivity
(True Positive Rate: TPR) when distinguishing between recurrent and disease-free patients.
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2.3. Disease-Free Survival-Based-Predictions by CRC Stage

Supplementary Table S5 details the genomic signatures used for the disease-free
survival analysis of each of the three CRC groups, focusing on their putative clinical
indication. The gene composition of each genomic signature is provided in Supplementary
Table S4.

For Stage 2 subjects, the MG02PS03 and MG02PS04 mutation-negative genomic sig-
natures were associated with the occurrence of primary tumor and recurrence events in
non-CMS1 subtype subjects, respectively, whereas mutation-positive MG02PS05 was asso-
ciated with disease-free survival. For CRC Stage 3, we identified two genomic signatures
with potential clinical indications: the mutation-positive MG03PS18 genomic signature was
associated with 30–60 months of disease-free survival and recurrence events regardless of
the CMS subtype, while the mutation-positive MG03PS18 genomic signature was associated
with recurrence events in CMS1 subjects. In addition, the MG03PS19 mutation-negative
genomic signature was associated with recurrence events in non-CMS1 subjects. When we
considered CRC Stage 2 and 3 combined, we identified the MG23PS19 in which recurrence
events are associated with mutation-positive and mutation-negative genomic signatures in
CMS1 and non-CMS1 subjects, respectively. In addition, the mutation-positive MG23PS20
genomic signature was associated with disease-free progression (Supplementary Table S6).

Next, we assessed the probability of disease-free survival in each subject associated
with each genomic signature independently and in combination with the CMS subtype
(Figure 3). For CRC Stage 2, subjects with the CMS1 subtype and mutation-positive (i.e.,
class 01, yellow line) or negative (i.e., class 02, red line) MG02PS04 genomic signature
(Figure 3A, left panel) presented a significantly higher probability of disease-free survival
(p = 0.047 and p = 0.0055 for class 01 and class 02, respectively) compared with non-CMS1
subjects bearing those genomic signatures. In turn, the CMS1 subtype subjects with the
mutation-positive (i.e., class 01, blue line) MG02PS05 or mutation-negative (i.e., class 02,
gray line) MG02PS03 genomic signatures (Figure 3A, right panel) had a significantly lower
probability of disease-free survival (p = 0.0021 and p = 0.0049, respectively) than non-CMS1
subjects. For CRC Stage 3, the CMS1 subjects presented a lower probability of disease-free
survival regardless of the mutational status of the MG23PS19 and MG03PS18 genomic
signatures (Figure 3B), although the differences were not statistically significant (p = 0.42
and p = 0.36 for class 01 and class 02 MG03PS19 genomic signatures, and p = 0.45 and
p = 0.18 for class 01 and class 02 MG03PS18 genomic signatures and, respectively). Similarly,
we did not detect significant differences in the probability of disease-free survival when
CRC Stage 2 and Stage 3 subjects were considered together, regardless of the CMS subtype
or mutational status of the studied genomic signatures (p = 0.076 and p = 0.32 for class
01 and class 02 MG23PS19 genomic signatures, and p = 0.47 and p = 0.32 for class 02 of
MG23PS20 and MG23PS19 genomic signatures, respectively) (Figure 3C).
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Figure 3. Disease-free survival analysis of groups by CRC stage. Disease-free survival given the
presence and/or absence of these genomic signatures in conjunction with the clinical indications
of consensus molecular subtypes. (A) CRC Stage 2 genomic signatures produced the only statisti-
cally significant results, with results 3, 4, and 5 retaining prognostic potential. (Left) Kaplan–Meier
survival analysis of MG02PS04.class01 (Log-rank; p = 0.047) and MG02PS04.class02 (Log-rank;
p = 0.0055). (Right) Kaplan–Meier survival analysis of MG02PS05.class01 (Log-rank p = 0.0021) and
MG02PS03.class02 (Log-rank p = 0.0049). The purpose of the asterisks (*) was to emphasize the
statistical significance of these results in comparison to the other observed outcomes. (B) Disease-free
survival of CRC Stage 3 and the corresponding genomic signatures did not have statistically signifi-
cant results. (Left) Kaplan–Meier survival analysis of MG03PS19.class01 (Log-rank; p = 0.42) and
MG03PS19.class02 (Log-rank; p = 0.36). (Right) Kaplan–Meier survival analysis of MG03PS18.class02
(Log-rank; p = 0.45) and MG03PS19.class02 (Log-rank; p = 0.18). (C) CRC Stages 2 and 3 demonstrated
some promising results; however, they lack statistical significance and/or the stratification of the
identified patient populations were exceedingly small. (Left) Kaplan–Meier survival analysis of
MG23PS19.class01 (Log-rank; p = 0.076) and MG23PS19.class02 (Log-rank; p = 0.32). (Right) Kaplan–
Meier survival analysis of MG23PS20.class01 (Log-rank; p = 0.47) and MG23PS19.class02 (Log-rank;
p = 0.32).

2.4. Analysis of Prognostic Capability by Sequential Combination of Genomic Signatures

Next, we constructed three distinct scenarios to examine the sequential combination
of these identified genomic signatures to assess their prognostic capability. Figure 4 depicts
the ROC–AUC analysis using disease-free survival-based-predictions according to the
CRC stage for each of these combinations. We defined three scenarios in CRC Stage 2
(Figure 4A) and Stage 3 (Figure 4B) based on the presence of the following distinctive
genomic signatures: (i) mGS02R3-class02 and mGS02R5-class01 (left panel); (ii) mGS02R4-
class01, mGS02R4-class02, and mGS02R5-class01 (middle panel); and (iii) mGS02R3-class02,
mGS02R4-class02, and mGS02R5-class01 (right panel). The three scenarios provided high
discriminatory power between CRC Stage 2 subjects who were disease-free over 60 months
and those who showed recurrence (AUC > 0.90, Figure 4A). Noteworthy, scenarios (i) and
(iii) showed an identical accuracy in their predictive capacity, denoting an underlying
similarity amongst the two different combination sequences, most likely attributed to
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the genes that the genomic signatures share (Supplementary Table S4). However, the
discriminatory power was more moderate in CRC Stage 3 subjects (AUC < 0.90, Figure 4B).
When considering CRC Stage 2 and Stage 3 combined, we defined three scenarios different
to those defined for individual stages (Figure 4C): (i) mGS23R19-class01, mGS23R19-class02,
and mGS23R20-class02 (left panel); (ii) mGS23R18-class02 and mGS23R19-class01 (middle
panel); and (iii) mGS23R19-class02 and mGS23R20-class01 (right panel). These scenarios
also provided a more moderate discriminatory power than that observed in CRC Stage 2
individually (AUC < 0.90, Figure 4C).
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The sequential combination of genomic signatures resulted in different scenarios for the enhanced
predictive capability in CRC Stage 2 and 3 subjects considered separately or in combination. (A) ROC–
AUC analysis results for the CRC Stage 2 scenarios, for empirical, binormal, and nonparametric ROCs,
respectively: Scenario (i) (left) AUCs = 0.9584, 0.9747, 0.9381; scenario (ii) (middle) AUCs = 0.9267,
0.9323, 0.9150; and scenario (iii) (right) AUCs = 0.9584, 0.9747, 0.9381. (B) ROC–AUC analysis results
for the CRC Stage 3 scenarios: scenario (i) (left) AUCs = 0.8678, 0.8836, 0.8568; scenario (ii) (middle)
AUCs = 0.8654, 0.8860, 0.8568; and scenario (iii) (right) AUCs = 0.8282, 0.8586, 0.8240. (C) ROC–
AUC analysis results of the CRC Stages 2 and 3 scenarios: scenario (i) (left) AUCs = 0.8915, 0.8982,
0.8761; scenario (ii) (middle) AUCs = 0.8772, 0.8900, 0.8592; and scenario (iii) (right) AUCs = 0.8525,
0.8744, 0.8399. The combination of genomic signatures for each scenario is provided in the ROC and
described in the text. Empirical, binormal, and nonparametric ROCs are represented by black, red,
and blue lines, respectively.

2.5. Diagnostic Framework for Recurrence in CRC Stage 2 Using F1CDX Genomic Signatures

We developed a hypothetical diagnostic framework for clinical application in which
we combined the three distinct genomic signatures identified as the top performers in CRC
Stage 2 subjects (Figure 5A). The CRC stage and CMS1 subtype are determined by standard
procedures, whereas three genomic signatures (i.e., MG02PS03, MG02PS04 and MG02PS05)
can be assessed using the F1CDx assay. The comparison of the marker composition of these
genomic signatures revealed a high overlap between MG02PS03 and MG02PS04, being both
‘Mutation-Negative’ (Figure 2B), with 32 shared markers between them (Supplementary
Table S7 and Figure 5B). Hence, we reasoned that the shared markers in the MG02PS03
and MG02PS04 genomic signatures constitute a potential novel marker panel for tumor
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recurrence, with a reduction in the number of markers in the panel at minimum. To evaluate
the value of this novel 32-marker panel, we validated its performance using an independent
sample set (i.e., AACR GENIE BPC CRC 2.0-PUBLIC [22]). ROC–AUC analysis showed that
the 32-marker panel had high power to predict tumor recurrence in CRC Stage 2 subjects,
the empirical, binormal, and nonparametric testing metrics for the ROC curves registered
AUCs resulting in: (a.) 0.9524; (b.) 0.9524; and (c.) 0.9411; respectively (Figure 5C); there
were also Positive Predictive and Negative Predictive Values (PPV and NPV, respectively)
of PPV = 0.9737 and NPV = 0.9231. To gain a better understanding of the molecular
crosstalk represented in the 32-marker panel, we assessed the variable importance of each
contributing gene. We conducted a competing risks analysis for disease-free survival using
the CRC Stage 2 patients included in the AACR GENIE BPC CRC 2.0-PUBLIC dataset
(Figure 5D). Out of the 32 markers within this genomic signature, 25 were provided with
full clinicopathological information. For each subject, 2500 random forest survival trees
were generated. Subjects with progression-free survival events demonstrated higher error
rates than those exhibiting outcomes consistent with disease progression events. Of note,
the lower error rates in the disease progression events are associated with the high PPV
value registered for the 32-marker panel.
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Figure 5. Building and validating a diagnostic framework for tumor recurrence in CRC Stage
2 patients. The summarization of the top-performing genomic signatures resulted in a 32-gene
genomic signature that could predict tumor recurrence in CRC Stage 2 patients with high precision.
(A) Hypothetical diagnostic framework created by combining standard assessment (i.e., tumor staging
and CMS subtype) with the three top-performing genomic signatures in this study (MG02PS03,
MG02PS04 and MG02PS05). (B) Overlap analysis between the top-performing genomic signatures
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showed that 32 markers were shared between the MG02PS03 and MG02PS04 genomic signatures
representing a potential novel marker panel. (C) Validation of the 32-marker panel in an independent
dataset. ROC–AUC analysis showed high power to predict tumor recurrence in CRC Stage 2
subjects, with AUCs = 0.9524, 0.9524, and 0.9411 for empirical (black line), binormal (red line), and
nonparametric (blue line). (D) Random survival forests were implemented as a representation of the
32-marker panel using variable importance for AACR GENIE BPC CRC 2.0-PUBLIC according to the
outcomes for patients with either ‘Disease Progression’ (bottom) or those classified as ‘Progression-
Free’ (top). Left panel: y-axis represents the error rates for each iteration of survival tree generated,
while the x-axis represents the number of trees. Right panel: Variable importance is represented in
the x-axis. Positive (blue bars) and negative (red bars) represent upregulated and downregulated
genes in CRC, respectively.

3. Discussion

We have identified genomic signatures based on F1CDx to stratify the subgroups of
CRC patient populations. Our findings demonstrate the presence of diagnostic indications
on the genomic level that could address the lack of clinical presentations in the less aggres-
sive stages of CRC (i.e., Stage 2) that are more apparent in later stages, such as 3 or 4. Hence,
repositioning the F1CDx companion diagnostic to support clinical treatment decisions is
feasible, in the context of inferring the probabilities of recurrence and concerning indica-
tions for the scheduling of chemotherapeutics. The accuracy of the genomic signatures
ranges across CRC Stage 2, CRC Stage 3, and CRC Stages 2 and 3. Of note, we detected
the highest accuracy for the genomic signatures of CRC Stage 2, where clinicopathological
presentation does not suffice for treatment selection. Thus, genomic signatures provide a
usable tool for this clinical need by inferring recurrence with high precision.

Genomic signatures demonstrate the genomic differences between Stage 2 and Stage 3
in CRC and bear translational value in discerning the implementation of different treatment
approaches. This is analogous to previously published studies whereby recurrence rates
are investigated using circulating tumor DNA (ctDNA) primarily for CRC Stage 3 [13]. Our
work has focused primarily upon extending the diagnostic indications of the F1CDx to
profile the presence and/or absence of specific mutation patterns in CRC Stage 2 rather
than Stage 3. While other studies focus on more aggressive components of cancer [7,23], our
research addresses the clinical inadequacies and ambiguities associated with the treatment
of less advanced forms of those cancer types. A limitation of this approach is the restriction
of the potential discoverability of the specific mutations associated with F1CDx as our
genomic template. One of the clinical limitations that exists within this study is the
sparsity of adjuvant chemotherapy treatment data, whereby the analysis of direct patient
responsiveness to treatment will require further investigation. Nevertheless, we showed
that the F1CDx diagnostic platform can be repositioned as a prognostic tool by identifying
the previously unreported association between the mutational profile and CRC treatment
responsiveness.

Importantly, we summarized the top-performing genomic signatures in a panel con-
sisting of 32 genes identified via the intersection of genomic signatures for CRC Stage
2, results 3 and 4, and class 02. Panel summarization and combination with clinical pre-
sentation has several advantages regarding increasing the translational potential of the
findings. First, it enables the identification of the most precise set of markers for a particular
clinical application in a determined patient stratum. In our case, this was the prediction
of recurrence in CRC Stage 2 CMS1 subtype patients. Second, it enables a transfer to
another analytical platform—for example, multiplexed qPCR or targeted sequencing—in
which only the relevant genomic variants are assessed, thereby reducing costs and avoiding
potential regulatory and ethical conflicts when analyzing variants with no clinical rele-
vance. Third, it significantly reduces the computational requirements for data analysis and
the reporting of results, improving the turnaround time for the test in a clinical setting.
Validation efforts using an independent dataset resulted in very high precision (over 95%
accuracy) during the identification of CRC Stage 2 patients in which the tumor will recur.
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Further validation in subgroups of CRC Stage 2 patients stratified by MSS/MSI-H, tumor
position and treatment type may be of interest. However, such information was not avail-
able for all the samples in the validation cohort, notably reducing the number of subjects
per stratum and therefore the power of the ROC analysis. Hence, further studies targeting
these populations are warranted. Of note, the recurrence rates for the CRC Stage 2 and
Stage 3 patients included in this study were higher than the reported national average [24].
This observation, however, has no major impact on the results since the genomic signature
represents a personalized prediction approach.

The 32-gene panel included several genes involved in cancer progression and its puta-
tive response to treatment [25,26]. Moreover, our enrichment analysis revealed findings
consistent with these 32 genes that were pertinent to the changes in copy number associated
with colorectal cancer development and progression [23], gene mutations important as
prognostic biomarkers for colorectal cancer screening and diagnosis [26], and the upregula-
tion of anti-apoptotic proteins that encourage epithelial–mesenchymal cellular transition
(EMT, [23,25–27]).

4. Materials and Methods

A detailed description of the datasets and analytical methods is provided in the
Supplementary Material.

Patient population and data set. We obtained the patient data employed in our study
from the cBioPortal for Cancer Genomics using TCGA Research Network data. These
data provided the clinical and molecular attributes detailed in Supplementary Table S8.
Supplementary Table S2 outlines the patients’ baseline characteristics by CRC Stage 2.
Disease-free survival averaged 29.10 months for CRC Stage 2 and 23.56 months for Stage
3. The F1CDx assay included cancer-related alterations across 324 genes in solid tumor
DNA (Supplementary Table S1). The molecular profiles of 321/324 F1CDx target genes
(Supplementary Table S1) for 378 CRC cases were generated using GISTIC 2.0 (Genomic
Identification of Significant Targets in Cancer, version 2.0.22) software [28].

Data Preprocessing and Implementation. The data preprocessing utilized the tidyverse
R-package (version 1.3.2). For proper XAI algorithm function, we applied ‘One-Hot En-
coding’ to limit the variable levels. The mice R-package (version 3.15.0) imputed missing
values for variables with ≤40% missing data or data tied to survival aspects. The XAI
algorithm generated the ‘J-index’ attribute, quantitatively scoring the subgroup populations
critical to DFS outcomes. The J-Index mathematically defines each subgroup’s composition.
The results with the highest J-value were identified as the primary population subgroup
and each population subgroup yielded two classes. Classes 01 and 02 were denoted as
‘Mutation-Positive’ and ‘Mutation-Negative’, respectively. ‘Mutation-Positive’ was defined
as ‘present’ if a mutation exists in all the genes within that class 01 genomic signature.
‘Mutation-Negative’, or the class 02 genomic signature, was defined by the ‘absence’ of any
mutation of all the genes that define it. Following data preprocessing, multiple hypothesis
testing was performed using the Benjamini–Hochberg procedure with a false discovery
rate of Q ≤ 10%. The genomic signatures for each subgroup population were identified by
matching the observed patterns to specific clinical variables and values. The genomic signa-
tures were sorted by ascending p-value and collected. The sqldf R-package (version 0.4.11)
assessed the presence or absence of mutations within a genomic signature, functioning as a
unit in patient subgroups.

Disease-Free Survival Analysis. Kaplan–Meier survival analysis was performed using
the corresponding feature vectors for both the clinical indications and identified genomic
signatures from the top subgroup collections to assess the “disease-free survival” (DFS),
commonly referred to as recurrence, using the R-packages survival (version 3.5.0), survminer
(version 0.4.9), and ggsurvfit (version 0.2.1). Survival probabilities were estimated using
DFS as the event measured, and a p-value ≤ 0.05 was considered significant.

ROC-AUC Analytical Validation. The identified genomic signatures were assessed for
their performance using Receiver Operating Characteristic (ROC) analysis, conducted with
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the R-package ROCit (version 2.1.1) in the R environment (version 4.2.2). We calculated the
empirical, binormal, and non-parametric test functions for each ROC analysis to determine
which genomic signature(s) was most able to determine recurrence. To ensure a fair
comparison, we reported Area Under the Curve (AUC) values for all three ROC functions,
minimizing bias. We evaluated the likelihood of recurrence among patients using the
top-performing genomic signatures in the training cohort (i.e., TCGA cohort) (Figure 2).
In addition, we validated the 32-gene marker panel in the validation cohort (i.e., AACR
GENIE BPC CRC 2.0-PUBLIC; http://cbioportal.org/genie/ (accessed on 16 February
2024)) (Figure 5C).

Marker panel summarization and validation using independent cohort. CRC Stage 2 subjects
were compared according to the gene composition of their top three performing genomic
signatures (i.e., MG02PS03, MG02PS04, and MG02PS05) using UpSet plots, implemented
with the R-package VennDetail (version 1.14.0). Additionally, we validated a marker panel
consisting of 32 genes in an independent dataset (AACR GENIE BPC CRC 2.0-PUBLIC)
(Supplementary Table S7). The validation included ROC–AUC analysis, following the same
methodology outlined above.

Enrichment Analysis. R-package randomForestSRC (version 3.2.3) selection was predi-
cated on its survival forest algorithm. The threshold of ntree is 2500 for 29/32 prognostic
genes when used to assess the competing risks and variable importance of the downstream
analysis of the validation dataset (AACR GENIE BPC CRC 2.0-PUBLIC) [22].

5. Conclusions

Using a combination of next-generation sequencing and ultramodern computational
techniques, we have demonstrated the translatability of the FDA-approved F1CDx com-
panion diagnostic tool used to examine patients according to both their phenotype and
genomic signatures to assess the risk of recurrence in CRC Stage 2 patients with over
95% precision. Future studies are warranted to formally assess the performance of these
genomic signatures in larger populations according to regulatory guidelines.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms25063220/s1, References [29–44] are cited in the Supplementary
Materials.
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