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Abstract: Tissue inhibitor of metalloproteinases-3 (TIMP3) is vital in regulating several biological
processes. TIMP3 exerts antitumour effects via matrix metalloproteinase (MMP)-dependent and
MMP-independent pathways. Due to promoter methylation and miRNA binding, TIMP3 expression
has been observed to decrease in various cancers. Consequently, the migration and invasion of cancer
cells increases. Conflicting results have reported that expression levels of TIMP3 in primary and
advanced cancers are higher than those in healthy tissues. Therefore, the role of TIMP3 in cancer
biology and progression needs to be elucidated. This review provides an overview of TIMP3, from its
biological function to its effects on various cancers. Moreover, gynaecological cancers are discussed
in detail. TIMP3 has been associated with cervical adenocarcinoma as well as cancer development in
serous ovarian cancer and breast cancer metastasis. However, the relationship between TIMP3 and
endometrial cancers remains unclear. TIMP3 may be a useful biomarker for gynaecological cancers
and is a potential target for future cancer therapy.
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1. Introduction

In 2020, an estimated 10 million deaths from cancer were observed worldwide [1].
Numerous factors may contribute to the increased risk of developing cancer, including
exposure to environmental hormones and pollution, smoking, unhealthy diet, infection,
and ageing [2–4]. To identify the risk factors for cancer occurrence, predictors for early
diagnosis and individualised and effective treatment are crucial for comprehensive cancer
control. Developing effective screening strategies for asymptomatic cancer patients could
decrease the incidence of late-stage cancer and increase the effectiveness of cancer treatment.
However, the early detection of asymptomatic and developing cancers is challenging [5,6].
We are confronted with the formidable challenges of metastasis and chemoresistance,
which represent crucial impediments in the landscape of cancer therapy [7,8]. Identifying
the proteins involved in metastasis and chemoresistance would help identify potential
strategies against cancer.

Despite developing advancements in cancer management, cancer remains a crucial
public health and economic issue. For instance, epithelial ovarian cancer (EOC) is affecting
the lives of women in Asia as the number of new cases increases [9,10]. The combination
of surgical cytoreduction and chemotherapy (e.g., platinum and paclitaxel) or radiother-
apy, as the standard treatment for gynaecological cancer [11–13], in conjunction with
targeted agents or immune checkpoint inhibitors, has been implemented in the clinic.
Bevacizumab, a recombinant humanised monoclonal antibody against vascular endothe-
lial growth factor (VEGF), has been reported to improve progression-free survival (PFS)
in patients with gynaecological cancers [8,14,15] and overall survival (OS) in high-risk
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EOC populations [14,15] as well as patients with cervical cancer [16]. Pembrolizumab,
a humanised monoclonal antibody against the programmed cell death protein 1 (PD-1)
receptor, has been demonstrated to extend the median progression-free survival (PFS)
compared to chemotherapy alone in endometrial cancer [17]. Olaparib, a poly-ADP ribose
polymerase (PARP) inhibitor, has been reported to extend the PFS and OS in patients
with BRCA-mutated EOC [18]. Breakthrough evidence has shown that antibody–drug
conjugates targeting folic acid receptor alpha (FRα) are overexpressed in gynaecological
cancers [19]. Mirvetuximab soravtansine (MIRV), an antibody–drug conjugate (ADC) drug
against folate receptor α (FRα), was approved by the U.S. Food and Drug Administration
(FDA) for FRα-positive platinum-resistant EOC because MIRV successfully prolonged PFS
and OS [20].

Tissue inhibitor of metalloproteinases-3 (TIMP3) have been demonstrated to suppress
cancer progression in vitro and in vivo. The validity of this claim is still being discussed
in academic circles due to varying and inconclusive findings. This study examines the
role of TIMP3 in oncology, particularly in gynaecological cancers. Moreover, the biological
function of TIMP3 and its effects on cancer through its regulation of TIMP3 or related
molecules are discussed in this study.

2. TIMP3 Biology

TIMP3, a member of the tissue inhibitors of the metalloproteinase family, is approx-
imately 24 kDa in size, and its glycosylated TIMP3 is approximately 27 kDa [21]. Both
endogenous and exogenous molecules regulate TIMP3 expression. Leivonen et al. indi-
cated that transforming growth factor β-1 (TGF-β1) induced TIMP3 gene expression in
normal human gingival fibroblasts via Smad3/Smad4 signalling [22]. The same study
indicated that p38, ERK1/2, and Smad3 synergistically mediated the upregulation of
TIMP3 expression [22]. TIMP3 is known for a critical role in the regulation of extracellu-
lar matrix (ECM) stability through inhibiting various matrix metalloproteinases (MMPs),
A disintegrin and metalloproteases (ADAMs) as well as ADAM with thrombospondin
motifs (ADAMTSs) [23]. TIMP3 binds with 1:1 stoichiometry to the target, inhibiting
its activity [24]. An imbalance between TIMP3 and MMPs/ADAMs/ADAMTSs causes
various diseases, including myocardial infarction, Alzheimer’s disease, intervertebral disc
degeneration, impaired cognitive function, and tumour metastasis [25–29]. TIMP3 has
been demonstrated to regulate inflammation through the inhibition of ADAM17, which
indirectly decreases TNF [30]. TIMP3 promotes endothelial cell apoptosis by inhibiting
matrix-mediated tyrosine phosphorylation of FAK [31]. TIMP3 has been demonstrated to
inhibit cell proliferation and migration by inhibiting MMP-2 and MMP-3 inhibition [32].
TIMP3 suppresses neuronal differentiation by upregulating Notch signalling and suppress-
ing MMPs in neural stem cells [33]. Moreover, it exerts anti-angiogenic effects by inhibiting
cell proliferation and migration through inhibition of MMPs and interference with the bind-
ing of vascular endothelial growth factor (VEGF) and VEGF receptor 2 (VEGFR2) [34,35].
Cruz et al. detected a hypomethylated TIMP3 promoter in the placental samples from
patients with preeclampsia [36].

Furthermore, TIMP3 has been identified as a candidate biomarker for several diseases,
including diabetic nephropathy, myocardial infarction, and cancer progression [37–39].

3. Regulation of TIMP3

Various studies showed that the TIMP3 level in different cancer types was regulated
by other molecules (Figure 1), characterised by organ-specific gene expressions.
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Figure 1. The influence of different molecules on tissue inhibitor of metalloproteinases-3 (TIMP3) 
regulation in various cancers and its impact on patient outcomes. The symbol “↑” indicates 
upregulation, and the symbol “ ↓ ” indicates downregulation. The symbol “∆” indicates the 
controversial result. This was created with BioRender.com (accessed on 1 March 2024).  

3.1. Upregulation of TIMP3 
The molecules that upregulate TIMP3 expression are listed in Table 1. Oncostatin M, 

an Interleukin 6 (IL-6) family member, strongly activates TIMP3 mRNA expression in 
bovine chondrocytes [40]. Gatsios et al. found that oncostatin M decreased expression of 
TIMP3 mRNA in human synovial lining cells, while IL-1β upregulated TIMP3 mRNA 
level [41]. The expression level of TIMP3 mRNA was reduced in murine brain 
microvascular endothelial cells and rat astrocytes after treatment with IL-1β/tumour 
necrosis factor-alpha (TNFα) and Interferon gamma (IFNγ)/TNFα, respectively [42]. The 
discordant results of the studies above may be due to using different cell lines. Leco et al. 
showed that the mRNA level of TIMP3 was upregulated by TGF-β1, phorbol ester, 
dexamethasone, and epidermal growth factor (EGF) in mouse fibroblast [43]. Exogenous 
IL-27 upregulates TIMP3 mRNA expression in prostate cancer cells [44]. MPT0G013, an 
arylsulfonamide-based derivative, upregulates TIMP3 in HUVEC and colon cancer cells 
in mouse xenograft models [45]. Another aryl sulfonamide-based derivative, MPT0B390, 
transcriptionally upregulates TIMP3 levels in colon cancer cell lines and HUVEC by 
inhibiting the expression of the enhancer of zest homolog 2 (EZH2, a histone 
methyltransferase) [46]. 3-Deazaneplanocin A (DZNep), an EZH2 inhibitor, increased 
TIMP3 mRNA levels in liver cancer cells [47]. AG014699 and BSI-201, which are PARP-1 
inhibitors, increased TIMP3 protein levels in hepatocellular carcinoma cells [48]. Nuclear 
factor erythroid 2-related factor 2 (Nrf2) increased TIMP3 expression in mouse hepatic 
macrophages [49]. miR-29c upregulated TIMP3 expression in breast cancer cells by 
downregulating DNA methyltransferase 3B (DMNT3B, a DNA methyltransferase) [50]. 

  

Figure 1. The influence of different molecules on tissue inhibitor of metalloproteinases-3 (TIMP3)
regulation in various cancers and its impact on patient outcomes. The symbol “↑” indicates upregu-
lation, and the symbol “↓” indicates downregulation. The symbol “∆” indicates the controversial
result. This was created with BioRender.com (accessed on 1 March 2024).

3.1. Upregulation of TIMP3

The molecules that upregulate TIMP3 expression are listed in Table 1. Oncostatin M, an
Interleukin 6 (IL-6) family member, strongly activates TIMP3 mRNA expression in bovine
chondrocytes [40]. Gatsios et al. found that oncostatin M decreased expression of TIMP3
mRNA in human synovial lining cells, while IL-1β upregulated TIMP3 mRNA level [41].
The expression level of TIMP3 mRNA was reduced in murine brain microvascular en-
dothelial cells and rat astrocytes after treatment with IL-1β/tumour necrosis factor-alpha
(TNFα) and Interferon gamma (IFNγ)/TNFα, respectively [42]. The discordant results of
the studies above may be due to using different cell lines. Leco et al. showed that the mRNA
level of TIMP3 was upregulated by TGF-β1, phorbol ester, dexamethasone, and epidermal
growth factor (EGF) in mouse fibroblast [43]. Exogenous IL-27 upregulates TIMP3 mRNA
expression in prostate cancer cells [44]. MPT0G013, an arylsulfonamide-based derivative,
upregulates TIMP3 in HUVEC and colon cancer cells in mouse xenograft models [45]. An-
other aryl sulfonamide-based derivative, MPT0B390, transcriptionally upregulates TIMP3
levels in colon cancer cell lines and HUVEC by inhibiting the expression of the enhancer of
zest homolog 2 (EZH2, a histone methyltransferase) [46]. 3-Deazaneplanocin A (DZNep),
an EZH2 inhibitor, increased TIMP3 mRNA levels in liver cancer cells [47]. AG014699 and
BSI-201, which are PARP-1 inhibitors, increased TIMP3 protein levels in hepatocellular
carcinoma cells [48]. Nuclear factor erythroid 2-related factor 2 (Nrf2) increased TIMP3
expression in mouse hepatic macrophages [49]. miR-29c upregulated TIMP3 expression
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in breast cancer cells by downregulating DNA methyltransferase 3B (DMNT3B, a DNA
methyltransferase) [50].

Table 1. List of molecules involved in the upregulation of TIMP3 in various cancers.

Reference(s) Cells Molecules Effect

[45] Colon cancer mice model MPT0G013 Reduced tumour growth, metastasis,
and angiogenesis

[46] Colon cancer cells and
mice model MPT0B390 Reduced tumour growth and metastasis;

increased apoptotic population

[44] Prostate cancer cells IL-27 Anti-angiogenic effect

[47] Liver cancer cells DZNep Reduced cell proliferation; increased
total apoptosis

[48] Liver cancer cells AG014699 Cell proliferation and migration reduction;
increased apoptotic populationBSI-201

[51] Lung cancer cells and
mice model KLF4 Decreased cell migration and proliferation

[52] Lung cancer cells and
mice model IL-32γ Decreased cell proliferation; increased

apoptotic population

[50] Breast cancer cells miR-29c Decreased cell proliferation, migration,
and invasion

DZNep, 3-Deazaneplanocin A; IL-, Interleukin-; KLF4, Krüppel-like factor 4.

3.2. Downregulation of TIMP3

The molecules that downregulate TIMP3 expression are listed in Table 2. Human
proinsulin-connecting peptide (C-peptide), produced by pancreatic β-cell, downregulates
TIMP3 gene expression and upregulates MMP9 in human endometrial stromal cells via
a β-catenin-dependent pathway, which contributes to cellular migration and invasion [53].
With respect to TIMP3 downregulation, miRNA targeting and promoter methylation are
the determinant factors. TIMP3 has the extended 3′-untranslated region (UTR) contained
in the exon 5; hence, multiple miRNAs can target it, leading to the degradation of TIMP3
mRNA [54]. miR-21-targeted TIMP3 leads to decreased TIMP3 expression and upregulates
MMP2 and MMP9, enhancing capillary network formation in HUVEC cells [55]. Addition-
ally, exosomal miR-17-3p reduces the number of necrotic cardiomyocytes by negatively reg-
ulating the expression of TIMP3, which promotes H2O2-induced programmed necrosis in
primary cardiomyocytes [56]. miR-34b-5p is associated with bleomycin-induced pulmonary
fibrosis by decreasing TIMP3 expression [57]. In colon cancer cells growing in the liver,
cyclin-dependent kinase 8 reduces TIMP3 expression by inducing miR-181b [58]. In contrast,
miR-136 inhibits TIMP3 and protects neurocytes from hypoxia-induced apoptosis [59]. The
high-mobility group box-1 protein downregulates TIMP3 through upregulating miR-206,
which is involved in improving myocardial regeneration, angiogenesis, and collagenolytic
activity in failing hearts [60]. Furthermore, Su et al. provided an overview of various
miRNAs that target TIMP3 in cancer cells [61]. Methylation of tumour suppressor genes
is a common phenomenon in cancer, which silences genes and contributes to cancer pro-
gression. TIMP3 promoter methylation is often found in various cancers, including oral,
gastric, and cervical cancer [62–64].
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Table 2. List of molecules involved in the downregulation of TIMP3 in various cancers.

Reference(s) Cells Molecules Effect

[56] Colorectal cancer cells CDK8 Increased miR-181b and colon cancer growth
in the liver

[65] NSCLC cells KDM1A Increased cell proliferation, migration,
and invasion

[66] NSCLC (SCC) miR-17 Linked to the angiogenesis

[66] NSCLC (SCC) miR-20a ECM deregulation

[67] Breast cancer cells miR-21 Increased cell invasion

[68] Cervical cancer cells miR-21 Increased MMP2 and MMP9

[69] Endometrial cancer cells miR-103 Increased cell growth and invasion

[70] Liver cancer cells
and mice model miR-181b

Increased cell proliferation, migration,
invasion, and resistance to doxorubicin

Increased cell proliferation

[71]
Endometriosis cell line

Endometriosis-associated
ovarian cancer

miR-191 Increased cell proliferation and invasion

[72] Lung cancer cells miR-197-3p Increased angiogenesis

[73] Oral cancer cells miR-221 Resistance to Adriamycin

[74] Oral cancer cells miR-221 Resistance to doxorubicin

[75] Thyroid cancer miR-221/222 Increased aggressiveness

[76] Cervical cancer cells miR-221/222 Increased proliferation, migration,
and invasion

[77] Breast cancer cells miR-221/222 Decreased sensitivity to tamoxifen

[78] Bone cancer cells
and model miR-222-3p Increased proliferation and invasion

[79] Oesophagal cancer cells miR-373 Increased migration and invasion

[80] Colorectal cancer cells
and mice model miR-937-5p Increased proliferation, migration, invasion,

and angiogenesis

[81] Cervical cancer cells miR-G-10 Increased migration and invasion

CDK8, Cyclin-dependent kinase 8; ECM, extracellular matrix; MMP, matrix metalloproteinases; NSCLC, non-small
cell lung cancer; SCC, squamous cell carcinoma.

4. TIMP3 in Non-Gynaecological Cancers

The expression levels of TIMP3 in different non-gynaecological cancers are shown in
Table 3. TIMP3 has been described as a tumour suppressor in several human malignancies,
including liver, lung, thyroid, colon, and head and neck cancer. Cancer patients with
decreased TIMP3 expression have poor outcomes [65,82–84]. The antitumour effects of
TIMP3 depend on both MMP-dependent and MMP-independent pathways. MMPs released
from tumour and stromal cells play vital roles in dynamic ECM processing, angiogenesis,
and immune escape [85]. Cancer cells invade adjacent tissues and spread to other locations
thereafter via hematogenous or lymphatic spread [86]. Reduced TIMP3 expression is
thought to result from aberrant promoter hypermethylation [87,88] and miRNA regulation
in several tumour types [89,90].

4.1. Lung Cancer

Lung cancer is the most common cancer in the world. TIMP3 is considered an es-
sential molecule in lung cancer. TIMP3 expression levels in different tumour stages are
downregulated compared to those in the normal tissue group [66]. Mino et al. showed that
patients with low TIMP3 expression exhibited increased nodal metastases and poor 5-year
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OS rates [91]. KDM1A directly decreases TIMP3 promoter activity, improving lung cancer
progression and unfavourable outcomes [65]. The downregulation of TIMP3 expression
by miRNA-197-3p promotes angiogenesis [72]. Krüppel-like factor 4 (KLF4) is a transcrip-
tion factor that facilitates the transcription of the tumour suppressor TIMP3 by directly
binding to the TIMP3 promoter, inhibiting cancer progression in vitro and in vivo [51].
IL-32γ reduces lung cancer cell growth in vitro and in vivo by inhibiting the binding of
NFκB-dependent DNA (cytosine-5)-methyltransferase 1 (DNMT1) to TIMP3 promoter and
thus increased TIMP3 expression contributes to the inhibition of cancer growth [52].

4.2. Head and Neck Cancer

Su et al. showed that the mean plasma TIMP3 level was lower in oral squamous cell
carcinoma (OSCC) than in healthy controls [39]. TIMP3 levels in the plasma of patients with
OSCC are significantly associated with tumour status; however, they are not associated
with lymph node status, metastasis, or cell differentiation [39]. Dressing TIMP3 by DNA
methylation contributes to oral cancer metastasis [83,92]. miR-221 has been reported to
increase OSCC resistance to adriamycin and doxorubicin via TIMP3 inhibition [73,74].

Nevertheless, The Cancer Genome Atlas (TCGA) data show that the mRNA levels of
TIMP3 do not differ between OSCC tissues and normal tissues [39]. Kornfeld et al. have
demonstrated higher TIMP3 mRNA levels in the stroma of head and neck cancer cells than
those in normal epithelial cells [93]. Clinically, patients with higher levels of TIMP3 mRNA
in tumour-associated stromal areas have unfavourable clinical outcomes [93].

4.3. Liver Cancer

The TIMP3 mRNA level in liver cancer tissues is lower than in paired adjacent non-
cancerous tissues [94]. The positive TIMP3 has been correlated with less portal vein
invasion, nodal metastasis, better PFS and OS [94]. The upregulation of TIMP3 by DZNep is
associated with attenuating proliferation of liver cancer cells and an increased population of
apoptotic cells [47]. miR-181b decreases TIMP3 expression and promotes the tumourigenic
properties of liver cancer cells in vitro and in vivo [70].

4.4. Colorectal Cancer

In colorectal cancer (especially rectal cancer), patients with high-cytoplasmic-staining
levels of TIMP3 have a comparatively high 5-year survival rate [95]. Powe et al. found
that the mRNA signals of TIMP3 were frequently detected in the invasive edge of moder-
ately and poorly differentiated colorectal adenocarcinoma samples compared with well-
differentiated carcinomas and paired distant stroma tissues [96]. The lack of TIMP3 may
enhance the invasion ability of poorly differentiated tumours [96]. By upregulating TIMP3
expression, MPT0G013 and MPT0B390 suppress the proliferation and metastasis of colon
cancer tumours in vitro and in vivo [45,46]. Although MPT0B390 has been developed for
cancer therapy, its effects on gynaecological cancers have not yet been evaluated. TIMP3
also decreases the levels of CD44 and reduces the motility of colorectal cells [97]. Cir-
cFNDC3B, a circular RNA that sequesters miR-937-5p, leads to elevated expression levels
of TIMP3 and inhibits mouse colorectal cancer progression [80]. Conversely, Konishi et al.
indicated that the percentage of TIMP3 methylation was lower in primary colorectal cancer
with liver metastases than in primary cancer without liver metastases [98].

4.5. Thyroid Cancer

The methylation of TIMP3 has commonly been found in thyroid cancer tissues and
associated with extrathyroidal invasion and lymph node metastasis [99]. Yang et al. showed
TIMP3 is inversely correlated with miR-221/222, and the aggressive thyroid cancer tissues
have relatively low TIMP3 mRNA levels compared to non-aggressive cancer tissues [75].
According to TCGA data, the TIMP3 expression level is lower in thyroid cancer tissues
than in normal tissues and is correlated with the OS of thyroid cancer patients [100]. TIMP3
reduces thyroid cancer cell proliferation, migration, and invasion of thyroid cancer [82].
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Baldini et al. found that the TIMP3 mRNA signal in anaplastic thyroid carcinoma-derived
cell lines (CAL-62 and 8305C) is lost [101]. Based on Anania and Baldini’s results, different
cell lines show various TIMP3 mRNA levels, although these cell lines have the same
histology of thyroid carcinomas [82,101].

4.6. Bone Cancer

Guo et al. found that the expression of TIMP3 mRNA significantly decreases in
human osteosarcoma tissues compared to that in matched adjacent normal tissues [78].
The authors also found an inverse correlation between TIMP3 and miR-222-3p expression
levels. Downregulation of TIMP3 by miR-222-3p increases proliferation and osteosarcoma
cell metastasis [78]. TIMP3 overexpression improves the sensitivity of osteosarcoma cells
to cisplatin by inhibiting AKT activation and IL-6 production [102].

4.7. Gastric Cancer

The promoter methylation of TIMP3 has been detected in gastric carcinoma [103]. The
percentage of TIMP3 promoter methylation increases significantly among early, advanced,
and metastatic gastric cancer tissues compared to normal tissues [63]. George et al. indi-
cated that TIMP3 is consistently downregulated and hypermethylated in gastric cancer and
gastric stomach tissues of Helicobacter pylori-infected patients [104]. TIMP3 methylation
correlates with lymph node metastasis in patients with gastric cancer but not with OS [105].
Li et al. showed that the expression levels of TIMP3 are higher in normal tissue than in
gastric cancer tissue [106]. However, they found that gastric cancer patients with relatively
high levels of TIMP3 have unfavourable OS. Their results demonstrated that gastric cancer
cells become less aggressive after the downregulation of TIMP3 [106].

4.8. Breast Cancer

Breast cancer is the most common cancer in women. Some reports show that TIMP3
plays a vital role in breast cancer. Breast cancer patients with relatively high levels of TIMP3
mRNA have longer disease-free survival (DFS) and better responses to tamoxifen [107,108].
Bi et al. reported that the RNA-binding protein Musashi1 (Msi1) is upregulated, and
TIMP3 is downregulated in metastatic breast cancer [109]. Mechanistically, Msi1 is phys-
ically bound to 3′UTR of TIMP3, which results in TIMP3 suppression and then MMP9
upregulation [109]. The downregulation of miR-21 increases the expression level of TIMP3
and decreases cell invasion [67]. Reduced TIMP3 expression and increased CD44 expression
strongly correlate with nodal involvement in breast cancer patients [110]. Downregula-
tion of miR-221/222 correlates with increased TIMP3 expression and the sensitivity of
MCF-7 breast cancer cells to tamoxifen [77]. Işeri et al. found that TIMP3 is downreg-
ulated in docetaxel- and doxorubicin-resistant MCF-7 cell lines compared to sensitive
counterparts [111]. Moreover, primary breast tumour tissue shows a significantly higher
proportion of TIMP3 methylation than matched normal tissue [112]. Zhou et al. showed
that TIMP3 is activated by a high-mobility group (HMG) box-containing protein 1 (HBP1)
and then stabilised by phosphatase and tensin homolog (PTEN) [113]. Consequently, breast
cancer becomes sensitive to radiation and hormonal therapies [113]. TIMP3 may be a useful
biomarker for breast cancer prognosis and drug response. Nevertheless, transgenic mice
deficient in TIMP3 show delayed breast tumour development, progression, and decreased
incidence [114].

Various reports have been published regarding the effects of TIMP3 on other types
of cancer. The expression levels of TIMP3 in oesophagal cancer tissues and plasma from
patients are significantly lower than those in normal tissue and plasma from healthy
volunteers, respectively [79]. The downregulation of TIMP3 by miR-373 also increases the
proliferation of oesophagal cancer cells and metastatic ability [79]. Shen et al. noted that
TIMP3 levels are lower in cisplatin-resistant laryngeal carcinoma tissues and that patients
with common TIMP3 expression have unfavourable OS [115]. TIMP3 has been shown to
increase prostate cancer cell sensitivity to paclitaxel via mitochondrion-mediated caspase-3
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activation [116]. miR-21 has been shown to target TIMP3, is upregulated in various solid
and haematological malignancies, and is linked to high cell proliferation, high invasion,
anti-apoptosis, and metastatic potential by targeting the expression of several genes [117].

Although TIMP3 has tumour-suppressive potential, some studies have suggested
that TIMP3 promotes carcinogenesis [92,93]. Increased TIMP3 signal intensity has been
detected in pancreatic cancer tissues; however, the signal is weak in normal tissues [118].
Moreover, upregulated TIMP3 is associated with Thrombospondin 1 (THBS1) in the protein-
protein interaction network, and upregulated TIMP3 may be involved in the ECM–receptor
interaction signalling pathway during cancer metastasis [119,120].

Table 3. Studies report TIMP3 expression levels in non-gynaecological cancers.

Cancer Type Reference(s) Sub-Group Case No. TIMP3 Level Method

Lung cancer [65]

Normal 59 High

RNA-seq
(TCGA database)

T1 170 Low
T2 278 Low
T3 47 Low
T4 19 Low

[91]
Normal 87 (paired) High IHC analysis
Cancer 92 Low

Head and
neck cancer

[39]
Normal 64 11,289.9 ± 952.1 #

ELISA (Plasma)
Cancer 450 3845.0 ± 167.8 #

[83]
Normal 17 (paired) High Q-PCRCancer 17 Low

Normal 8 (paired) High
Western blotCancer 8 Low

Liver cancer [94]
Normal 20 (paired) High Q-PCRCancer 20 Low

Colorectal
cancer

[46]
Normal 159 High

GEPIACancer 257 Low

Normal 3 High IHC analysis
Cancer 3 Low

Thyroid cancer [82]
Normal 9 High

cDNA microarrayClassical 21 Low
Tall cell 10 Lowest

[75]
Non-aggressive

Aggressive

20 High
Q-PCR

20 Low

Bone cancer [78]
Normal 30 (paired) High Q-PCRCancer 30 Low

[102]

Cisplatin
sensitive
Cisplatin
resistant

4 High

IHC analysis

4 Low

Breast cancer [108] Normal 17 High IHC analysis
Metastatic 104 Low

Oesophagal
cancer

[79]
Normal 63 (paired) High Q-PCR

(Tissues)Cancer 63 Low

[79] Normal 39 High Q-PCR (Plasma)Cancer 63 Low

Pancreatic cancer [118]
Normal 10 8 (80.0%) positive, low IHC analysis
Cancer 75 55 (73.3%) positive, high

Only Su et al. [61] reported the number of ELISA results and showed the cutoff value. The results of IHC, Q-PCR,
Western blotting, and array analyses did not show the number in the research reports. GEPIA, gene expression
profiling interactive analysis; IHC, immunohistochemistry; Q-PCR, quantitative polymerase chain reaction; ELISA,
enzyme-linked immunosorbent assay; # mean ± standard deviation, the unit is pg/mL.
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5. TIMP3 in Gynaecological Cancers

These studies have demonstrated the effects of TIMP3 on cancers through different
mechanisms; however, discussions of TIMP3 in gynaecological cancers are rare. Table 4
shows the expression levels of TIMP3 in various gynaecological cancers.

5.1. Cervical Cancer

The incidence of cervical cancer has declined since the advancement of screening
strategies and the worldwide promotion of papillomavirus (HPV) vaccination. HPV
vaccination and cervical cancer screening can effectively help reduce the risk of contracting
cervical cancer and improve the likelihood of finding cervical cancer at an early stage,
respectively [121,122]. Squamous cell carcinoma (SCC) and adenocarcinoma are the most
common types of cervical cancer [123]. Previous studies have shown that patients with
adenocarcinoma have worse OS than those with SCC [124–126].

The proportion of methylated TIMP3 in cervical cancer is significantly higher than that
in normal cervical tissue [127,128]. Studies have reported that TIMP3 was more frequently
methylated in cervical adenocarcinoma than in SCC (53.3–63.0% vs. 5.0–8.1%) [128–130].
However, Siegel et al. reported no significant differences in the TIMP3 methylation index
between SCC and normal tissues [130]. Based on previous studies, TIMP3 methylation is
a potential biomarker to distinguish cervical adenocarcinoma from SCC.

Some studies have indicated that the expression level of TIMP3 is lower in cervical
intraepithelial neoplasia and cancer tissues than in normal samples [131–134] (Table 4).
According to the TCGA data, TIMP3 expression is lower in cancer samples than in normal
samples [131]. Compared to patients with lower expression levels of TIMP3 in cervical
cancer tissues, those with higher TIMP3 expression correlate with a lower survival rate;
however, no significance has been observed [131].

An inverse correlation between miR-21 and TIMP3 expression has been demonstrated
in cervical cancer samples [134]. Moreover, Shishodia et al. reported that the expression
level of miR-21 increases during the transition from low-grade squamous intraepithelial
lesions (LSIL) to high-grade squamous intraepithelial lesions (HSIL) and invasive cancer,
corresponding to a decreased level of TIMP3 [68]. miR-221/222 have been demonstrated to
target the 3′ untranslated regions (UTR) of TIMP3 in cervical cancer and lead to an increase
in the levels of MMP2 and MMP9, as well as the promotion of cell migration and invasion
in cervical cancer [76]. miR-G-10 represses TIMP3 expression, preventing the increased
migration and invasiveness of cervical cancer cells [81].

A study with contrasting findings has indicated that TIMP3 is upregulated in cervical
cancer cell lines (HPV-related QG-U cells and HPV-negative Yumoto cells) and cervical
SCC tissues [135]. Shaker et al. created a model to induce LSIL, HSIL, and invasive
cervical cancer by introducing genetic material into human cervical keratinocytes (HCK).
They noticed that the expression levels of TIMP3 increase during the carcinogenic process
in normal cervical cells compared with parental HCK cells. Furthermore, the strong
immunoreactivity of TIMP3 has been detected in both nuclear and cytoplasmic patterns in
HSIL and invasive cervical cancer tissues [135].

The differences between these findings may be due to different detection methods for
TIMP3 and samples. However, further studies are required to confirm the role of TIMP3 in
cervical carcinogenesis and cancer progression.
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Table 4. The expression levels of TIMP3 in different gynaecological cancerous tissues.

Cancer Type Reference(s) Sub-Group Cases No. TIMP3 Level Method

Cervical
cancer

[130]
Normal 33 High

Q-PCRCIN 23 Low
CC 8 Lowest

[134]

Normal
Adjacent

non-neoplastic
CC

40 (Paired) Highest
Q-PCR and

Western blot40 High

40 Lowest

Normal 3 High Q-PCR (TCGA
database)CESC 305 Low

[132]
Normal 3 High cDNA

arraysCC 3 Low

[135]
LSIL 12 Weak

IHC analysisHSIL 11 Moderate to strong
ISCC 8 Strong

Ovarian
cancer [136]

Simple cysts 30 285 (148–368) *

MFBBI
(serum)

Endometrial 30 223 (143–276) *
ovarian cysts

Serous ovarian
cancer 44 138 (67–198) *

[71]
Healthy controls 12 High

Q-PCR and
Western blot

Endometriomas 12 Low
EAOC 12 Lowest

[137]
Primary 419 Low mRNA microarray

(3 public datasets)Metastatic SOC 145 High

Normal 8 Low
Q-PCRPrimary SOC 30 High

Metastatic SOC 29 Highest

[138]
Benign 9 Low

IHC analysisBorderline 9 High
Malignant 28 Highest

[139]
Normal 22 0.13 ± 0.67 #,$

Q-PCRBenign 21 0.85 ± 0.75 #,$

Malignant 60 0.87 ± 0.46 #,$

[140]
Normal 3 Low

Q-PCRHGSOC 3 High

[141]
Benign 8 Low IHC analysis

SOC 26 High

Endometrial
cancer

[142]
Benign 1 High cDNA

expression
arrayWDEAC 2 Low

[143]
Adenocarcinoma 27 Strong

IHC analysisSquamous 1 Strong
Clear cell 1 Strong

Cymbaluk-Płoska et al. [136] and Hu et al. [139] presented interval data, whereas other studies have not shown
quantitative data of IHC, Q-PCR, Western blotting, and array. CIN, cervical intraepithelial neoplasia; CC, cervical
cancer; CESC, cervical squamous cell carcinoma; LSIL, low-grade squamous intraepithelial lesions; HSIL, high-
grade squamous intraepithelial lesions; ISCC, invasive squamous cell carcinoma; Q-PCR, quantitative polymerase
chain reaction; IHC, immunohistochemistry; MFBBI, multiplex fluorescent bead-based immunoassays; SOC,
serous ovarian cancer; EAOC, endometriosis-associated ovarian cancer (8 endometrioid and 4 clear cell tumour);
HGSOC, high-grade serous ovarian cancer; * mean of the range, the unit is pg/mL; # mean ± standard deviation.
$ The ratios of TIMP3/β-actin were used to represent the semiquantitative expression of TIMP3.
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5.2. Epithelial Ovarian Cancer (EOC)

EOC is a silent killer that is difficult to recognise in its early stages and poses a global
threat to women. Patients with advanced-stage EOC had significantly worse OS than those
with the early-stage disease. In the United States, ovarian cancer is the fifth leading cause
of death in female malignancies, and those with distant metastases have the worst survival
rates [144]. EOC is a heterogeneous disease that manifests histologically, molecularly,
and clinically. Serous carcinoma is the most common histology worldwide [145,146],
whereas the proportion of clear-cell carcinomas (CCC) is relatively higher (15–20%) in
Asian countries [145,147,148].

The mean concentration of the TIMP3 protein in the sera of patients with EOC is
significantly lower than that in patients with benign ovarian cysts or endometrial cysts [136].
Higher TIMP3 levels are inversely correlated with ascites in patients with advanced stages
of ovarian cancer [119]. Dong et al. showed that the expression level of TIMP3 is inversely
correlated with miR-191 expression [71]. The expression level of TIMP3 is the highest,
and miR-191 lowest in healthy control samples [71]. Patients with higher TIMP3 have an
8.9-month increase in OS compared with those with lower TIMP3 levels [136]. Hakamy et al.
indicated that patients with EOC with relatively high TIMP3 expression have prolonged
disease-specific survival compared to patients with common TIMP3 expression [149].
TIMP3 can be induced by physcion 8-O-β-glucopyranoside (PG) and lead to the suppression
of the migration and invasion of serous EOC cells [150]. Moreover, PG induces other anti-
cancer molecules. However, the precise mechanism by which TIMP3 is directly upregulated
by PG is not well understood. Silencing Snail expression increases the expression level of
TIMP3, leading to decreased proteolytic activity of MMP2 and MMP9, whereas normalised
expression of Snail inhibits TIMP3 expression, resulting in increased activity of MMP2 and
MMP9 in EOC [151]. The expression level of the TIMP3 gene can be induced in both ovarian
stromal cells and cancer cells by TGFβ-1, which regulates cell proliferation, migration, and
differentiation [137]. These results were consistent with the role of TIMP3 as a cancer
suppressor, as mentioned earlier.

TIMP3 gene expression dynamics have been observed during the dormancy-to-
recurrence transition induced by VEGF/doxycycline (DOX) or DOX in vitro and in vivo
models, respectively [120]. When serous EOC cell dormancy was induced with DOX,
TIMP3 expression increased in the cancer cells. After the withdrawal of DOX, the EOC
cells underwent recurrent growth and an increase in the TIMP3 expression was detected
in the DNA methylation [120]. In addition, the mRNA and protein levels of TIMP3 were
higher in carboplatin/paclitaxel-induced senescent primary serous EOC cells than in young
cells [152]. Dormancy and senescence are critical cellular stress responses that contribute to
therapy resistance and tumour recurrence [153]. Thus, TIMP3 may be a key molecule in
cancer cell dormancy and senescence.

Controversial results have reported that TIMP3 tends to be highly expressed in EOC
patients at higher pathological stages [137,151–155]. Januchowski et al. reported that
higher expression levels of TIMP3 were detected in cisplatin-resistant A2780 cell lines
than that in their sensitive counterparts [156]. Cheon et al. showed an inverse correlation
between TIMP3 expression and unfavourable outcomes in patients with serous EOC [137].
Furthermore, they also found that TIMP3 was highly enriched in metastatic tissues com-
pared to that in primary tumours [137]. Lima et al. reported strong immunoreactive
signals of TIMP3 in the EOC group compared to borderline and benign neoplasms [138].
Their patients with EOC and higher TIMP3 expression had shorter OS (94.5 months vs.
156.2 months) [138]. Hu et al. showed that malignant and benign tissues express higher
levels of TIMP3 than to normal tissues [139]. Zhang et al. reported that the expression
levels of TIMP3 mRNA are significantly upregulated in serous EOC samples compared
with those in normal ovaries [140]. The protein levels of TIMP3 in the culture supernatants
of TOV-21G (CCC histology) and TOV-112D (endometrioid histology) cells, both of which
are from grade 3 tumours, were detected using a guided-mode resonance (GMR) bioassay
detection system [154]. Significant upregulation of TIMP3 expression was observed in FIGO
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Stage III and Grade 3 EOC; however, it was not found in benign ovarian samples [141].
Methylated TIMP3 has been identified in various cancers. However, Imura et al. showed
that partial methylation of TIMP3 was observed in two EOC cell lines, and the remaining
11 EOC cell lines (different types) exhibited TIMP3 demethylation [157]. TIMP3 has been
identified as an ovarian cancer-specific biomarker of cancer-associated fibroblasts (CAFs)
associated with cancer progression, chemoresistance, and poor prognosis by integrating
several bioinformatic approaches [155].

Based on previous reports, the expression levels of TIMP3 in most serous EOC tissues
are higher than in normal tissues. However, the correlation between TIMP3 expression and
cancer progression in EOC remains inconsistent. Owing to the lack of investigation into
TIMP3 expression in ovarian CCC, further studies are necessary.

5.3. Endometrial Cancer

Most endometrial cancers are diagnosed at the early stage (I and II) in postmenopausal
women with abnormal uterine bleeding [142]. New endometrial cancer cases have in-
creased worldwide since 2020 [144,145]. Few studies have focused on the role of TIMP3 in
endometrial development.

Smid-Koopman et al. revealed that TIMP3 expression was downregulated in two
well-differentiated endometrioid adenocarcinoma samples compared to benign human
endometrial tissue [158] (Table 4). miR-103 and miR-181a have been demonstrated to
repress the expression levels of TIMP3 through directly binding to TIMP3’s 3′-UTR in
Ishikawa cells and HEC-1B cells [69,90]. Yu et al. reported that the proliferation and
invasiveness of endometrial cancer cells are improved after transfection with anti-miR-
103 [69]. In contrast, Di Nezza et al. found that all endometrial carcinoma tissues of all
histological grades show strong immunoreactivity for TIMP3, and myometrial invasion is
present in 78% of patients [143]. Further studies with larger sample sizes are required to
elucidate the role of TIMP3 in endometrial cancer.

6. Conclusions and Perspectives

TIMP3 is important in ECM remodelling and involves inflammation, cardiovascular
diseases, neurological disorders, and cancer progression. Most studies have shown that
TIMP3 is involved in tumour inhibition in most cancer types. Higher TIMP3 levels have
been detected in normal human tissues than in cancerous tissues. Cancer patients with
lower TIMP3 levels have less favourable outcomes. Nevertheless, controversial results have
been observed in gastric, pancreatic, cervical, and ovarian cancer. This overview provides
fundamental knowledge of the biological functions of TIMP3 in cancer cells (Figure 2) and
summarises the mechanical interactions between different cancers and TIMP3. However,
the correlations between vaginal or vulvar cancer and TIMP3 are not included in this review
because of a lack of relevant studies. The expression levels of TIMP3 in cervical cancer
are lower based on in vitro and clinical studies. The expression levels of TIMP3 in serous
EOC tissues are higher than those in healthy tissues; however, the underlying mechanism
remains unclear. Only one study with a larger sample size (n = 29) indicated that higher
expression levels of TIMP3 had been detected in endometrial cancer tissues [143]. TIMP3
may act as a biomarker of cancer prognosis and drug response. Reports have suggested
that the threshold or cut-off value of TIMP3 levels and concentrations vary across different
types of cancer. Therefore, the upcoming issues are standardising detection methods and
validating the findings in more clinical samples.

As mentioned earlier, TIMP3 has classically been considered a tumour suppressor
protein. Therefore, stimulating TIMP3 expression in cancer cells may enhance ther-
apeutic efficacy. For instance, TIMP3 may be upregulated by molecules (e.g., IL-27,
DZNep and MPT0B390) or compounds from natural products. Green tea polyphenols and
epigallocatechin-3-gallate elevate TIMP-3 expression by reducing the protein levels of EZH2
and class I histone deacetylases, which attenuate the migration of breast cancer cells [159].
KHBJ-9B, a butanol fraction extracted from a mixture of two oriental herbs, increases
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TIMP3 levels and decreases the expression of matrix proteinases in human osteoarthritic
cartilage cultures [160]. The crude acetone extract of Momordica balsamina increased TIMP3
expression in colorectal cancer, reducing migration ability [161]. Purified molecules or
natural products can be used as adjuvants for cancer therapy.
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Figure 2. The regulation and the effects of TIMP3 in cancer cells. The molecules with the green
icon increased the expression levels of TIMP3, while the molecules with the brown icon decreased
the levels. ADAMs, A disintegrin and metalloproteases; ADAMTSs, ADAM with thrombospondin
motifs; CDK8, Cyclin-dependent kinase 8; DXMS, dexamethasone; DZNep, 3-Deazaneplanocin
A; ECM, extracellular matrix; EGF, epidermal growth factor; EZH2, enhancer of zeste homolog 2;
GF, growth factor; HBP1, high mobility group (HMG) box-containing protein 1; IL-, interleukin;
KLF4, Krüppel-like factor 4; MMPs, matrix metalloproteinases; Msi1, musashi1; PG, physcion 8-O-β-
glucopyranoside; PE, phorbol ester; PTEN, phosphatase and tensin homolog; RTK, receptor tyrosine
kinases; TGF-β1, transforming growth factor β-1; TIMP3, tissue inhibitor of metalloproteinases-3;
VEGF, vascular endothelial growth factor; VEGFR2, VEGF receptor 2. The symbol “↑” indicates the
signal transition or binding, and the symbol “⊥” shows the blockage of binding or activation. The
symbol “?” means the regulatory mechanism is unknown. Created with BioRender.com (accessed on
10 March 2023).

Nanotechnology has advanced applications in cancer diagnosis and therapy [162,163].
Nanoparticles can be modified with specific targeting molecules and loaded with specific
chemicals to improve their therapeutic efficacy [164,165]. Zhou et al. developed a multifunc-
tional nanoparticle that co-delivered a miR-221/222 inhibitor and paclitaxel to MDA-MB-
231 breast cancer cells [166]. The expression levels of p27Kip1 and TIMP3 are upregulated
in cancer cells due to the inhibition of miR-221/222, which enhances the therapeutic efficacy
of paclitaxel [166]. Li et al. developed copper-olsalazine (Cu-Olsa)@hyaluronic acid (HA)
nanoparticles that caused COX-2 downregulation, reactive oxygen species generation, and
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TIMP3 upregulation in colorectal cancer cells [166]. Cu-Olsa@HA nanoparticles signifi-
cantly inhibited colorectal cancer proliferation and metastasis in vitro and in vivo [167].
Hence, developing smart nanoparticles targeting TIMP3-related processes may be a strategy
for efficiently treating various cancers.
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111. Işeri, O.D.; Kars, M.D.; Arpaci, F.; Gündüz, U. Gene expression analysis of drug-resistant MCF-7 cells: Implications for relation to
extracellular matrix proteins. Cancer Chemother. Pharmacol. 2010, 65, 447–455. [CrossRef]

112. Barekati, Z.; Radpour, R.; Lu, Q.; Bitzer, J.; Zheng, H.; Toniolo, P.; Lenner, P.; Zhong, X.Y. Methylation signature of lymph node
metastases in breast cancer patients. BMC Cancer 2012, 12, 244. [CrossRef]

113. Zhou, Y.; Zhang, T.; Wang, S.; Yang, R.; Jiao, Z.; Lu, K.; Li, H.; Jiang, W.; Zhang, X. Targeting of HBP1/TIMP3 axis as a novel
strategy against breast cancer. Pharmacol. Res. 2023, 194, 106846. [CrossRef]

114. Jackson, H.W.; Hojilla, C.V.; Weiss, A.; Sanchez, O.H.; Wood, G.A.; Khokha, R. Timp3 deficient mice show resistance to developing
breast cancer. PLoS ONE 2015, 10, e0120107. [CrossRef]

115. Shen, X.; Gao, X.; Li, H.; Gu, Y.; Wang, J. TIMP-3 Increases the Chemosensitivity of Laryngeal Carcinoma to Cisplatin via
Facilitating Mitochondria-Dependent Apoptosis. Oncol. Res. 2018, 27, 73–80. [CrossRef] [PubMed]

116. Deng, X.; Bhagat, S.; Dong, Z.; Mullins, C.; Chinni, S.R.; Cher, M. Tissue inhibitor of metalloproteinase-3 induces apoptosis in
prostate cancer cells and confers increased sensitivity to paclitaxel. Eur. J. Cancer 2006, 42, 3267–3273. [CrossRef] [PubMed]

117. Feng, Y.H.; Tsao, C.J. Emerging role of microRNA-21 in cancer. Biomed. Rep. 2016, 5, 395–402. [CrossRef] [PubMed]
118. Jones, L.E.; Humphreys, M.J.; Campbell, F.; Neoptolemos, J.P.; Boyd, M.T. Comprehensive analysis of matrix metalloproteinase

and tissue inhibitor expression in pancreatic cancer: Increased expression of matrix metalloproteinase-7 predicts poor survival.
Clin. Cancer Res. 2004, 10, 2832–2845. [CrossRef] [PubMed]

119. Elgundi, Z.; Papanicolaou, M.; Major, G.; Cox, T.R.; Melrose, J.; Whitelock, J.M.; Farrugia, B.L. Cancer Metastasis: The Role of the
Extracellular Matrix and the Heparan Sulfate Proteoglycan Perlecan. Front. Oncol. 2019, 9, 1482. [CrossRef] [PubMed]

120. Lyu, T.; Jia, N.; Wang, J.; Yan, X.; Yu, Y.; Lu, Z.; Bast, R.C., Jr.; Hua, K.; Feng, W. Expression and epigenetic regulation of
angiogenesis-related factors during dormancy and recurrent growth of ovarian carcinoma. Epigenetics 2013, 8, 1330–1346.
[CrossRef]

121. Chen, C.C.; Lai, C.H.; Chang, C.L.; Cheng, W.F.; Pwu, R.F.; Tsai, J.; Wang, P.H.; Whang-Peng, J.; Lai, G.M. Managing the transition
in cervical screening methods for Taiwan: Policy recommendations and perspectives. J. Formos. Med. Assoc. 2023, 122, 1213–1218.
[CrossRef]

122. Wirtz, C.; Mohamed, Y.; Engel, D.; Sidibe, A.; Holloway, M.; Bloem, P.; Kumar, S.; Brotherton, J.; Reis, V.; Morgan, C. Integrating
HPV vaccination programs with enhanced cervical cancer screening and treatment, a systematic review. Vaccine 2022, 40 (Suppl.
S1), A116–A123. [CrossRef]

123. Chakravarthy, A.; Reddin, I.; Henderson, S.; Dong, C.; Kirkwood, N.; Jeyakumar, M.; Rodriguez, D.R.; Martinez, N.G.; McDermott,
J.; Su, X.; et al. Integrated analysis of cervical squamous cell carcinoma cohorts from three continents reveals conserved subtypes
of prognostic significance. Nat. Commun. 2022, 13, 5818. [CrossRef]

124. Lee, J.-Y.; Kim, Y.T.; Kim, S.; Lee, B.; Lim, M.C.; Kim, J.-W.; Won, Y.-J. Prognosis of cervical cancer in the era of concurrent
chemoradiation from national database in Korea: A comparison between squamous cell carcinoma and adenocarcinoma. PLoS
ONE 2015, 10, e0144887. [CrossRef]

125. Yokoi, E.; Mabuchi, S.; Takahashi, R.; Matsumoto, Y.; Kuroda, H.; Kozasa, K.; Kimura, T. Impact of histological subtype
on survival in patients with locally advanced cervical cancer that were treated with definitive radiotherapy: Adenocarci-
noma/adenosquamous carcinoma versus squamous cell carcinoma. J. Gynecol. Oncol. 2017, 28, e19. [CrossRef]

126. Liu, P.; Ji, M.; Kong, Y.; Huo, Z.; Lv, Q.; Xie, Q.; Wang, D.; Chen, B.; Wang, H.; Cui, Z. Comparison of survival outcomes
between squamous cell carcinoma and adenocarcinoma/adenosquamous carcinoma of the cervix after radical radiotherapy and
chemotherapy. BMC Cancer 2022, 22, 326. [CrossRef]

127. Widschwendter, A.; Müller, H.M.; Fiegl, H.; Ivarsson, L.; Wiedemair, A.; Müller-Holzner, E.; Goebel, G.; Marth, C.; Widschwendter,
M. DNA methylation in serum and tumors of cervical cancer patients. Clin. Cancer Res. 2004, 10, 565–571. [CrossRef]

128. Wentzensen, N.; Sherman, M.E.; Schiffman, M.; Wang, S.S. Utility of methylation markers in cervical cancer early detection:
Appraisal of the state-of-the-science. Gynecol. Oncol. 2009, 112, 293–299. [CrossRef]

129. Kang, S.; Kim, J.W.; Kang, G.H.; Lee, S.; Park, N.H.; Song, Y.S.; Park, S.Y.; Kang, S.B.; Lee, H.P. Comparison of DNA hypermethy-
lation patterns in different types of uterine cancer: Cervical squamous cell carcinoma, cervical adenocarcinoma and endometrial
adenocarcinoma. Int. J. Cancer 2006, 118, 2168–2171. [CrossRef] [PubMed]

130. Siegel, E.M.; Riggs, B.M.; Delmas, A.L.; Koch, A.; Hakam, A.; Brown, K.D. Quantitative DNA methylation analysis of candidate
genes in cervical cancer. PLoS ONE 2015, 10, e0122495. [CrossRef]

131. Dudea-Simon, M.; Mihu, D.; Pop, L.A.; Ciortea, R.; Malutan, A.M.; Diculescu, D.; Ciocan, C.A.; Cojocneanu, R.M.; Simon, V.;
Bucuri, C.; et al. Alteration of Gene and miRNA Expression in Cervical Intraepithelial Neoplasia and Cervical Cancer. Int. J. Mol.
Sci. 2022, 23, 6054. [CrossRef] [PubMed]

132. Vazquez-Ortiz, G.; Pina-Sanchez, P.; Vazquez, K.; Duenas, A.; Taja, L.; Mendoza, P.; Garcia, J.A.; Salcedo, M. Overexpression of
cathepsin F, matrix metalloproteinases 11 and 12 in cervical cancer. BMC Cancer 2005, 5, 68. [CrossRef]

133. Yang, D.; Fan, L.; Song, Z.; Fang, S.; Huang, M.; Chen, P. The KMT1A/TIMP3/PI3K/AKT circuit regulates tumor growth in
cervical cancer. Reprod. Biol. 2022, 22, 100644. [CrossRef]

134. Zhang, Z.; Wang, J.; Wang, X.; Song, W.; Shi, Y.; Zhang, L. MicroRNA-21 promotes proliferation, migration, and invasion of
cervical cancer through targeting TIMP3. Arch. Gynecol. Obstet. 2018, 297, 433–442. [CrossRef] [PubMed]

https://doi.org/10.1007/s00280-009-1048-z
https://doi.org/10.1186/1471-2407-12-244
https://doi.org/10.1016/j.phrs.2023.106846
https://doi.org/10.1371/journal.pone.0120107
https://doi.org/10.3727/096504018X15201099883047
https://www.ncbi.nlm.nih.gov/pubmed/29523219
https://doi.org/10.1016/j.ejca.2006.07.003
https://www.ncbi.nlm.nih.gov/pubmed/16950615
https://doi.org/10.3892/br.2016.747
https://www.ncbi.nlm.nih.gov/pubmed/27699004
https://doi.org/10.1158/1078-0432.CCR-1157-03
https://www.ncbi.nlm.nih.gov/pubmed/15102692
https://doi.org/10.3389/fonc.2019.01482
https://www.ncbi.nlm.nih.gov/pubmed/32010611
https://doi.org/10.4161/epi.26675
https://doi.org/10.1016/j.jfma.2023.06.018
https://doi.org/10.1016/j.vaccine.2021.11.013
https://doi.org/10.1038/s41467-022-33544-x
https://doi.org/10.1371/journal.pone.0144887
https://doi.org/10.3802/jgo.2017.28.e19
https://doi.org/10.1186/s12885-022-09401-x
https://doi.org/10.1158/1078-0432.CCR-0825-03
https://doi.org/10.1016/j.ygyno.2008.10.012
https://doi.org/10.1002/ijc.21609
https://www.ncbi.nlm.nih.gov/pubmed/16331610
https://doi.org/10.1371/journal.pone.0122495
https://doi.org/10.3390/ijms23116054
https://www.ncbi.nlm.nih.gov/pubmed/35682732
https://doi.org/10.1186/1471-2407-5-68
https://doi.org/10.1016/j.repbio.2022.100644
https://doi.org/10.1007/s00404-017-4598-z
https://www.ncbi.nlm.nih.gov/pubmed/29177591


Int. J. Mol. Sci. 2024, 25, 3191 20 of 21

135. Shaker, M.; Yokoyama, Y.; Mori, S.; Tsujimoto, M.; Kawaguchi, N.; Kiyono, T.; Nakano, T.; Matsuura, N. Aberrant expression of
disintegrin-metalloprotease proteins in the formation and progression of uterine cervical cancer. Pathobiology 2011, 78, 149–161.
[CrossRef]

136. Cymbaluk-Płoska, A.; Chudecka-Głaz, A.; Pius-Sadowska, E.; Machaliński, B.; Menkiszak, J.; Sompolska-Rzechuła, A. Suitability
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