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Abstract: This work aimed to identify the chemical compounds of Cinnamomum burmannii leaf
essential oil (CBLEO) and to unravel the antibacterial mechanism of CBLEO at the molecular level for
developing antimicrobials. CBLEO had 37 volatile compounds with abundant borneol (28.40%) and
showed good potential to control foodborne pathogens, of which Staphylococcus aureus had the greatest
inhibition zone diameter (28.72 mm) with the lowest values of minimum inhibitory concentration
(1.0 µg/mL) and bactericidal concentration (2.0 µg/mL). To unravel the antibacterial action of CBLEO
on S. aureus, a dynamic exploration of antibacterial growth, material leakage, ROS formation, protein
oxidation, cell morphology, and interaction with genome DNA was conducted on S. aureus exposed
to CBLEO at different doses (1/2–2×MIC) and times (0–24 h), indicating that CBLEO acts as an
inducer for ROS production and the oxidative stress of S. aureus. To highlight the antibacterial
action of CBLEO on S. aureus at the molecular level, we performed a comparative association
of ROS accumulation with some key virulence-related gene (sigB/agrA/sarA/icaA/cidA/rsbU)
transcription, protease production, and biofilm formation in S. aureus subjected to CBLEO at different
levels and times, revealing that CBLEO-induced oxidative stress caused transcript suppression of
virulence regulators (RsbU and SigB) and its targeted genes, causing a protease level increase destined
for the biofilm formation and growth inhibition of S. aureus, which may be a key bactericidal action.
Our findings provide valuable information for studying the antibacterial mechanism of essential oil
against pathogens.

Keywords: Cinnamomum burmannii essential oil; antibacterial action; oxidative stress; virulence gene;
transcriptional expression; biofilm; Staphylococcus aureus

1. Introduction

Food is rich in nutrients and suitable for the growth and reproduction of pathogens.
Microbial food spoilage and foodborne disease remain major issues for public health
worldwide [1]. Synthetic preservatives, such as tertiary butylhydroquinone (TBHQ), buty-
lated hydroxytoluene (BHT), and several organic acids and salts, have been widely applied
in the food industry to guarantee both food safety and security, but various adverse effects
(immunity suppression, teratogenicity, carcinogenicity, hypersensitivity, allergic reactions,
and acute toxicity) caused by prolonged use have greatly impacted public health, which
has become an important topic worldwide [1,2]. Therefore, the development of novel and
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effective natural antimicrobial agents is of paramount importance to assure food safety and
public health.

Plant essential oil has been identified to have high and extensive biological properties
(such as antimicrobial, anticancer, antiviral, and antioxidant activities) [3–8]. In recent years,
plant essential oils have been applied as a new natural source of antimicrobials, food preser-
vatives, and packaging [1,9–12], and so developing and utilizing novel natural essential oils
in the food industry have become one focus of future research. Several works have shown
that essential oils can cause a range of damage to bacteria, including cell membrane dam-
age and content leakage [5,7,8,13–15], respiratory metabolism depression [8,14,16], redox
homeostasis disruption [7,17], DNA topological change, and RNA biosynthesis [8,15,18,19].
It is also noted that food poisoning and diseases caused by foodborne pathogens have
become one major threat to human health and food safety due to the secretion of entero-
toxins [20,21], but the growth and reproduction of pathogens are tightly dependent on
biofilm formation, and thus the prevention of pathogen biofilm formation has become an
effective way to ensure food safety [22]. The regulation of bacterial biofilm formation may
be involved in the coordinated expression of several virulence genes [23–25]. In recent
years, essential oils have been identified to have an anti-biofilm effect against fungi and
bacteria [18,26–31] and effective inhibition of virulence-related gene expression [8,16,26,28].
Yet, few studies have studied the cellular response of bacteria to oxidative stress and ROS
accumulation induced by essential oil. Therefore, the acting mechanism of essential oil
involved in the virulence attenuation and biofilm formation inhibition remains enigmatic.

The genus Cinnamomum, a member of the family Lauraceae, is widely distributed in
Southeast Asia with notable economic value owing to its rich essential oil and medicinal
utilization [32–34]. The essential oils of Cinnamomum plants have been shown to have
various biological effects (such as antimicrobial, anti-inflammatory, and antitumor) [32–36]
and are widely used in the medicine, perfume, and chemical industries and especially
in the food industry as natural preservatives, antimicrobial and antioxidant agents, and
flavoring agents (such as brewing chocolate, chewing gum, and liquors) [37–39]. Of note,
Cinnamomum burmannii is one of the most promising sources in the food, pharmaceutical,
and cosmetic industries due to its unique compounds (such as borneol, α-terpineol, and
α-pinene) [34,38]. Based on our studies on different C. burmannii germplasms, some acces-
sions were selected with a high yield of essential oil (1.2–1.6%) and an average proportion
(38.7%) of borneol, and notably, we established a standard system for the utilization of
C. burmannii [40,41]. Yet, the antibacterial mechanism of C. burmannii leaf essential oil
(CBLEO) is unknown, which has intercepted CBLEO application in modern industry.

The aim of this work was to unravel antibacterial action and to highlight the molecular
mechanism that governs bacterial growth and biofilm inhibition for developing CBLEO as
a potential source of natural antibacterial agent. To this end, one plus tree of C. burmannii
(accession CB01) was used to detect the volatile profile of CBLEO and to assess antibacterial
activity on seven representative foodborne pathogens, and the antibacterial action of
CBLEO on Staphylococcus aureus (susceptible strain) was observed. As an initial step toward
exploring the antibacterial action of CBLEO, we focused on the dynamic effects of CBLEO
on bacterial growth, content release, electric conductivity, ROS and MDA formation, protein
oxidation, and cell morphology in S. aureus subjected to different doses (1/2×MIC, 1×MIC,
and 2×MIC) and times (0–8 h). Such an assay could help to unravel how CBLEO induces
oxidative stress. To highlight the antibacterial acting mechanism of CBLEO on S. aureus
at the molecular level, a comparative assay was conducted on the association of ROS
accumulation with some key virulence-related gene transcription, protease level, biofilm
formation, and the interaction with genome DNA in the response of S. aureus to CBLEO at
different levels and times. This study presents the effect of essential-oil-mediated oxidative
stress and ROS accumulation on the transcription of virulence-associated regulators as an
attempt to elucidate the antibacterial mechanism of essential oil.
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2. Results
2.1. Identification of Volatile Compounds in C. burmannii Leaf Essential Oil (CBLEO)

To develop C. burmannii leaf essential oil (CBLEO) as a potential source for applica-
tion, we detected the chemical compounds of CBLEO by GC-MS. A total of 37 compo-
sitions were identified (Table 1), accounting for 99.56% of total oil. The main chemical
components of CBLEO mainly included 14 monoterpene hydrocarbons, 29 sesquiterpene
hydrocarbons, 6 monoterpene alcohols, 6 sesquiterpene alcohols, and 5 sesquiterpene
hydrocarbons, of which monoterpene (85.38%) was the dominant group of components.
The richest compound was borneol (28.40%), followed by bornyl acetate (9.43%), eucalyptol
(9.22%), D-limonene (7.44%), α-pinene (3.96%), β-cymene (3.96%), β-caryophyllene (3.71%),
α-terpineol (3.15%), α-phellandren (2.67%), sabinene (2.53%), β-myrcene (2.41%), β-pinene
(2.38%), and camphor (2.14%). These results revealed a complex of chemical components
with rich borneol in CBLEO.

Table 1. Compounds and contents of essential oils from Cinnamomum burmami leaves by GC-MS analysis.

Type Compound Formula RI A Percentage (%) B

Monoterpene hydrocarbons (14)

α-Thujene C10H16 902 0.56 ± 0.03 e

α-Pinene C10H16 948 3.96 ± 0.17 bc

(−)-Camphene C10H16 943 2.03 ± 0.12 c

Sabinene C10H16 897 2.53 ± 0.11 c

β-Pinene C10H16 943 2.38 ± 0.10 c

β-Myrcene C10H16 958 2.41 ± 0.10 c

α-Phellandrene C10H16 969 2.67 ± 0.12 c

3-Carene C10H16 948 0.32 ± 0.02 e

4-Carene C10H16 919 0.19 ± 0.01 f

β-Cymene C10H14 1042 3.96 ± 0.19 bc

D-Limonene C10H16 1018 7.44 ± 0.25 b

β-cis-Ocimene C10H16 976 0.43 ± 0.02 e

γ-Terpinene C10H16 998 0.50 ± 0.03 e

α-Terpinolen C10H16 1052 0.96 ± 0.06 e

Monoterpene alcohol (6)

Eucalyptol C10H18O 1059 9.22 ± 0.29 b

Linalool C10H18O 1082 0.63 ± 0.03 e

Borneol C10H18O 1138 28.40 ± 0.62 a

Terpinen-4-ol C10H18O 1137 1.50 ± 0.09 cd

α-Terpineol C10H18O 1143 3.15 ± 0.18 bc

Guaniol C10H18O 1228 0.23 ± 0.01 f

Monoterpene ketone (1) Camphor C10H16O 1121 2.14 ± 0.10 bc

Monoterpene aldehyde (1) α-Citral C10H16O 1174 0.19 ± 0.01 f

Monoterpene ester (2) Bornyl acetate C12H20O2 1277 9.33 ± 0.24 b

Geranyl acetate C12H20O2 1352 0.25 ± 0.01 f

Sesquiterpene hydrocarbons (5)

β-Caryophyllene C15H24 1494 3.71 ± 0.19 bc

α-Caryophyllene C15H24 1579 0.99 ± 0.05 e

Germacrene D C15H24 1515 0.58 ± 0.03 e

α-Guaiene C15H24 1469 0.19 ± 0.01 f

Germacrene B C15H24 1603 1.74 ± 0.10 cd

Sesquiterpene alcohol (6)

Elemol C15H26O 1522 0.42 ± 0.02 e

trans-Nerolidol C15H26O 1564 1.36 ± 0.07 cd

Spathulenol C15H24O 1536 1.72 ± 0.08 cd

Guaiol C15H26O 1614 1.28 ± 0.08 cd

(−)-Spathulenol C15H24O 1536 0.51 ± 0.03 e

Bulnesol C15H26O 1614 0.44 ± 0.02 e



Int. J. Mol. Sci. 2024, 25, 3078 4 of 21

Table 1. Cont.

Type Compound Formula RI A Percentage (%) B

Sesquiterpene ester (1) Caryophyllene oxide C15H24O 1507 1.00 ± 0.08 cd

Others (1) Cinnamyl acetate C11H12O2 1367 0.24 ± 0.01 f

Total 99.56 ± 0.21
A Retention index of present experiment determined on SH-R×ITM-5SIL MS column using n-alkanes (C8–C25)
series. B Relative percentage was calculated by peak area, and data represent average of three replicates (n = 3).
Different lowercase letters represent significant differences (p < 0.05).

2.2. Assay of Antibacterial Activity of CBLEO

The values of DIZ, MIC, and MBC were detected to determine the antibacterial activity
of CBLEO. In the case of CBLEO, the DIZ values ranged from 7.51 to 28.72 mm across all
tested strains, and the MIC and MBC values were in the range of 1.0−16.0 µg/mL and
2.0−32.0 µg/mL, respectively (Table 2), emphasizing that CBLEO had good inhibition
effects on foodborne pathogens. Of note, the maximum value of DIZ (28.72 nm) and
the minimum values of MIC (1.0 µg/mL) and MBC (2.0 µg/mL) were all marked in the
response of S. aureus to CBLEO, indicating a strong bactericidal effect of CBLEO on S. aureus.
Hence, our following work was focused on the exploration of the antibacterial action of
CBLEO on S. aureus in order to develop CBLEO as a potential antibacterial agent.

Table 2. Assay of antibacterial activity of C. burmannii leaf essential oil (CBLEO) against seven repre-
sentative foodborne pathogens.

Microorganisms CBLEO Antibiotic A

DIZ B (mm) MIC B

(µg/mL)
MBC B

(µg/mL) DIZ B (mm) MIC B

(µg/mL)
MBC B

(µg/mL)

Gram-positive bacteria
Bacillus subtilis 21.31 ± 0.65 b 2.0 4.0 40.70 ± 0.71 a 0.125 0.25
Listeria monocytogenes 13.33 ± 0.45 bc 4.0 8.0 35.31 ± 0.56 b 0.125 0.25
Staphylococcus aureus 28.72 ± 0.72 a 1.0 2.0 30.05 ± 0.56 b 0.5 1.0

Gram-negative bacteria
Escherichia coli 9.71 ± 0.61 bc 8.0 16.0 37.52 ± 0.61 a 0.25 0.5
Pseudomonas aeruginosa 7.51 ± 0.48 bc 16.0 32.0 37.31 ± 0.57 a 0.25 0.5
Enterobacter aerogenes 10.21 ± 0.51 bc 8.0 16.0 33.71 ± 0.61 b 0.25 0.5
Salmonella 9.02 ± 0.43 bc 8.0 16.0 39.51 ± 0.45 a 0.125 0.25

A Ampicillin was used as reference antibacterial agent. B DIZ: diameter of inhibition zone; MIC: minimal
inhibitory concentration; MBC: minimal antibacterial concentration. The values are mean of triplicate detection
(n = 3) ± standard deviation. Different lowercase letters represent significant differences (p < 0.05).

2.3. Effect of CBLEO on Bacterial Growth of S. aureus

To unravel the antibacterial action of CBLEO against S. aureus, the assay of the antibac-
terial kinetics curve was conducted on the CBLEO treatments with five different concen-
trations (1/8×MIC, 1/4×MIC, 1/2×MIC, 1×MIC, and 2×MIC) and times (0–24 h), all of
which showed a dose/time-dependent inhibition manner for bacterial growth (Figure 1).
The greatest inhibitory effect was recorded at 2×MIC for 24 h with the number of viable
cells reduced by 96.86% from 7.0 to 0.2 lg CFU/mL, followed by a 93.57% decrease at
1×MIC, but a 38.29%, 20.28%, and 6.86% decline was marked for 1/2×MIC, 1/4×MIC,
and 1/8×MIC, respectively. A notable inhibition of bacterial growth was identified within
the 1 h incubation of 1×MIC and 2×MIC, and a complete inhibition occurred within the
first 8 h and 12 h at 2×MIC and 1×MIC, respectively. Yet, the control cells showed a normal
growth status (Figure 1). These results revealed a great bactericidal potential of CBLEO
toward S. aureus.
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2.4. Impact of CBLEO on Cell Structure of S. aureus

The damage to cell structure (cell wall and membrane) in CBLEO-treated S. aureus
was evaluated as part of an attempt to understand the antibacterial action of CBLEO.
Firstly, the effect of CBLEO on cell wall damage was tested by the leakage assay of AKP
(cell-wall-damage-biomarker enzyme). In the presence of CBLEO, AKP activity in S. aureus
suspensions increased by a dose/time-dependent pattern (Figure 2A). After 8 h of exposure
to CBLEO, AKP activity at 2×MIC was 1.7- and 0.8-fold greater than that at 1/2×MIC and
1×MIC, respectively, and notably increased activity was recorded within the first 2 h at
both 1×MIC and 2×MIC, but the control exhibited no change in AKP activity (Figure 2A),
so it was concluded that CBLEO could cause the destruction of the cell wall of S. aureus.
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260 nm absorbing material. Data represent the value ± SD of three replicates.
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Next, CBLEO-mediated damage to the permeability of the cell membrane was assayed
by detecting electric conductivity. During exposure to CBLEO, a dose/time-dependently
increased profile for electric conductivity was marked in S. aureus suspensions, of which
a rapid increase was detected within the first 1 h (Figure 2B). After the 8 h incubation of
CBLEO, the values of electric conductivity at 1/2×MIC, 1×MIC, and 2×MIC were 4.0-,
7.3-, and 8.9-fold greater than those of the control (Figure 2B), indicating that CBLEO could
effectively cause the cell membrane damage and permeability increase of S. aureus with the
intracellular electrolyte release.

As for cell membrane integrity, the releases of intracellular protein and nucleic acid
were tested. After the incubation of S. aureus with different doses of CBLEO (1/2×MIC,
1×MIC, and 2×MIC), the released amount of protein showed a dose/time-dependent
increase, in which the increased degree of protein release at 2×MIC for 8 h was 2.0- and
0.7-fold greater than at 1/2×MIC and 1×MIC, respectively (Figure 2C). A similar dose/time-
dependent increase pattern was also noted for nucleic acid leakage (Figure 2D). Yet, those in
the control showed no significant change (Figure 2C,D). These results indicated that CBLEO
could result in irreversible damage to the cytoplasmic membrane integrity of S. aureus with
a loss of cellular materials.

To highlight the antibacterial action of CBLEO on S. aureus, we further performed
SEM analysis to explore the influence of CBLEO on the cell morphology of S. aureus. The
untreated S. aureus cells retained a normal and complete appearance with a smooth surface,
intact cell membrane, and cell wall structure (Figure 3A), whereas the CBLEO-treated
S. aureus cells became irregular, and cell surface collapsed or shriveled (Figure 3B). We thus
considered that CBLEO could change cell morphology and damage the cell membrane of
S. aureus. This further confirmed the above assayed results of CBLEO-caused damage to
the permeability and integrity of the cell membrane of S. aureus (Figure 2).
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(SEM) assay. (A) SEM image of untreated S. aureus; (B) SEM image of S. aureus treated with CBLEO
(1×MIC) for 2 h. Red arrows represent cell morphology change and cell membrane damage. Yellow
boxes represent the details of cell morhology, bar = 2 µm. Yellow arrow represents the severely
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2.5. Effect of CBLEO on Cellular MDA and ROS Generation and Protein Oxidation of S. aureus

Considering that CBLEO could damage cell structure and control the bacterial growth
of S. aureus (Figures 1–3), it was vital to determine the potential of CBLEO to induce
oxidative stress destined for the cell membrane damage and growth inhibition of S. aureus.
Firstly, MDA was selected as a lipid peroxidation biomarker to evaluate the temporal
amount change in S. aureus cells during exposure to CBLEO. A dose/time-dependent
increase pattern was identified for intracellular MDA (Figure 4A), of which MDA content
was much higher at 2×MIC than at both 1×MIC and 1/2×MIC after 8 h exposure, while
the control showed almost no change, implying that CBBLEO could induce the cell lipid
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peroxidation of S. aureus. This allowed us to explore the intracellular ROS generation
and protein oxidation of S. aureus cells as an oxidative stress indicator. The amounts of
intracellular ROS and protein carbonyl formation increased in S. aureus cells in a dose/time-
dependent manner during exposure to CBLEO, both of which showed the maximum value
after 8 h of exposure to CBLEO at 2×MIC, but no notable change was detected for the
control (Figure 4B,C), emphasizing that CBLEO-induced oxidative stress could result in an
accumulation of ROS and protein oxidation product in S. aureus cells.
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Figure 4. Effect of CBLEO on cell lipid peroxidation and oxidative stress in response of S. aureus to
different doses and times. (A) Intracellular mallondialdehyde (MDA) level; (B) intracellular ROS
generation; (C) protein carbonyl content; (D) total cellular protein. Data represent mean value ± SD
of three parallel replicates, and different letters denote significant differences (p < 0.05).

2.6. Effect of CBLEO on Cellular Total Protein Concentration of S. aureus

Given the effect of CBLEO-induced oxidative stress on the cellular lipid peroxida-
tion and protein oxidation of S. aureus (Figure 4B,C), it was essential for us to investigate
whether CBLEO-induced oxidative stress affected the total protein of S. aureus cells. Hence,
a dynamic analysis of cellular total protein was performed in S. aureus exposed to CBLEO.
Compared with the control, the amount of cellular total protein exhibited a dose/time-
dependently decreased profile in S. aureus exposed to CBLEO, and a 25.79%, 34.37%, and
53.01% decline was observed at 1/2×MIC, 1×MIC, and 2×MIC after the 8 h incubation of
CBLEO, respectively (Figure 4D), suggesting the induction of bacterial protein fragmenta-
tion or its biosynthesis disturbance by CBLEO.

2.7. Effect of CBLEO on Cellular Biofilm Development and Protease Activity of S. aureus

Another concern was whether CBLEO shows anti-biofilm activity against S. aureus.
A dose/time-dependent decline pattern was noted for biofilm biomass in S. aureus cells
exposed to CBLEO, of which the reduction in biofilm biomass was 43.64%, 63.75%, and
85.42% after 8 h of exposure to 1/2×MIC, 1×MIC, and 2×MIC, respectively, but the
increased biofilm formation was observed for the control (Figure 5A), emphasizing that
CBLEO had a good anti-biofilm effect on S. aureus. It was also noted that the biofilm
formation decline was highly associated with protease production [42]. Compared with
biofilm biomass (Figure 5A), the protease activity exhibited a dose/time-dependent increase
in S. aureus subjected to CBLEO, while a decrease in protease activity was detected for the
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control (Figure 5B), indicating that the CBLEO-induced low capacity of biofilm formation
may be associated with an increase in protease activity.
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Figure 5. Effect of CBLEO on biofilm formation and protease activity in response of S. aureus cells
to different doses and times. (A) Assessment of inhibitory capacity of CBLEO on biofilm formation
by microtiter plate assay; (B) change in cellular protease activity. Values of biofilm formation and
protease production in S. aureus cells from control and CBLEO-treated samples with different doses
at 0 h were arbitrarily set to 1.00 for standardization. Data represent mean value ± SD of six parallel
replicates, and different letters denote significant differences (p < 0.05).

2.8. Effect of CBLEO on Genome DNA of S. aureus

It was reported that carvacrol or citral from essential oils could be chimeric with
bacterial DNA and break the DNA structure of S. aureus and E. coli [8,14,16]. The same
single electrophoretic band of genomic DNA was marked for S. aureus from all CBLEO-
treated and control samples (Figure S1), suggesting no direct effect of CBLEO on the
genome DNA of S. aureus.

2.9. Effect of CBLEO on Transcript of Virulence-Related Genes and Regulatory Proteins in
S. aureus

The above findings that oxidative stress could effectively induce ROS accumulation
(Figure 4B) and biofilm formation reduction (Figure 5A) with no direct effect on bacterial
genome DNA (Figure S1) in the response of S. aureus cells to CBLEO prompted us to high-
light the mechanism for how CBLEO causes virulence attenuation and biofilm formation
inhibition at the molecular level. Biofilm formation, one key virulence determinant, is
controlled by several virulence genes in response to ROS. To ascertain the anti-biofilm
mechanism of CBLEO at the molecular level, some vital virulence-associated genes re-
sponsible for biofilm formation, including agrA (accessory gene regulator A), sigB (sigma
factor B, involved in biofilm formation and stress response), sarA (staphylococcal accessory
regulator A), cidA (murein hydrolase regulator, involved in cell lysis and extracellular DNA
release), icaA (intercellular adhesin A, involved in cell wall and biofilm formation), and
rsbU (involved in the regulation of sigB and biofilm formation), were selected as potential
antibacterial targets to analyze dynamic transcription changes in S. aureus cells during
exposure to CBLEO by qRT-PCR detection.

As shown in Figure 6, the transcriptional levels of sigB/rsbU/agrA/sarA/icaA/cidA in
CBLEO-treated S. aureus cells were all down-regulated in a dose/time-dependent pattern,
of which the lowest transcript level was recorded for 8 h at 2×MIC, but an increase in them
was marked in the control, as also noted for biofilm formation in CBLEO-treated S. aureus
cells (Figure 5A), indicating that CBLEO could inhibit the transcription of virulence-related
genes destined for the reduction in S. aureus biofilm formation. Of note, the down-regulated
degree of the transcriptional level of sigB (88.02%) and rsbU (92.01%) was much higher
than that of agrA/sarA/icaA/cidA (68.89−73.97%) after 8 h of exposure at 2×MIC (Figure 6),
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implying that SigB and RsbU may be a crucial regulator to control biofilm formation in
CBLEO-treated S. aureus cells.
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Figure 6. Effect of CBLEO on transcriptions of virulence-associated regulators of S. aureus under
exposure to different concentrations and times by qRT-PCR detection. (A) Relative transcription of
agrA (accessory gene regulator A); (B) relative transcription of sarA gene (staphylococcal accessory
regulator A); (C) relative transcription of sigB (sigma factor B); (D) relative transcription of icaA
(intercellular adhesin A); (E) relative transcription of cidA gene (encoding for holin); (F) relative
transcription of rsbU (SigB activator). Relative expression values were counted as 2−∆∆Ct, and 16S
RNA was used as internal control. Transcription level in S. aureus cells from control and CBLEO-
treated samples with different concentrations at 0 h was arbitrarily set to 1.00 for standardization.
Data represent mean value ± SD of three parallel replicates, and different letters denote significant
differences (p < 0.05).

Together, the CBLEO-induced collaborative transcription repression of virulence-
related genes was mainly responsible for the inhibition of biofilm formation, of which
both RsbU and SigB may be the antibacterial targets of CBLEO against S. aureus (Figure 7).
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Figure 7. The antibacterial acting mode of C. burmami leaf essential oil (CBLEO) on S. aureus. The
identified antibacterial mechanism of CBLEO against S. aureus is based on the present work and is
summarized from the two perspectives of virulence-related gene transcription regulation and cellular
structure destruction. The abbreviations are shown as follows: agrA, accessory gene regulator A; sarA,
staphylococcal accessory regulator A; sigB, sigma factor B; icaA, intercellular adhesin A; ROS, reactive
oxygen species; MDA, mallondialdehyde.

3. Discussion
3.1. Rich Volatile Profiling with High Borneol Amount and Good Antibacterial Activity of CBLEO

Plant-derived essential oils have been widely used as natural antimicrobials in the
food industry [9,11,12]. In this work, 37 volatile compositions were identified in C. bur-
mannii leaf essential oil (CBLEO) (Table 1), of which many compounds and their contents
were different from those reported for other Cinnamomum species (such as C. pauciflorum,
C. zeylanicum, and C. camphora) [26,37,43], indicating a difference in volatile profiling and
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its contents among different Cinnamomum species. It was also noted that most of our de-
tected volatile compounds have been shown to have high antimicrobial activity, especially
some major constituents, such as borneol (28.31%) [44–46], D-limonene (7.44%) [5,6,47,48],
α-pinene (3.96%) [49], β-Caryophyllene (3.71%) [4,48,50], and α-terpineol (3.15%) [36].
Combined with the good inhibitory effect of CBLEO on all tested foodborne pathogens
(Table 2), it seems certain that these chemical compositions may be a potential of CBLEO
to control pathogens. Several studies have indicated that borneol shows several phar-
macological activities including analgesic, anti-inflammatory, and antioxidant proper-
ties [45,46]. Our finding of borneol (28.31%) as the richest compound of CBLEO (Table 1)
that was higher than that for C. burmannii, C. zeylanicum, C. camphora, C. pauciflorum, and
C. tamala (0.81–11.95%) [34,37,43,51,52] revealed that it may be the most promising antibac-
terial agent. Altogether, the advantage of CBLEO over other essential oils from different
Cinnamomum species was its rich volatile components with a high proportion of borneol,
emphasizing that CBLEO may be a novel source for utilization. Of note, S. aureus was
marked as the most susceptible pathogen (Table 2), and thus the following work focused
on highlighting the antibacterial action of CBLEO against S. aureus for the development of
CBLEO as a natural antibacterial agent for potential utilization.

3.2. ROS-Generation-Mediated Oxidative Stress and Cell Membrane Damage Involved in
Antibacterial Action of CBLEO

During the exposure of bacteria to the essential oil, lipophilic components could bind
to the bacterial cell surface and penetrate the outer membrane, and then its lipid bilayer
made contact with the hydrophobic part of the cell membrane, subsequently causing a toxic
effect, leading to cell wall and membrane damage, function destruction, material release,
ROS generation, and cell death [5,7,8,14,16]. Yet, the essential-oil-mediated mechanism
of bacterial cell membrane damage is still unclear. Accumulating evidence showed that
intracellular material leakage may be a good biomarker of irreversible damage to the
cell membrane [5,7,13]. Here, a close negative correlation was established between the
inhibitory effect of bacterial growth (Figure 1) and a significant increase in material release,
extracellular AKP activity (cell-wall-damage-marker enzyme), and electric conductivity
in S. aureus during exposure to CBLEO (Figure 2), implying that the destruction of cell
membrane structure induced by CBLEO may be one pivotal cause for the growth inhibition
of S. aureus. This was in line with the previously found antibacterial effect of essential oil
on several foodborne pathogens (such as Bacillus subtilis, B. cereus, Escherichia coli, E. faecalis,
Listeria monocytogenes, Pseudomonas aeruginosa, Shigella dysenteries, S. aureus, Salmonella
typhimurium, and Shigella flexneri) [5,7,8,14,15].

ROS-induced lipid peroxidation during oxidative stress is known as one key initiator
that causes cell membrane damage. MDA, the most abundant product of lipid peroxidation,
can induce cellular protein oxidation [53] and thus widely serves as an indicator of oxidative
stress for studying microbial growth, cell death, and disease incidence [7,54]. However, the
association of oxidative stress with MDA variation in bacterial cells caused by essential oil
remains unclear. Given that a similar accumulative pattern of MDA (Figure 4A) and ROS
(Figure 4B) in CBLEO-treated S. aureus cells was positively associated with the degree of
bacterial growth inhibition, material release, and cell membrane damage (Figures 1–3), it
seems certain that CBLEO-induced oxidative stress may be one crucial bactericidal effect.
Our results were consistent with the effect of the essential oils from different plants and
natural compounds (such as carvacrol, citral, flavonoid, anthocyanin, dihydromyricetin,
and eugenol) on S. flexneri, S. aureus, E. coli, and P. digitatum [7,8,14,16,17,19,28,55,56] and
also evidenced by previous studies showing that the effects of antibacterial agents (such
as fluconazole, cerulein, catechin, chitosan, miconazole, indomethacin, and hypocrellin A)
could cause oxidative stress with the consequence of ROS accumulation and membranous
damage destined for bacterial cell death [44,57–60].

In general, many microbes possess a range of defensive systems to detoxify ROS [61].
The thioredoxin (Trx) and glutaredoxin (Grx) systems are the two major thiol-dependent
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antioxidant systems in the defense against the oxidative stress of bacteria cells [62]. The Trx
system, which is composed of NADPH, thioredoxin reductase (TrxR), and Trx, can provide
the electron to thiol-dependent peroxidases (known as peroxiredoxins, Prx) to remove
reactive oxygen species such as glutathione peroxidase (GPx) and contribute to the redox
state of methionine sulfoxide reductases (Msr) for the repair of oxidized proteins [62,63].
The Grx system, containing NADPH, glutathione reductase (GR), GSH, and Grx, is involved
in the defense against oxidative stress via the efficient removal of various ROS by GPx [64].
It is also noted that catalase (CAT), superoxide dismutase (SOD), and TrxR homolog alkyl
hydroperoxide peroxidase subunit C/F (Ahpc/f) participate in the antioxidant process in
bacteria [62]. Several works have shown that the mutation of grx1/2/5, trx1/2, msr1/2, trxR,
grl, ahpC, or gpx3 in some bacteria (such as E. coli, Helicobacter pylori, Mycobacter tuberculosis,
Streptococcus pyogenes, S. cerevisiae, or S. aureus) was sensitive to oxidative stress with a
decreased survival [62,65–70]. In combination with our findings of cell membrane damage,
bacterial growth inhibition, and MDA and ROS accumulation in CBLEO-treated S. aureus
(Figures 1, 2 and 4A,B), it was considered that the CBLEO-induced deficiency of enzymatic
antioxidant systems may be one critical antibacterial factor. This could be verified by
our recent results that essential-oil-mediated decrease in ROS-detoxified enzymes (SOD,
CAT, Prx, GPx, and GST) may likely contribute to the cell membrane damage and growth
inhibition of S. flexneri [7] and that exogenous ROS scavenger (such as SOD and CAT)
treatment could alleviate ROS formation and the membrane damage of P. digitatum and
S. aureus cells [17,60]. Therefore, CBLEO may act as an inhibitor of the enzyme systems
participating in antioxidant responses in S. aureus.

Also noteworthy was the impact of ROS accumulation on cellular protein oxidation [71].
Here, the increased amount of cellular protein carbonyl in CBLEO-treated S. aureus
(Figure 4C) was positively associated with the accumulated amount of ROS and MDA
(Figure 4A,B), both of which showed a negative correlation with the declined content of
total cellular protein (Figure 4D). Thus, we concluded that CBLEO-induced oxidative stress
could cause cellular protein oxidation and biosynthesis disturbance, as also noted for the
effect of essential oil on P. digitatum and S. aureus [14,17].

Together, CBLEO-mediated oxidative stress and ROS accumulation may be the primary
driver of the cell membrane damage of S. aureus. Yet, little attention has been paid to the
cross-talk between oxidative stress and virulence-associated factor expression required for
biofilm formation during the exposure of bacteria to the essential oil.

3.3. CBLEO-Induced Transcription Repression of Virulence-Associated Genes in S. aureus as
Pivotal Antibacterial Action

Foodborne disease has become a serious issue affecting human health and food safety.
S. aureus, one of the most common foodborne pathogens, can grow in various foods
and cause food poisoning by secreting enterotoxins that cause various disease symptoms
(such as nausea, vomiting, and diarrhea) [20,21] and thus poses a serious threat to human
health [22]. S. aureus enterotoxins, one superfamily of secreted virulence factors, are gen-
erally regulated by a quorum-sensing agr system via the autoinducer peptide (AIP) and
two divergent transcripts (called RNAII and RNAIII), of which the RNAII transcript is an
operon of agr genes (agrBDCA) that encode key factors for agr regulatory activation [72].
Of these, AIP is produced from the AgrD precursor and then processed and exported as a
quorum signal by AgrB to activate sensor kinase AgrC and response regulator AgrA, subse-
quently leading to the induction of the agr system and the upregulation of RNAII/RNAIII
transcription essential for virulence production [72–74]. Also, AgrA is known as a key
virulence regulator, but SarA has been identified as a positive regulator of agr activity in
S. aureus [23–25]. Yet, it is unclear whether essential oil can affect bacterial AgrA or SarA
activity. Here, the coordinately repressed transcriptions of both sarA and agrA in the re-
sponse of S. aureus cells to CBLEO (Figure 6A,B) were temporally and positively correlated
with bacterial growth inhibition (Figure 1), indicating that the CBLEO-induced repression
of the transcriptions of sarA and its targeted agrA may contribute to the growth inhibition
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of S. aureus, which was the case for the effect of essential oil on C. albicans, C. violaceum,
P. aeruginosa, P. arotovorum, P. aroidearumor, and S. aureus [16,18,26–28]. AgrA and SarA,
two key global regulators of virulence genes, were tightly controlled by transcription regu-
lator SigB [24,75], which may in turn regulate the transcriptions of several virulence-related
factors crucial for the cell processes (such as stress response and biofilm formation) of
B. subtilis, L. monocytogenes, P. aeruginosa, and S. aureus [25,75,76]. Considering that a similar
dose/time-dependently repressed transcription of sigB/agrA/sarA/icaA/cidA in CBLEO-
treated S. aureus cells (Figure 6) was temporally and positively correlated to the inhibition
of bacterial growth (Figure 1) and biofilm formation (Figure 5A) but concomitantly with an
increase in protease activity (Figure 5B), it seems likely that the CBLEO-mediated coordi-
nate repression of the sigB/agrA/sarA/icaA/cidA transcript could activate the expression of
the protease gene destined to increase its production in S. aureus cells during exposure to
CBLEO, which may contribute to the inhibition of biofilm formation and bacterial growth.
This was consistent with the antibacterial effect of essential oil on E. coli, A. baumannii,
C. violaceum, C. albicans, P. aroidearumor, P. aeruginosa, and P. arotovorum [8,18,26–29,31]. In
support of our results, sigB, sarA, agrA, icaA, or cidA mutation in S. aureus could increase pro-
tease amount with a significant decline of biofilm formation [42,77–83], and the exogenous
addition of protease notably limited the biofilm formation of S. aureus [84,85].

Also of note was the role of RsbU in SigB activity activation [86,87]. The muta-
tion of rsbU could repress the transcription of sigB and its targeted downstream gene
(ica/sarA/agr) related to bacterial biofilm formation [76,88]. In this work, the reduced
biofilm formation (Figure 5A) was positively associated with the coordinately repressed
transcription of rsbU/sigB/agrA/sarA/icaA/cidA during the exposure of S. aureus cells to
CBLEO (Figure 6), and notably, the transcriptions of rsbU and sigB were significantly down-
regulated (Figure 6C,F) and thus revealed that both RsbU and SigB may be key regulators
in controlling the biofilm formation of S. aureus cells exposed to CBLEO. This fact was
supported by previous results that rsbU or sigB mutation could increase the expression of
the protease gene and decrease biofilm formation [85,87]. Therefore, it seems that CBLEO-
mediated transcriptional repressions of RsbU and SigB may be pivotal antibacterial targets
against S. aureus. Yet, the actual mechanism by which essential oil repressed the transcrip-
tion of virulence regulators destined for biofilm formation inhibition remains unknown.

ROS-mediated oxidative stress could cause AgrA oxidation to loss regulatory
activity [23,25], and the mutation of rsbU, sigB, agrA, or sarA in S. aureus increased suscep-
tibility to oxidative stress and inhibited biofilm formation [23,85]. In this work, a close
correlation was established between the massive accumulation of ROS and protein oxi-
dation (Figure 4B,C), the low transcript of rsbU/sigB/agrA/sarA/icaA/cidA (Figure 6),
the less formation of biofilm (Figure 5A), and the notable inhibition of bacterial growth
(Figure 1) in S. aureus exposed to CBLEO, indicating that the CBLEO-induced growth
inhibition of S. aureus may be attributed mostly to the limitation of biofilm formation via
the depression of the transcription of the virulence-related regulator caused by ROS accu-
mulation, which may confer the key acting mechanism of CBLEO on S. aureus. This finding
was compatible with the antibacterial effect of essential oil on P. aeruginosa, C. violaceum, and
emphE. coli [8,18] and was also consistent with previous results that antibacterial agents
(linezolid, benzimidazole, and vancomycin) could cause oxidative stress, leading to the
transcription repression of the virulence-related gene destined for protease activity increase
and biofilm formation inhibition [85,89,90]. All of this indicated that ROS-mediated oxida-
tive stress could be a critical initiator of the transcriptional repression of key regulators
(RsbU and SigB) and their targeted genes in the response of S. aureus to CBLEO, leading to
a biofilm formation decrease, which eventually causes bacterial growth.

Altogether, the collaborative transcription repression of virulence-related genes and
the effective increase in protease activity, as well as the notable inhibition of biofilm forma-
tion, may respond specifically to an increase in ROS-induced oxidative stress in S. aureus by
CBLEO. Of these, the RsbU/SigB-mediated transcription regulatory system was responsible
for the bactericidal effect of CBLEO against S. aureus.
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4. Materials and Methods
4.1. Plant Materials

The leaves of C. burmannii were collected from one 10-year-old plus tree with high
borneol content (germplasm accession CB01) planted in our research base (Guangdong
Huaqingyuan Biotechnology Co., Ltd.) in Meizhou City, Guangdong Province (E115◦50′1′′,
N24◦28′28′′), China [40].

4.2. Extraction of Essential Oil and Analysis of Chemical Components of CBLEO

Essential oil was extracted by steam distillation, and the fresh leaves (about 50 g) were
powdered and subjected to hygro-distillation using a modified Clevenger-type apparatus
for 5 h [91]. The obtained oils were collected, measured, and dried with anhydrous Na2SO4
and then stored in a sealed tube at −20 ◦C for further use. The extracted essential oils were
weighted, and their yield (1.61%) was calculated and expressed as the percentage (%, w/w)
of fresh leaf [7].

The chemical constituents of CBLEO were detected by GC-MS method. The obtained
oil sample was performed on GCMS-QP2020W/O gas chromatograph (Shimadzu, Kyoto,
Japan), equipped with SH-R×ITM-5SIL MS column (30 m × 0.25 mm, 0.25 µm) [91]. The
temperature program was as follows: from 70 ◦C to 160 ◦C at 2 ◦C/min and hold for 2 min,
then increased to 220 ◦C at 10 ◦C/min and kept for 5 min. The carrier gas was nitrogen
at 1.19 mL/min. The GC inlet was set in a splitting mode with split ratio of 1:20 and at
230 ◦C, and 1.0 µL of diluted samples (1/10, v/v, in hexane) was injected. The quadrupole
MS operating parameters: interface temperature 200 ◦C; electron impact ionization at 70 eV
with scan mass range of 45−450 m/z. The volatile compounds were identified according to
the Mass Spectral Library database and retention indices of authentic reference standards.

4.3. Bacterial Strains and Culture

Seven representative foodborne pathogens used for antibacterial activity assay were
purchased from the China Center of Industrial Culture Collection (CICC), including
four Gram-negative bacteria of Pseudomonas aeruginosa (CICC 21636), Escherichia coli
(CICC 10389), Salmonella enterica subsp. enterica (CICC 10982), and Enterobacter aerogenes
(CICC 10293) and three Gram-positive bacteria of Staphylococcus aureus (CICC 10384),
Bacillus subtilis (CICC 10275), and Listeria monocytogenes (CICC 21633).

To assess the antibacterial activity of CBLEO on foodborne pathogens, the tested
bacterial suspensions were prepared in nutrient broth (NB) (Difco 234000, Becton, Dickinson
and Company, Franklin Lake, NJ, USA), except for L. monocytogenes which was prepared in
brain heart infusion (BHI) broth (Difco 237500, USA), and incubated at 37 ◦C for 24 h. Each
strain inoculum was suspended in 0.85% of sterile saline to obtain a standard microbial
density (about 107 CFU/mL).

4.4. Assessment of Antibacterial Activity of CBLEO
4.4.1. Detection of Diameter of Inhibition Zone (DIZ)

The detection of DIZ by agar disc diffusion was used to screen antimicrobial activity
of CBLEO [7]. The prepared sterile media of BHI agar for L. monocytogenes and NB agar for
other bacteria were cooled to 50 ◦C and solidified in the sterilized plate, and each strain
inoculum (100 µL, 107 CFU/mL) was streaked over on the surface of culture medium using
commercial bacteriological loops, and then the sterile 6 mm paper disc impregnated with
CBLEO (10 µL, 50 mg/mL) was placed on medium surface. After the incubation at 37 ◦C
for 24 h, antimicrobial activity was determined by a clear zone around the disc, and the
DIZ was detected. Ampicillin (10 µg/disc, 10 mg/mL) and sterile distilled water (10 µL)
were used as the positive and negative controls, respectively.

4.4.2. Determination of Minimum Inhibitory (MIC) and Bactericidal Concentration (MBC)

The values of MIC and MBC of CBLEO were detected by microdilution method [7].
A series of two-fold dilutions of CBLEO (0.125−32 µg/mL) was added into the bacteria
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suspension (1 × 107 CFU/mL) in the wells of a sterile microplate and cultured overnight
at 37 ◦C. The lowest concentration of CBLEO that showed no visible bacteria growth was
defined as the MIC, and the MBC was expressed as the lowest concentration of CBLEO
required to kill bacteria. Ampicillin was applied as reference antibacterial agent.

4.5. Analysis of Bacterial Growth Kinetics of S. aureus

Antibacterial kinetics assay was used to assess antibacterial mechanism of CBLEO
on S. aureus (the most susceptible strain) [5]. In order to increase CBLEO solubility, the
stock CBLEO was prepared in 4% dimethyl sulphoxide (DMSO) [50] to obtain five different
doses (1/8×MIC, 1/4×MIC, 1/2×MIC, 1×MIC, and 2×MIC) and then was added into
100 mL of bacterial suspension (107 CFU/mL). After incubating for 3, 6, 9, 12, 15, 18, 21,
and 24 h, the collected suspension was used to detect optical density (OD) at 600 nm by
ultraviolet spectrophotometer (Agilent Cary 3500, Agilent, Santa Clara, CA, USA). The
growth kinetic curve of S. aureus was elaborated by drawing the lg number of CFU/mL
versus incubated time [7].

4.6. Analysis of Antibacterial Mechanism of CBLEO on S. aureus
4.6.1. Cell Membrane Permeability

The impact of CBLEO on cell membrane permeability of S. aureus was evaluated by
detecting electric conductivity using electrical conductivity meter (DDS-11D, Shanghai,
China) [7]. The obtained S. aureus cells by centrifugation (10,000 rpm) at 4 ◦C for 10 min
were washed with 5% glucose until electric conductivity was close to that of 5% glucose
and defined as isotonic bacteria for electric conductivity detection, and then different
doses of CBLEO were respectively added. After incubation at 37 ◦C for 0, 1, 2, 4, 6, 8, 10,
12, and 24 h, the electric conductivity of the mixtures was detected and marked as EC2.
The bacteria in 5% glucose treated in boiling water for 5 min and 5% glucose containing
different doses of CBLEO were used as positive and negative controls, respectively, and
their electric conductivities were measured and marked as EC0 and EC1, respectively. Cell
membrane permeability was expressed as the relative electric conductivity and calculated
by the following equation: Relative electric conductivity (%) = [(EC2 − EC1/EC0) × 100].

4.6.2. Integrity of Cell Membrane

The membrane integrity of S. aureus cells was evaluated by detecting the leakage of
intracellular nucleic acid and protein [7]. S. aureus cells (1 × 107 CFU/mL) were incubated
at 37 ◦C with CBLEO at different levels (1/2×MIC, 1×MIC, and 2×MIC) and times (0–8 h),
and the samples were collected at different times. After centrifugation (10,000 rpm) at 4 ◦C
for 10 min, the supernatants were used to detect the amounts of nucleic acid and protein by
using ultraviolet spectrophotometer (Agilent Cary 3500, Agilent, Santa Clara, CA, USA).
The detected result of nucleic acid was expressed as the absorbance value at 260 nm (OD260),
and the amount of protein was standardized to the used amount of S. aureus cells (µg/mg).

4.6.3. Cell Wall Damage

The impact of CBBLEO on cell wall damage of S. aureus was analyzed by detecting re-
lease of alkaline phosphatase (AKP) [92]. Different doses (1/2×MIC, 1×MIC, and 2×MIC)
of CBLEO were added into S. aureus cells (107 CFU/mL) and incubated at 37 ◦C, and
then the supernatants collected at different times (0–8 h) were used for the detection of
AKP activity by commercial kit (RS0904F, Redshineen Biotech, Guangdong, China). The
AKP activity was standardized to the used amounts of S. aureus cells, and the result was
expressed as U/L.

4.6.4. Scanning Electron Microscope (SEM) Analysis

The impact of CBLEO on cell morphology of S. aureus was tested by SEM assay [16].
The S. aureus suspension (107 CFU/mL) was added into CBLEO (1×MIC), and the group
with equal amount of absolute ethanol was applied as the control. After 2 h of incubation,
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the collected cells were washed with phosphate-buffered saline buffer and then fixed in
glutaraldehyde (2.5%) at 4 ◦C for 12 h, followed by dehydration under the different levels
of ethanol gradient (30, 50, 80, 90, and 100%). The specimens were dried at critical point
of CO2 and coated with gold-palladium by Polaron E5100 II (Polaron Instruments Inc.,
Hatfield, CA). Finally, the samples were observed with a scanning electron microscopy
(SEM, JSM-7001F, JEOL, Tokyo, Japan) at voltage of 10 kV.

4.6.5. Analyses of Cellular Protein Oxidation and ROS and MDA Production

Oxidative stress and lipid peroxidation of S. aureus induced by CBLEO were assessed
by detecting the amounts of ROS generation and protein oxidation (two key markers of
oxidative stress) and MDA accumulation (one biomarker of lipid peroxidation) [7,71]. The
S. aureus cells (107 CFU/mL) were incubated with different doses (1/2×MIC, 1×MIC, and
2×MIC) of CBLEO at 37 ◦C, and the samples were collected respectively at different times
(0−8 h). After centrifuging at 10,000 rpm for 10 min under 4 ◦C, the obtained cell pellets
were used to determine protein carbonyl, ROS, and MDA by using assay kits of ab126287,
ab113851, and ab118970 (Abcam, Shanghai, China), respectively. The amount of ROS was
given in fold of untreated controls, and the content of protein carbonyl (protein oxidation
product) was standardized to the used amount of S. aureus cells and defined as nmol/mg.
The MDA content was standardized to the used amounts of S. aureus cells, and the result
was expressed as nmol/mg.

4.7. Analysis of Bacterial Total Protein

The S. aureus cells (107 CFU/mL) were incubated with CBLEO at 37 ◦C under dif-
ferent doses of 1/2×MIC, 1×MIC, and 2×MIC and times (0−8 h), and the samples were
respectively collected to centrifugate at 10,000 rpm for 10 min under 4 ◦C. The obtained cell
pellets were used for detection of total protein amount by using BCA Protein Assay Kit
(102536, Abcam, Shanghai, China). The result was standardized to the used amounts of
S. aureus cells and expressed as µg/mg.

4.8. Total Protease Assay

Total protease activity was detected in the above-obtained cell pellets of S. aureus by
analysis kit (ab111750) according to the manufacturer’s instructions, and the fluorescein
isothiocyanate (FITC)-labeled casein was used as a general substrate. The protease activity
was standardized to the used amounts of cell total protein and expressed as U/mg protein
using BSA as standard. One unit (U) was defined as the amount of protease that cleaves
substrate to yield an amount of fluorescence equivalent to 1.0 µmol of unquenched FITC
per min at 25 ◦C.

4.9. Analysis of Virulence-Associated Gene Expression

Total RNA of S. aureus was extracted by RNAprep Cell/Bacterial kit (Tiangen, Beijing,
China) and was reverse-transcribed by PrimeScriptTM RT reagent kit (Takara, Osaka,
Japan). qRT-PCR was performed on BIO-RAD CF× ConnectTM Real-Time System using
SYBR Green qPCR Mix (Biomarker, Beijing, China). All amplified primers used for the
detection of virulence genes are listed in Table S1, and 16S rRNA was used as internal
reference. The relative expression value of target genes in comparison with reference gene
was counted by 2−∆∆Ct method [8], and the expression level in S. aureus from the treatments
of different doses of CBLEO at 0 h was arbitrarily set to 1.00 for standardization.

4.10. Assay of Anti-biofilm Activity

The impact of CBLEO on biofilm formation of S. aureus was assessed by a microtiter
plate assay [18]. An overnight culture of S. aureus was added into a 96-well dish containing
200 µL of LB broth supplemented with various levels of CBLEO. After incubation at 37 ◦C
for 1−8 h, the bacterial cells were washed with PBS to remove all unattached cells and
media components, and then 250 µL crystal violet staining solution (0.1%) was added
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and incubated for 20 min at 25 ◦C. After this, the plates were washed with PBS buffer
2−3 times and solubilized with ethanol. The absorbance at 570 nm (OD570) was detected
in CBLEO-treated (different concentrations) or control sample at 0−8 h, of which the value
of OD570 at 0 h was arbitrarily set to 1.00 for standardization, and the result was defined as
fold change.

4.11. Assay of Binding Activity of CBLEO to Bacteria Genome DNA

The binding activity of CBLEO to genomic DNA of S. aureus was tested by agarose gel
electrophoresis method [93]. Genomic DNA of S. aureus was isolated by TIANamp Bacteria
DNA Kit (Tiangen, Beijing, China), and the value of OD260 was measured to calculate DNA
concentration. An aliquot (100 ng) of genome DNA was incubated with CBLEO at different
doses (1/2×MIC, 1×MIC, 2×MIC, 4×MIC, 8×MIC, and 16×MIC) at 37 ◦C for 0.5, 1, 3,
and 5 h under darkness, and each incubated mixture (5.0 µL) was loaded to run agarose
gel electrophoresis. The bacteria treated by PBS was used as the control.

4.12. Statistical Analysis

All the results were recorded as mean ± SD (standard deviation) three independent
replicates and analyzed by ANOVA employing Student’s test at p < 0.05. All statistical
assays were performed by IBM SPSS Statistics 25 software.

5. Conclusions

In this work, C. burmannii leaf essential oil (CBLEO) was identified to have diverse
volatile compounds and a high amount of borneol, as well as good antibacterial activity,
and S. aureus was the most susceptible pathogen. CBLEO could act as a strong inducer
for ROS accumulation and the oxidative stress of S. aureus, causing cell structure damage
and giving rise to the effective repression of virulence-related gene transcription with
significant inhibition of biofilm formation destined for the growth inhibition of S. aureus.
Notably, the comparative association among ROS accumulation, virulence-associated gene
transcription, protease production, biofilm formation, and bacterial growth in S. aureus
across different doses and times of CBLEO treatment led to the identification of RsbU and
SigB as important transcriptional regulators crucial for bacterial biofilm formation and
growth inhibition. The RsbU/SigB-mediated repression of biofilm formation caused by
CBLEO-oxidative stress may be a key antibacterial target against S. aureus. Our findings
should provide valuable information for those studying the acting mechanism of essential
oil against pathogens. Further research should focus on the exploration of the functional
attributes (especially for borneol) of essential oil from C. burmannii leaf in food practical
utilization as a natural antibacterial agent.
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