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Abstract: Given the significant involvement of galectins in the development of numerous diseases,
the aim of the following work is to further study the interaction between galectin-3 (Gal3) and the
LPS from Pseudomonas aeruginosa. This manuscript focused on the study of the interaction of the
carbohydrate recognition domain of Gal3 with the LPS from Pseudomonas aeruginosa by means of
different complementary methodologies, such as circular dichroism; spectrofluorimetry; dynamic
and static light scattering and evaluation of the impact of Gal3 on the redox potential membranes of
Escherichia coli and P. aeruginosa cells, as well as ITC and NMR studies. This thorough investigation
reinforces the hypothesis of an interaction between Gal3 and LPS, unraveling the structural details
and providing valuable insights into the formation of these intricate molecular complexes. Taken
together, these achievements could potentially prompt the design of therapeutic drugs useful for the
development of agonists and/or antagonists for LPS receptors such as galectins as adjunctive therapy
for P. aeruginosa.

Keywords: galectin-3; LPS; interaction studies; NMR; ITC

1. Introduction

Virtually all bacterial and eukaryotic cells, as well as many viruses, display surface
glycans, which act as regulators of a variety of biological events and mediate host–microbe
interactions, including immunomodulation and inflammation processes, through their
recognition by specific glycan-binding proteins, mainly known as lectins [1]. Microbial
lectins are involved in host colonization, whereas some animal lectins can mediate im-
mune recognition of microbial and parasite envelope glycans and promote events like
activation and regulation, mediating immunomodulation and inflammation processes.
Within the lectin family, galectins represent an evolutionarily conserved group of proteins
with the ability to bind β-galactosides via characteristic carbohydrate recognition domains
(CRDs) [2–6].

These proteins play an important role in several biological processes [7] and are
therefore becoming emerging targets for diagnostic and therapeutic approaches, and several
inhibitors, mainly of a glycosidic nature, have been identified and characterised [8–13].
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Galectins can act as pathogen recognition receptors against a wide range of microor-
ganisms, interacting directly with bacterial surface glycans and mediating the recognition
and effector functions in innate immunity [14,15]. Both Gram-positive bacteria, such as
Streptococcus pneumoniae, and Gram-negative bacteria, such as Klebsiella pneumoniae and
Pseudomonas aeruginosa, display surface carbohydrate galectin ligands [1,16]. Galectin-3
(Gal3) is structurally unique among all galectins, as it contains a C-terminal CRD linked
to an N-terminal protein-binding domain, being the only chimeric galectin [17–19]. In
particular, although it is widely expressed in human tissues, its functions seem to strictly
depend on its subcellular compartmentalization [20–23]. In detail, it is demonstrated that
extracellular Gal3 mediates cell adhesion and cell–cell interaction through specific recogni-
tion of complex carbohydrates on the cell surface, while intracellular Gal3 is implicated in
cell apoptosis, autophagy and inflammation [24–27]. Interestingly, recent studies suggest
that Gal3 is involved in cell metabolism and linked to diabetes and cancer [28–30]. Indeed,
it has been reported that Gal3 deficiency is associated with the dysregulation of glucose
metabolism and leads to hyperglycemia; therefore, it is proposed that Gal3 benefits glucose
homeostasis and has a protective effect on diabetogenesis when nutrients are in excess.

Lipopolysaccharide (LPS) [31–33], the main component of the outer membrane of
Gram-negative bacteria, is recognized by the immune system as a marker of bacterial inva-
sion [16,20,24,25,34]. LPS immune recognition stimulates the production of inflammatory
cytokines, thus activating the immune response. In addition, the blood levels of LPS fluctu-
ate with the gut microbiota, and an elevated LPS level is associated with subclinical chronic
inflammatory processes, obesity, impaired glucose metabolism and even cancer [21,35].
How LPS influences glucose metabolism and is linked to diabetes and cancer has been
studied by Chen X., et al. (2022) [20], who reported that intracellular Gal3 senses LPS to
lead to the activation of mTORC1 signaling [20]. It has also been reported that LPS interacts
with Gal3 to regulate the non-canonical inflammasome [36,37]. This is consistent not only
with the data from the literature suggesting that Gal3 is a sensor of LPS but also with
observations that the LPS/Gal3 interaction is involved in the development of diabetes and
cancer, with both disease states closely associated with inflammatory responses.

In this context, it is worth mentioning that previous studies have indicated that Gal3
binds LPSs of several bacterial species, including P. aeruginosa [38,39]. In the lungs of cystic
fibrosis (CF) patients, chronic infection by P. aeruginosa induces excessive inflammation,
which not only damages the lungs but also contributes to an inability to eradicate infection.
Although it is well established that Gal3 can interact with LPS, the pathophysiological
importance of the LPS/Gal3 interaction is not fully understood; therefore, here, we report
a detailed characterization of the interaction between the CRD of Gal3 (Gal3CRD) and the
LPS from P. aeruginosa 10 (LPSpa) using different biophysical techniques with the aim of a
better comprehension of the interaction between them.

2. Results
2.1. Spectroscopic Analyses

To analyze the interaction between Gal3CRD and LPS from P. aeruginosa, 10 circular
dichroism and spectrofluorometric analyses were carried out (Figure 1).

As already described [9], the spectrum of Gal3 is not a typical spectrum of a protein
with beta-sheets but displays particular characteristics in its topological arrangement, such
as the length of the filaments, intra/intersheet twists and β-turns producing a spectrum
with a minimum of around 220 nm. The far-UV Gal3CRD spectrum registered in the presence
of an increasing concentration of LPSpa showed the partial denaturation of Gal3CRD, as
corroborated by the disappearance of the positivity at around 200 nm.

The titration experiments showed a decrease in fluorescence emission as a function
of LPSpa concentration, demonstrating that interaction with LPSpa truly takes place and
suggesting the occurrence of an LPSpa-induced conformational change toward a more com-
pact structure. Moreover, since no λ shift can be observed in the fluorescence spectra upon
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LPSpa binding, it is possible to argue that major modifications in protein hydrophobicity
are not required to transduce the structural modifications.
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Figure 1. (A) Circular dichroism measurements. Overlay of far-UV CD spectra of Gal3CRD alone (in
red) and in presence of increasing concentration of LPSpa was reported (0.5–10 µM). (B) Fluorescence
emission analysis. Overlay of Gal3CRD spectra alone (red line) and in presence of increasing concen-
tration of LPSpa (0.5–10 µM) was shown: 0.5 µM (brown line); 2.5 µM (purple line); 5 µM (cyan line);
10 µM (blue line).

2.2. DLS and ITC Studies

To estimate the average size of the LPSpa particles, the hydrodynamic radius (rh) was
measured using the dynamic light scattering technique (DLS).

DLS is a well-known technique used to measure Brownian motion (diffusion) and the
size distribution of particles in solution. For this reason, DLS experiments were used to
investigate whether Gal3CRD interacts with LPSpa (above their critical micelle concentration,
i.e., 0.6 µM.) LPSpa alone was initially present according to a size distribution with an
average diameter of around 20 nm. The variation in size of Gal3CRD with LPSpa at a ratio of
1:10 was investigated until the peak corresponding to Gal3CRD alone disappeared, which
could be explained by the formation of a complex between the protein and LPSpa (Figure 2).
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Considering that the bacterial cell surface is the first variable typically defined in 
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centrations of Gal3CRD until 35 µM, the E. coli ZP values increased and then stabilized at 

Figure 2. DLS measurements. DLS measurements were carried out using a Zetasizer Nano ZS
(Malvern Instruments, Westborough, MA, USA) equipped with a 173◦ backscatter detector, at 37 ◦C,
using a disposable sizing cuvette. Data were analyzed using the software OmniSIZE (Viscotek) 2.0.
DLS measurements in triplicate were carried out on aqueous LPSpa samples at 20 µM. LPSpa size
measurements were performed before and after Gal3CRD addition (200 µM).

In addition, in order to investigate how Gal3CRD interacts with LPSpa and whether
the protein can alter the size of the micelles of LPSpa, the aggregation behavior of LPSpa in
the presence of an increasing concentration of Gal3CRD was analyzed. A reduction in the
LPSpa diameter from 11.2 nm (LPSpa 10 µM alone) to 7.1 nm in the presence of Gal3CRD
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(LPSpa—Gal3CRD molar ratio of 1:3) was observed, suggesting the disaggregating effect of
the protein (Figure 3).
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Figure 3. DLS measurements. LPSpa (10 µM) size measurements were performed alone (blue line)
and in presence of Gal3CRD (molar ratio 1:1, green line; molar ratio 1:3, orange line).

The disaggregating effect of Gal3 on LPSpa could significantly lower its biological
activity. The data from the literature [40] show that the biological activity of antimicrobial
peptides lies in their potent activity in detoxifying LPS through the breakdown of LPS
aggregates. The activity of Gal3 against LPS can be hypothesized in this context.

Considering that the bacterial cell surface is the first variable typically defined in
studying bacteria–molecule binding, zeta potential (ZP) measurements can be used as
a reporter for such interactions. Therefore, ZP studies were carried out to monitor the
effect of Gal3CRD on the membrane surface charge of the E. coli and P. aeruginosa cells. The
E. coli cells displayed a zeta potential of about −15.2 mV. Upon the addition of increasing
concentrations of Gal3CRD until 35 µM, the E. coli ZP values increased and then stabilized
at approximately −5.6 (Figure 4). The same trend was observed in the presence of the
P. aeruginosa cells, whose ZP increased from −10.3 mV to −5.6 in the presence of Gal3CRD.
Therefore, in both cases, we observed an increase in the ZP toward neutral values due to
the interaction between Gal3CRD and both LPSs.
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Finally, a more detailed characterization of the interaction of Gal3CRD with LPSpa was
carried out using isothermal titration calorimetry (ITC) (Figure 5). The ITC experiment
showed a sequential binding site, revealing a Kd of a low µM value. The best fit is obtained
by adding three sequential binding molecules. The first interaction is clearly the most affine,
showing a KD = 6.0 ± 0.5 µM (Table 1).
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Figure 5. Isothermal titration calorimetry analysis. In (A), titration of LPSpa with Gal3CRD; (B,C): the
negative controls (titration of buffer with Gal3CRD) in (B) and titration of LPSpa with buffer in (C) are
shown. The top and bottom panels report raw and integrated data, respectively.

Table 1. Thermodynamic parameters of the titration of LPSpa with Gal3CRD.

Ligand KD1 ∆H1 ∆S1

Gal3CRD 6.0 ± 0.5 µM −3.2 ± 0.1 kcal/mol −0.1 kcal/mol/deg

2.3. NMR Studies

To elucidate the intricate dynamics of the interaction between LPS and Gal3, we
performed additional Nuclear Magnetic Resonance (NMR) experiments, employing 15N-1H
TROSY experiments. This approach enabled us to probe the behavior of Gal3CRD in the
absence of and upon the addition of the P. aeruginosa LPS. Notably, ligand binding induced
modifications in the chemical shifts of the protein’s amide signals, prompting the tracking
of these chemical shift perturbations for deeper insights into the structural aspects of
molecular recognition events.

Upon adding 0.2 equivalents of LPSpa to 15N-Gal3CRD, a general decrease in the peak
intensities was observed (see Figure 6). This behavior can be attributed to the increase in the
relaxation time of Gal3CRD upon binding, which led to line broadening and a consequent
loss of signal intensity.
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In Figure 7, a plot illustrating the variation in amino acid intensity after the addition
of LPSpa was shown. Several affected amino acids were in the canonical binding site on
the S-face, within the β-sheets S4–S5. Remarkably, high perturbations were noticed in
residues crucial to lactose binding, such as His51 and Trp74, which disappeared upon
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LPSpa binding. This observation suggested that these residues played a pivotal role in
LPS binding. Furthermore, β-sheets S2 and S6 exhibited perturbations, indicating that the
epitope-binding mode was extended, as expected. Furthermore, other sheets on the F-face
of the CRD displayed significant perturbations upon binding. Particularly, polar amino
acids were highly sensitive to the binding process.
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The reduction in peak intensity could be explained by the establishment of super-
molecular lectin–LPS complexes driven by multivalent presentations. Indeed, although the
interaction was mediated by the canonical binding site, the formation of these supermolec-
ular complexes impacted the molecular tumbling of the proteins, resulting in decreased
and broadened signals.

Based on the experimental results (Figure 7) and obtaining further insights from
the 3D structure of Gal3CRD (Figure 8), it is evident that the primary binding site with
LPSpa is located on the S-face of the CRD, involving key residues (His51, Trp74, Asn57,
Asn72, Asn73). However, the amino acids situated at the top of the protein also exhibit
line broadening, and, specifically, the most perturbed amino acids are charged (Arg61,
Asp71, Glu77, Lys89, Asp132 and Arg117) and apolar residues (Asn107, Leu121, Asn122
and Ser137), along with hydrophobic residues (Phe85).
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3. Discussion

The rise of multidrug-resistant bacteria and the formation of biofilms that evade the
host immune response, leading to an increasing number of hospital infections, represent
major health concerns [38]. The lack of new antibiotics, particularly those that have different
mechanisms of action and that are active against Gram-negative bacteria, has exacerbated
the situation. In this context, the search for drugs that act on new targets is a crucial
challenge. The available drugs, mainly of a peptidic nature, are known to act on the
bacterial membranes and/or lipopolysaccharide (LPS) of P. aeruginosa, a Gram-negative
bacterium frequently associated with severe infections in immunocompromised hosts or
in patients with cystic fibrosis. However, their use in clinical practice is presently limited
because of their toxicity, the cost of their synthesis and, for some of them, their susceptibility
to proteolysis [41].

Here, we report that Gal3 is able to interact with LPS and induce membrane depolar-
ization in P. aeruginosa, so the LPS/Gal3 complex could be considered a new target for drugs
that can inhibit LPS activity. Although the data from the literature report the interaction
between Gal3 and LPS [39], new experiments have been designed to shed more light on
the mode of interaction and the sites directly involved in the binding process. Here, experi-
ments with DLS, ITC and NMR spectroscopy were conducted. The data obtained from the
DLS measurements confirmed the presence of an interaction because of the disappearance
of the peak relative to the hydrodynamic radius of Gal3CRD alone when complexed with
LPSpa. In addition, it is worth mentioning that Gal3 seems to exert a disaggregating effect
on LPS. Furthermore, a further experiment regarding the determination of the membrane
zeta potential of E. coli and P. aeruginosa cells in the absence and presence of Gal3CRD

confirms that the interaction between the two molecules results in the hyperpolarization of
the membrane by Gal3CRD.

An isothermal titration calorimetry analysis showed a sequential mode of binding sites
in which the first, most affine interaction showed an affinity constant value of 6 µM; these
data may represent a good experimental approach to selecting Gal3 inhibitory molecules
with a potential anti-inflammatory effect. Finally, the hypothesis of binding between
Gal3CRD and LPS gained support from the NMR data analysis. The analysis of the protein
perspective reveals the involvement of Gal3’s S-face. Specifically, the key residues essential
to binding with carbohydrates within the S3–S4–S5 β-sheet exhibit significant perturba-
tions. Notably, residues in S2 and S6 are also affected, suggesting an extended binding
interaction mode. Moreover, the interaction seems to be facilitated by the polar amino
acids situated on the upper surface of Gal3CRD. Therefore, we can hypothesize that, besides
the canonical binding site (S3–S4–S5), LPSpa also establishes further interactions atop of
Gal3CRD (Figure 8). This comprehensive analysis supports the hypothesis of an interaction
between Gal3 and LPS, unraveling the structural details and providing valuable insights
into the formation of these intricate molecular complexes.

In this paper, we have elucidated the intricate interplay between the C-terminal do-
main of Gal3 and the LPS from P. aeruginosa. Notably, the presence of the N-terminal
domain promotes the oligomerization of Gal3, enhancing neutrophil activation [37]. Con-
sequently, the interaction of the LPS and full-length Gal3, in its oligomeric state, could
improve the binding of the LPS to the cell surface, decreasing the activation threshold of the
neutrophils in response to LPS. In this regard, as for intracellular bacteria, the C-terminal
domain of Gal3 is essential to increasing the LPS-induced assembly of the intracellular
caspase-4/11 oligomers and to their activation. Conversely, the N-terminal domain con-
tributes to the self-association property of Gal3 and amplifies the intracellular immune
responses of caspases, which rely on the functional multivalency of Gal3.

Our observations, based on the experimental data, suggest that the mechanism of
action is highly dependent on the ratio of Gal3CRD to LPS, which could be important
in the context of bacterial infections. Altogether, these results could lead to the design
of therapeutic drugs useful in the development of agonists and/or antagonists for LPS
receptors such as galectins as adjunctive therapy for P. aeruginosa. It is evident that the data
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collected concern the LPS from P. aeruginosa and do not exclude the proposition that the
same experiments, conducted on LPSs from different sources, may yield different and/or
conflicting results. This topic needs to be thoroughly investigated and will represent an
interesting field of future research.

4. Materials and Methods
4.1. Protein Expression

The human galectin-3 CRD (named Gal3CRD) used in this study was produced in
E. coli, as previously described [8]. To express unlabeled protein, the bacteria growth was
carried out in LB medium. Protein expression and purification protocols were implemented
for labeled Gal3CRD production. In detail, M9 minimal medium supported with 0.5 g/L
of 15NH4Cl is prepared for the expression of the 15N-labeled protein. A colony of the
E. coli strain BL21(DE3) GOLD transformed with the recombinant vector pETM11/Gal3CRD

is taken from the plate and inoculated into 100 mL of LB. After over-night growth, the
pre-inoculum is centrifuged at 6800 rpm for 10 min at 4 ◦C, the LB is removed and the pellet
is resuspended with 10 mL of M9 medium. It is transferred into 1 L of pre-warmed M9
medium and incubated at 37 ◦C until induced to an optical density of 0.6 to 0.8 OD600 nm
using a final IPTG concentration of 1 mM. Induction is followed by incubation at 25 ◦C for
16–18 h. The subsequent steps follow the protocol elsewhere described [42]. The protein
sample is brought to a concentration of 200 µM in 50 mM Tris-HCl, 150 mM NaCl and
1 mM DTT pH 7.5.

4.2. LPS Preparation

LPS is a heterogeneous molecule and tends to form aggregates of varying sizes. How-
ever, when treated with detergents, ultrasound and heat, a population of molecules with
molecular weights between 30 kDa and 100 kDa can be obtained. In our experiment, 1 mg
of LPS from P. aeruginosa 10 (L9143, SIGMA-Aldrich, St. Louis, MO, USA) was resuspended
in H2O stearyl or in 20 mM sodium phosphate and 150 mM NaCl at a pH 7.4. The solution
was mixed with the aid of a vortex mixer and then sonicated at 50 ◦C for 30 min in the
sonicator bath. After treatment, the LPS MW was checked using SDS-PAGE with silver
nitrate gel staining. In our experiments, solutions from 0.5 to 20 mM were used.

4.3. Spectroscopic Analyses

The CD spectra were measured using a Jasco J-1500 spectropolarimeter equipped with
a Peltier thermostatic cell holder (Jasco Europe, Cremella, LC, Italy). The measurements
were performed at 20 ◦C using a 0.1 cm path length cell in 10 mM sodium phosphate and
1 mM DTT at a pH of 7.4. The far-UV CD spectra were monitored from 195 to 260 nm
using Gal3CRD final concentrations of 10 µM. The far UV spectrum was registered in the
presence of an increasing concentration of LPSpa (0–10 µM). The CD spectra were averaged
over at least three independent scans and the baselines corrected by subtracting the buffer
contribution. The spectrofluorometric Gal3CRD spectra at a concentration of 10 µM were
registered using a Jasco FP-750 (Jasco Europe, Cremella, LC, Italy). The sample was excited
at 280 nm and emissions registered between 300 and 400 nm. The spectrofluorimetric
spectra were registered in the presence of an increasing concentration of LPSpa (0–10 µM).

4.4. Dynamic Light Scattering (DLS) Analyses

The DLS measurements were carried out using a Malvern nanozetasizer (Malvern,
UK). The samples were placed in a disposable cuvette and held at 37 ◦C. The Gal3CRD was
assayed at a concentration of 200 µM, while the LPSpa was studied at 10 and 20 µM. In
the interaction studies, a Gal3CRD/LPSpa ratio of 10:1 was analyzed, while in the aggre-
gation studies, LPSpa/Gal3CRD ratios of 1:1 and 1:3 were investigated. For each sample,
the analyses were recorded three times with 11 sub-runs using the multimodal mode.
The Z-average diameter was calculated from the correlation function using the Malvern
technology software ZS Xplorer version 3.2.0.84.
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4.5. Zeta Potential Measurements

The E. coli and P. aeruginosa cells in the mid-logarithmic phase were diluted to an
OD600 nm of 0.005 (50,000 cells). The volume of the cells (700 µL) was harvested and
measured. Then, increasing concentrations of Gal3CRD from 0 to 35 µM were added to the
cells, and the potential was measured. The samples were placed in cuvettes equipped with
instrument-specific gold electrodes. For each concentration, a total of 3 measurements of
100 runs each were carried out. The experiments were carried out on the zetasizer Nano
ZS (Malvern Instruments, Malvern, Worcestershire, UK) equipped with a 633 nm He laser.
The statistical significance was determined using Student’s t-test (paired, two-sided), and a
p value less than 0.05 was considered to be significant.

4.6. Isothermal Titration Calorimetry (ITC)

The ITC experiments were conducted at a temperature of 37 ◦C using a MicroCal
PEAG-ITC (Malven Panalytical, Malvern, UK). Titration was conducted using Gal3CRD as
the ligand at a concentration of 275 µM and titrating the LPSpa (in cell) at a concentration
of 20 µM. The LPSpa and Gal3CRD were prepared in the same buffer (20 mM sodium
phosphate, 150 mM NaCl, 1 mM DTT, pH 7.4). The titration was designed so that an
injection occurred every 150 s, for a total of 27 injections of 1.5 µL (except for the first
injection of 0.4 uL), at a stirring speed of 1000 rpm. Finally, to exclude the presence of
non-specific heat, two control titrations were performed: Gal3CRD was injected into the cell
containing only buffer; buffer was injected into the cell containing LPSpa. The data were
reprocessed using ITC Data Analysis in the Origin software version 7.0 and imposing a
sequential binding site model. The best data fitting was obtained by adding three sequential
binding molecules.

4.7. NMR

The NMR experiments were recorded using a Bruker AVANCE NEO 600 MHz
equipped with a cryo probe (Bruker Italia Srl, Milano, Italy), and the data acquisition
and processing were performed using TopSpin software v. 4.1.1. All the NMR experiments
were conducted at 25 ◦C. The samples were dissolved in 500 µL of 20 mM of Tris buffer,
150 mM of NaCl and 1 mM of DTT at a pH of 8 using 5 mm NMR tubes. Spectra with
75 µM of uniformly 15N-labeled Gal3CRD were recorded in the apo form and after the
addition of LPSpa (5:1 Gal3CRD: LPSpa). A TROSY experiment was used, in which 32 scans
were acquired with 256 (t1) × 2048 (t2) complex data points in the 15N and 1H spectra,
respectively. The CcpNmr Analysis software v. 3.2.0 was employed for the data analy-
sis [43,44]. The average intensity changes were calculated using the following equation:
% perturbation = Ii − If/∆max.
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