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Abstract: Li3V2(PO4)3 cathodes for Li-ion batteries (LIBs) were synthesized using a hydrothermal
method with the subsequent annealing in an argon atmosphere to achieve optimal properties. The
X-ray diffraction analysis confirmed the material’s single-phase nature, while the scanning electron
microscopy revealed a granular structure, indicating a uniform particle size distribution, beneficial
for electrochemical performance. Magnetometry and electron spin resonance studies were conducted
to investigate the magnetic properties, confirming the presence of the relatively low concentration
and highly uniform distribution of tetravalent vanadium ions (V4+), which indicated low lithium
deficiency values in the original structure and a high degree of magnetic homogeneity in the sample,
an essential factor for consistent electrochemical behavior. For this pure phase Li3V2(PO4)3 sample,
devoid of any impurities such as carbon or salts, extensive electrochemical property testing was
performed. These tests resulted in the experimental discovery of a remarkably high lithium diffu-
sion coefficient D = 1.07 × 10−10 cm2/s, indicating excellent ionic conductivity, and demonstrated
impressive stability of the material with sustained performance over 1000 charge–discharge cycles.
Additionally, relithiated Li3V2(PO4)3 (after multiple electrochemical cycling) samples were investi-
gated using scanning electron microscopy, magnetometry and electron spin resonance methods to
determine the extent of degradation. The combination of high lithium diffusion coefficients, a low
degradation rate and remarkable cycling stability positions this Li3V2(PO4)3 material as a promising
candidate for advanced energy storage applications.

Keywords: Li3V2(PO4)3; cathode material; discharge capacity; lithium diffusion coefficient; electron
spin resonance; magnetization; magnetic inhomogeneity

1. Introduction

Energy is a fundamental driver in the development and progression of human so-
ciety [1,2]. In recent times, there has been a growing recognition of the limitations and
environmental impact of traditional fossil fuels [3]. Renewable energy sources, while
environmentally friendly, present challenges due to their dependence on geographical
and climatic conditions. One of the main challenges is how to meet peak demand for
renewables. Solar and wind generation, for instance, are dependent on weather conditions,
leading to variability in energy production. Efficient and reliable storage solutions are
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needed for the energy and transportation industries to address this challenge. Energy
storage technology can be broadly separated into electrical, thermal and fuel technologies,
with batteries, fuel cells and supercapacitors being the main storage solutions for renew-
able energy generation [4]. Electrical storage systems, in particular, have seen significant
advancements and innovations over the past decade. The focus has been predominantly
on developing more efficient and reliable batteries and capacitors, which are critical for
a variety of applications ranging from portable electronic devices to large-scale energy
storage for power grids [5–7].

Lithium-ion batteries (LIBs) emerged as a leader in this field, primarily due to their
high specific energy density, which significantly surpasses that of traditional battery tech-
nologies [8]. This high energy density makes LIBs an attractive option for a wide range
of applications, from powering small electronic devices to serving as the primary energy
storage method in electric vehicles [9]. Moreover, ongoing research and development in
LIBs technology are continuously enhancing their efficiency, lifespan and safety, making
them even more appealing for both current and future applications. In recent years, the
quest for more sustainable and efficient energy solutions has brought significant focus to
the development of advanced materials for LIBs [10–12].

One of the most promising avenues in this field is the exploration and enhancement of
cathode materials, which play a crucial role in elevating the overall performance, energy
density and durability of LIBs. Among various candidates, lithium vanadium phosphate
Li3V2(PO4)3 (LVPO) emerged as a material of interest due to its impressive electrochemical
properties. The study and creation of efficient LVPO cathode materials are driven by the
need to address some of the critical challenges faced by current LIBs technologies, including
limited energy density, reduced cycle life and issues related to safety and environmental
impact [13–15]. LVPO, with its unique crystal structure and electrochemical stability,
presents an opportunity to overcome these obstacles, offering a pathway to higher energy
densities and enhanced safety features. The interest in LVPO stems from its high theoretical
capacity combined with its high lithium diffusion coefficient, which promises significant
improvements over traditional cathode materials like lithium cobalt oxide (LiCoO2) and
lithium iron phosphate (LiFePO4) [16–22]. Moreover, LVPO is known for its excellent
thermal stability, a critical factor in preventing thermal runaway and ensuring safer battery
operations [23]. This aspect is particularly important in the context of increasing demand for
electric vehicles (EVs) and large-scale energy storage systems, where safety and reliability
are paramount.

Another compelling attribute of LVPO is its lower environmental impact compared
to other cathode materials that contain cobalt or nickel. The use of vanadium, a more
abundant and less toxic element, aligns with the growing emphasis on environmentally
sustainable battery technologies. Furthermore, LVPO’s ability to operate over a wide range
of temperatures enhances its suitability for diverse applications, ranging from portable
electronics to grid storage. The development of LVPO cathode materials also includes
addressing challenges such as optimizing the synthesis process, enhancing the electronic
and ionic conductivity and ensuring compatibility with other battery components. Research
into doping strategies, novel synthesis techniques and surface modifications is vital in
realizing the full potential of LVPO.

In this article, we delve into the various aspects of LVPO cathodes, exploring their
composition, structural advantages, electrochemical performance and the latest advance-
ments in their development. For example, it is well known that the kinetics of lithium-ion
transport are of significant importance for electrode materials. Lithium diffusion in the
electrodes is a key factor that determines the rate at which a battery can be charged and
discharged. In most cases, the solid-state diffusion of Li ions with rather low values may
control the rate-determining step of the intercalation process, although there may be partic-
ular cases where the rate-determining step is diffusion in the electrolyte solution within the
pores of the composite electrodes. One of the main advantages of LVPO is the potentially
higher rate of Li+ ion transport in the structure: the LVPO electrodes show higher lithium
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diffusion coefficients compared to that of traditional cathode materials like LiCoO2 and
LiFePO4 (up to 10−9 cm2 s−1) [24,25]. However, diffusion coefficients for LVPO are in
the range of 10−13 to 10−9 cm2 s−1, depending on many factors, including the synthesis
method and additives [26,27]. Thus, the development of electrode material based on LVPO
with a higher rate of Li+ ion transport in the structure is of great interest, and the successful
synthesis of such material is described in this article.

In addition to X-ray diffraction analysis and scanning electron microscopy methods,
the successfully synthesized LVPO was examined using electron spin resonance and mag-
netometry methods to quantify defects, determine their distribution state, what could be
the reason for the promising performance of LVPO as a cathode material in lithium-ion
batteries. It is known from the literature that exploring the intrinsic material properties from
a magnetic perspective offers a unique angle for electrochemical investigations [28]. Con-
sidering the intimate connection between spin and magnetic properties, using electron spin
as a probe, magnetic measurements (nuclear magnetic resonance, electron spin resonance,
magnetometry and Mössbauer spectroscopy) make it possible to analyze energy storage
processes from the perspective of spin and magnetism [28]. Nuclear magnetic resonance
(NMR) has attracted much attention in the field of energy storage because of its ability to
provide information on reversible and irreversible transient changes in composition, ion
transport dynamics and microstructure evolution in an electrochemical cell [29,30]. Elec-
tron spin resonance (ESR) detects the qualitative and quantitative information of unpaired
electrons contained in local atoms or molecules of matter and the structural characteristics
of its surrounding environment. NMR is commonly used in the study of light elements
such as Li, Na, O and F, while ESR is suitable for the evaluation of transition metals (Fe, Co,
Mn, V) and oxygen vacancies and for the characterization of redox processes [13,31–33].
Owing to the ultrahigh sensitivity to magnetization, magnetometry can accurately monitor
the magnetic changes caused by electron transfer during electrochemical processes, and it is
a powerful tool for investigating conversion or alloy-type alkali metal ion batteries (AMIBs),
spin-based devices [34,35] or solid electrolyte interphase characterization by operando
magnetometry [36].

Here, we aim to provide a comprehensive understanding of how LVPO stands to
revolutionize the field of lithium-ion batteries and pave the way for more sustainable, effi-
cient and safer energy storage solutions from the point of view of the relationship between
electrochemical and magnetic properties. The characterization of the synthesized sample
using comprehensive techniques, including X-ray diffraction analysis, scanning electron
microscopy, magnetometry and electron spin resonance methods, is given. Extensive elec-
trochemical property investigations for the detailed characterized material were conducted,
including lithium diffusion coefficient estimations and cycling stability testing. Addition-
ally, relithiated LVPO (after multiple electrochemical cycling) samples were investigated
to determine the extent of degradation, showcasing the material’s potential for long-term
applications in Li-ion batteries.

2. Experimental Results
2.1. Characterization of As-Prepared Li3V2(PO4)3 Sample
2.1.1. Structural and Microstructural Properties

The X-ray diffraction pattern of the LVPO sample investigated in this work is pre-
sented in Figure 1. According to X-ray diffraction data, the resulting product is a single-
phase LVPO sample with a monoclinic crystal structure (space group P21/n (#14)). The
refined crystal structure parameters of a synthesized LVPO sample are a = 8.6027(3) Å,
b = 8.5908(1) Å, c = 12.0363(5) Å, β = 90.58(3)◦, and the cell volume is V = 889.505(4) Å3.
The reliability factors of the Rietveld refinement are as follows: Rp = 3.78%, Rwp = 6.9%,
χ2 = 0.567. The unit cell contains Z = 4 formula units. The obtained lattice parameters are
very close to those that were previously reported and can slightly differ depending on the
synthesis process and monoclinic axis selection [13,32,33,37–42]. The structure of LVPO
consists of a three-dimensional framework of slightly distorted VO6 octahedra and PO4
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tetrahedra. The alkali metal ions (Li-ions) occupy interstitial sites and can have different
oxygen environments; thus, the unit cell contains three independent lithium sites. The
LVPO crystal structure visualization is well represented in the literature, for example, as
shown in Figure 1 of Ref. [32].
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Figure 1. Experimental, theoretical and differential X-ray diffraction pattern of Li3V2(PO4)3.

SEM images of the as-prepared LVPO surface are shown in Figure 2. The SEM images
reveal that the as-prepared composites exhibit a granular structure with average grain sizes
of a few micrometers. The element-selective images obtained using XRF analysis are shown
in Figure S4, confirming the uniform distribution of elements.

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 4 of 20 
 

 

The alkali metal ions (Li-ions) occupy interstitial sites and can have different oxygen en-
vironments; thus, the unit cell contains three independent lithium sites. The LVPO crystal 
structure visualization is well represented in the literature, for example, as shown in Fig-
ure 1 of Ref. [32]. 

20 40 60 80

0

200

400

600

800

 

Li3V2(PO4)3

 Yobs

 Ycalc

 Yobs-Ycalc

 Bragg positions

2θ (degree)

 
In

te
ns

ity
 (a

.u
.)

 
Figure 1. Experimental, theoretical and differential X-ray diffraction pattern of Li3V2(PO4)3. 

SEM images of the as-prepared LVPO surface are shown in Figure 2. The SEM images 
reveal that the as-prepared composites exhibit a granular structure with average grain 
sizes of a few micrometers. The element-selective images obtained using XRF analysis are 
shown in Figure S4, confirming the uniform distribution of elements. 

  
Figure 2. Scanning electron microscope images of the as-prepared Li3V2(PO4)3 sample at different 
magnifications. 

2.1.2. Magnetic Properties 
It can be assumed that the observed ESR spectra (Figure 3) are likely due to the pres-

ence of magnetic vanadium ions in the investigated LVPO sample, specifically due to a 
small number of V4+ ions (electronic configuration 3d1, S = 1/2). V3+ ions (electronic config-
uration 3d2, S = 1) that form the LVPO crystal structure are non-Kramer’s ions with inte-
gral J in LS coupling, which have an even number of electrons in the respective electronic 
shells, singlet ground-state levels and are silent under conventional ESR experimental 
conditions [43,44]. To observe ESR signals from the exited (S = 1) state of V3+ ions due to 
the transitions between sublevels with ΔmS = 1, this state should be populated at a given 

2 μm 500 nm 

Figure 2. Scanning electron microscope images of the as-prepared Li3V2(PO4)3 sample at different
magnifications.

2.1.2. Magnetic Properties

It can be assumed that the observed ESR spectra (Figure 3) are likely due to the presence
of magnetic vanadium ions in the investigated LVPO sample, specifically due to a small
number of V4+ ions (electronic configuration 3d1, S = 1/2). V3+ ions (electronic configuration
3d2, S = 1) that form the LVPO crystal structure are non-Kramer’s ions with integral J in LS
coupling, which have an even number of electrons in the respective electronic shells, singlet
ground-state levels and are silent under conventional ESR experimental conditions [43,44].
To observe ESR signals from the exited (S = 1) state of V3+ ions due to the transitions
between sublevels with ∆mS = 1, this state should be populated at a given temperature by
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heating or laser irradiation, etc. The second condition for ESR detection from the exited
(S = 1) state in the conventional perpendicular state is that the energy of the microwave
field should be sufficient for the transition between these sublevels. Based on a set of
experimental data given in the literature [31,45,46] and our previous works [13,32,33], no
signal is expected from trivalent vanadium in perpendicular mode for the above reasons,
which may exist separately or together. The direct probe of V3+ via the ESR test was
presented in [31]. C. Li et al. observed forbidden transitions with ∆mS = 2 for V3+ in
parallel mode in the related compound Na3V2(PO4)2O1.6F1.4, while in parallel mode, the
ESR signal from V3+ was not observed [31,46].
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band frequency. Inset shows the electron spin resonance spectrum of the benchmark containing
Ns = 1.6·× 1017 spins.

V5+ ions (electronic configuration 3d0) are nonmagnetic and ESR-silent. The ex situ
continuous-wave (CW) X-band electron spin resonance measurements of carbon-coated
LVPO nanocomposites allowed for the investigation of the evolution of the valence state of
vanadium ions upon cycling, indicating the appearance of the V3+/V4+ redox couple or the
oxidation of almost all V3+ ions up to V4+ state [45].

The presence or absence of tetravalent vanadium ions is important for the following
reason. In an ideal stoichiometric LVPO compound, all vanadium ions should be in the
trivalent state. The change in the valence state of vanadium ions from V3+ to V4+ in
LVPO can be associated with lithium non-stoichiometry in the investigated compound.
To maintain the electrochemical neutrality of the unit cell, the change in the valence of
one vanadium ion from 3+ to 4+ corresponds to the deintercalation of one lithium-ion.
Considering the vanadium-to-lithium ratio in the chemical formula, it is possible to estimate
the degree of lithium nonstoichiometry in the investigated samples.

The ESR method was used to estimate the number of V4+ ions. To achieve this, the
integral intensity of the LVPO spectrum was compared with the same parameters for the
benchmark (inset Figure 3). The ESR spectra integral intensities ratio of the investigated
samples (ILVPO) and the benchmark (I0) are given in Line 2 of Table 1. The correspond-
ing number of V4+ magnetic centers in the investigated samples can be estimated as
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N(V4+) = ILVPO/LPO/I0·Ns (Line 3 in Table 1), where Ns is the spin number in the bench-
mark. The total number of vanadium ions, N0, is given in Line 4 of Table 1. The relative
number of tetravalent vanadium ions is shown in Line 5 of Table 1. It can be seen from
Table 1 that the as-prepared LVPO sample demonstrates high lithium stoichiometry.

Table 1. ESR spectra integral intensity ratio ILVPO/I0, number of magnetic centers N(V4+), total
number of vanadium ions N0, relative number of tetravalent vanadium ions and lithium deficiency
for Li3V2(PO4)3 sample.

No. Sample LVPO

1 mass (mg) 7.4
2 ILVPO/LPO/I0 4.02/1.86
3 N(V4+) 3 × 1017

4 N0 21.79 × 1018

5 N(V4+)/N0 1.4%
6 lithium deficiency 0.9%

In addition to electron spin resonance measurements, the magnetic properties of LVPO
were investigated using the magnetometry method. This was performed to determine
whether a small number of mixed valence vanadium ions create magnetic inhomogeneity.
Based on our previous experiences, we know that a small amount of mixed-valence transi-
tion element ions can create magnetic inhomogeneity [47–49] that can directly affect other
physical properties [47,48].

Magnetization measurements in the ZFC-FC regimes in low magnetic fields (Figure 4)
were performed to determine the ZFC-FC splitting temperature below which the magnetic
correlations due to the presence of vanadium ions of mixed valence become dominant
over thermal fluctuations. This type of splitting was not observed in LVPO, suggesting
the absence of significant short-range magnetic correlations in the investigated sample.
Nevertheless, the decrease in the product M·T (which is proportional to the squared
effective magnetic moment) with decreasing temperature suggests that antiferromagnetic
(AFM) interactions are present (inset in Figure 4).
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To estimate the value of AFM interactions, the inverse magnetic susceptibility H/M
was fitted by the Curie–Weiss law χ = C/(T − θCW) in its inverse form χ−1 = (T − θCW)/C,
where C is the Curie constant and θCW is the Curie–Weiss temperature (Figure 5). This
was performed at temperatures above T > 120 K, where the inverse magnetic suscep-
tibility is linear. The high-temperature approximation of the experimental data by the
Curie–Weiss law gives negative values of the Curie–Weiss temperature θCW = −59.5 K,
confirming the antiferromagnetic nature of the exchange interactions between spins in the
investigated sample.
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Figure 5. Inverse magnetic susceptibility H/M as a function of temperature; solid line corresponds 
to the Curie–Weiss law (see details in the text). Inset shows the magnetization for Li3V2(PO4)3 as a 
function of the external magnetic field at different temperatures. 
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The higher absolute value of the Curie–Weiss temperature in LVPO compared to
LVPO/C composite [32] indicates stronger magnetic interactions in pure LVPO. However,
when comparing with Li3V2(PO4)3 (92.5 wt.%)/Li3PO4 (7.5 wt.%) composite, one can
see close values of the Curie–Weiss temperature: θCW = −68 K for composite [33] and
θCW = −59.5 K for LVPO, and therefore, close values of AFM interactions for both samples.
The comparison of Curie–Weiss temperature and Curie constant values with the same
values for Li3V2(PO4)3 (86 wt.%)/Li3PO4 (14 wt.%) composite seems difficult due to the
small linear range in the temperature dependence of the inverse magnetic susceptibility
to approximate by the Curie–Weiss law (Figure S5). The deviation from the Curie–Weiss
law in the Li3V2(PO4)3 (86 wt.%)/Li3PO4 (14 wt.%) composite is due to the presence of a
significant number of magnetically correlated regions [13].

Despite the high values of the Curie–Weiss temperature, AFM interactions are not
sufficient for short-range and, especially, long-range magnetic orders to arise. This sug-
gestion can be confirmed by isothermal magnetization measurements as a function of the
external magnetic field (inset in Figure 5), which showed that in the investigated field
range up to H = 1 T, the M-H curves were linear without any tendency towards saturation
and hysteresis.

The approximation of the inverse dependencies of the H/M curve (Figure 5) yields a
Curie constant value of C = 56.9 emu·K·g−1·T−1 = 2.32 emu·K·mol−1·Oe−1, in addition to
the Curie–Weiss temperature. The effective magnetic moment can be calculated from the
Curie constant as follows:

µe f f =
√

3kBC/NA (1)
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where kB is the Boltzmann constant, C is the Curie constant and NA is Avogadro’s constant.
The obtained µeff for LVPO is 4.31 µB. Considering that the magnetic ion V3+ has a 3d2

electronic configuration and a ground state 3F with spin S = 1, we can estimate the effective
magnetic moment µeff as

µtheor = g·
√

Z·S·(S + 1)·µB (2)

where µB is the Bohr magneton, g is the Lande g-factor, Z is the number of magnetic ions in
a unit cell and S is the spin. Taking into account that g = 1.95 [32] for vanadium ions, we
obtain a theoretical effective magnetic moment per mole of µtheor = 3.9 µB. The theoretical
and experimental values of the effective magnetic moment for the LVPO composite coincide
within a 10% error margin. This discrepancy could be attributed to the approximation
error due to the insignificant linear section in the temperature dependence of reverse
magnetization (Figure 5). There are no other apparent reasons for the experimentally
obtained absolute value of the effective magnetic moment to exceed the theoretical one
unless it is due to the presence of magnetic ordering.

2.2. Electrochemical Performance

Figures 6 and 7 display the charge–discharge characteristics (charge–discharge capac-
ity depending on the number of charge–discharge cycles) and long-term cycle performance
at 1C, the equivalence in mA/g for the LVPO cathode material is 126 mAh/g, respec-
tively. With regard to the cyclic voltammograms of three types of vanadates, Li3V2(PO4)3
cathode material samples are compared with the same data for the previously reported
Li3V2(PO4)3 (86 wt.%)/Li3PO4 (14 wt.%) and Li3V2(PO4)3 (92.5 wt.%)/Li3PO4 (7.5 wt.%)
composites [13,33] at a scan rate of 0.5 mV s−1, as presented in Figure 8. The composites
Li3V2(PO4)3 (86 wt.%)/Li3PO4 (14 wt.%) and Li3V2(PO4)3 (92.5 wt.%)/Li3PO4 (7.5 wt.%)
are labeled as LVPO/LPO-14 and LVPO/LPO-7.5, respectively. This approach provides
a more consistent and reliable means to evaluate the diffusion kinetics of lithium ions
in various electrode compositions. The CV method’s ability to capture rapid changes in
electrochemical behavior at different scan rates makes it particularly suitable for this type of
analysis, offering detailed insights into the lithium-ion mobility within the electrode structure.
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Figure 6. Charge–discharge characteristics of the Li3V2(PO4)3 cathode material for various cycle 
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material is 126 mAh/g. 

Figure 6. Charge–discharge characteristics of the Li3V2(PO4)3 cathode material for various cycle
numbers (black—1 cycle, red—5 cycles; green—100 cycles; blue—250 cycles; pink—500 cycles; beige—
750 cycles; cyan—1000 cycles) at a 1C rate. The equivalence in mA/g for the LVPO cathode material
is 126 mAh/g.
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Figure 8. Cyclic voltammograms of cathode material samples Li3V2(PO4)3–LVPO (black),
Li3V2(PO4)3 (92.5 wt.%)/Li3PO4 (7.5 wt.%)–LVPO/LPO-7.5 (blue) and Li3V2(PO4)3 (86 wt.%)/Li3PO4

(14 wt.%)–LVPO/LPO-14 (red), at a temperature of 25 ◦C.

In cyclic voltammetry analysis, it is evident that the presence of salt in the sample
leads to the broadening of the wave and alteration of its amplitude, indicating a change in
the lithium diffusion coefficient. As the scan rate increases, the peaks on the CV gradually
broaden while retaining reversibility with slight overpotentials at different scan rates. An
analysis was conducted to study the relationship between the scan rate and peak current,
as shown in Figure 9. The results demonstrated that the (de)intercalation of ions for the
electrode is governed by diffusion processes. With an increase in scan rate from 0.1 to
0.5 mV s−1, the capacitive contribution accounted for 98.1%, suggesting a throughput
facilitated by a combination of rapid reaction kinetics and high performance.
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From the results of the linear approximation of cyclic voltammetry, the corresponding
slope was calculated, followed by the determination of the lithium-ion diffusion coefficient
(D) using Equation (3), which was found to be 2.82 × 10−12 cm2/s and 2.69 × 10−11 cm2/s
for the LVPO-7.5 and LVPO-14 samples, respectively. Differences in the lithium-ion diffu-
sion coefficients in these samples could be attributed to variations in structure, particle size
and the amount of impurity, which impact diffusion properties. It is noteworthy that for
the pure phase Li3V2(PO4)3 with high lithium stoichiometry, the value of the lithium-ion
diffusion coefficient is significantly higher. In our studies, it was found that the pure
LVPO exhibited a notably high lithium diffusion coefficient of D = 1.07 × 10−10 cm2/s.
This value is significantly higher than those reported for other LVPO composites and
variants, highlighting the superior ionic conductivity of the pure LVPO material. The high
diffusion coefficient of pure LVPO can be attributed to its well-ordered crystal structure,
which facilitates the smooth passage of lithium ions during the charge and discharge cycles.
This structural advantage results in enhanced electrochemical performance, character-
ized by rapid charge–discharge capabilities and the improved overall energy efficiency of
the battery.

Moreover, the high diffusion coefficient indicates that pure LVPO can effectively
accommodate rapid electrochemical processes, making it a highly suitable material for
applications requiring high power densities, such as in electric vehicles and high-power
electronics. This property, combined with the inherent thermal stability and safety of LVPO,
positions it as an attractive candidate for next-generation lithium-ion batteries.

In conclusion, the discovery of a high lithium diffusion coefficient in pure LVPO
underscores its potential as a high-performance cathode material. It opens up avenues for
further research and development in optimizing LVPO-based batteries for various high-
demand applications, promising advancements in the field of energy storage technologies.

2.3. Sample Characterization after Intercalation/Deintercalation Process

In addition to the as-prepared sample, the morphology of Li3V2(PO4)3 was investi-
gated during the lithium intercalation/deintercalation process. SEM images of multiple
relithiated samples (at the lithiation and delithiation stages) of Li3V2(PO4)3 are shown in
Figure 10. The elemental composition and elemental mapping were investigated by the
X-ray fluorescence analysis (XRF) method (Figure S4), confirming the uniform distribution
of elements. The X-ray diffraction (XRD) results of the material after conducting stability
tests and relithiation/delithiation cycles showed a slight increase in the halo, indicating a
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minor increase in disorder within the material (Figure S6). However, overall, the reflection
angles did not exhibit significant changes in the crystal lattice of the material.
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Figure 11. Magnetization M/H as a function of temperature (M-T curve) for as-prepared and relithi-
ated Li3V2(PO4)3 samples measured in the FC regime in the external magnetic field of H = 0.1 T. Inset 
shows M-T curve for relithiated Li3V2(PO4)3 sample measured in the FC-ZFC in the external mag-
netic field of H = 5 mT. 
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Figure 10. SEM images of Li3V2(PO4)3 surfaces after multiple charge/discharge cycles (100 cycles) at
different magnifications: (a) relithiated sample, (b) delithiated sample.

The change in the magnetic properties of the multiple relithiated samples relative
to the as-prepared one was detected by the magnetometry method, which is shown in
Figures 11 and 12. Noticeable differences are observed in both temperature dependences
(Figure 11) and in the field dependences of magnetization (Figure 12).
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Figure 11. Magnetization M/H as a function of temperature (M-T curve) for as-prepared and
relithiated Li3V2(PO4)3 samples measured in the FC regime in the external magnetic field of H = 0.1 T.
Inset shows M-T curve for relithiated Li3V2(PO4)3 sample measured in the FC-ZFC in the external
magnetic field of H = 5 mT.
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and relithiated Li3V2(PO4)3 samples measured at the temperature of T = 5 K. Inset shows the M-H
curve for relithiated Li3V2(PO4)3 sample at room temperature.

Additionally, a quantification of the number of tetravalent vanadium ions was carried
out using the ESR method, following the previously applied method for the as-prepared
sample. It can be observed that the ESR spectrum of the studied sample (Figure 13) is more
distinctly registered compared to that of the initial sample (as shown in Figure 3). This
observation indicates an increased number of magnetic centers actively participating in
the absorption of the radiofrequency signal. According to quantitative assessments of the
spectrum, the concentration of tetravalent vanadium ions is approximately 7.5 percent. This
substantial percentage of tetravalent vanadium ions is significant as it may be the cause
of magnetic inhomogeneity within the sample. In other words, this high concentration of
ions could lead to the formation of magnetically correlated regions. This phenomenon of
magnetically correlated areas is something we, indeed, observed in our experiments focused
on measuring magnetization. In essence, the enhanced intensity of the ESR spectrum in
the multiple relithiated samples suggests a notable alteration in its magnetic properties,
particularly in terms of the number and distribution of magnetic centers. The presence
of 7.5% tetravalent vanadium ions significantly influences the magnetic behavior of the
material, potentially leading to the development of regions within the sample where
magnetic properties are correlated or linked. This correlation has been substantiated
through our dedicated magnetization measurement experiments, revealing new insights
into the magnetic nature of the material.

It should be noted that the observing ESR signal directly proves the absence of a
metal phase in a relithiated LVPO sample since the presence of any metal inclusions makes
it impossible, or significantly complicates, to detect ESR under conventional experimen-
tal conditions.
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3. Discussion

The main findings of this article are based on the results obtained from electrochemical
studies, with a particular focus on highlighting the high lithium-ion diffusion coefficient
and the material’s stability under multiple cycling conditions. Additionally, other methods
used in this study support and visually demonstrate the high-performance characteristics
of the material under investigation. The X-ray diffraction (XRD) results suggest that
despite the electrochemical cycling of relithiation and delithiation, the crystal lattice of
the material retains its stability, implying that lithium diffusion occurs without significant
alteration of structural parameters. Thus, the diffusion coefficient can be assessed based on
the assumption of crystal lattice stability, which is crucial for further understanding the
mechanisms of lithium-ion conductivity in this material.

Previous research, such as [50], has shown a decrease in capacity and a drop in
efficiency to 40 percent over 500 cycles. In [41], a significant reduction in capacity was
observed as early as 30 cycles. In [39], cyclic voltammograms for carbon composites were
provided, and similar measurements for LVP@M-101 composites at different scanning
rates of 0.05–0.25 mVs−1 were presented in [45]. The SEM images reveal that the samples
exhibit a more pronounced granular structure with smaller granule sizes compared to
LVPO/LPO composites [13,33], synthesized using similar technology. It appears that the
presence of salt does not significantly influence the absolute values of specific capacitance,
even slightly enhancing it. However, the pure phase is characterized by remarkably high
diffusion coefficient values, which could be critical for practical applications, potentially
impacting the speed of battery charging and discharging processes.

The investigation of the magnetic properties using ESR and magnetometry reveals a
high degree of stoichiometry and magnetic homogeneity in the initial sample, indicating
the absence of magnetically correlated regions of significant size that could be detected
during experiments. The high stoichiometry and magnetic uniformity of the pure sample
are markedly different from the properties of previously studied LVPO/LPO composites.
This distinction is reflected in the electrochemical properties, particularly in the lithium
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diffusion coefficient, which shows higher values for the pure sample compared to the
composite. The surface analysis of the sample through scanning electron microscopy (SEM)
after multiple cycles revealed that the granular structure of the sample is maintained but
undergoes substantial changes during a single charge/discharge cycle. The surface of the
lithiated sample is noticeably different from that of the delithiated one, a phenomenon
frequently observed and reported in numerous studies (see Figure 10).

Significant changes in the magnetic properties can also be observed. In particular,
Figures 12 and 13 compare the M-T and M-H curves of the initial and lithiated samples,
respectively. A noticeable decrease in the absolute magnetization values of the lithiated
sample across the entire temperature range studied is evident. The most likely explanation
for this observation is the presence of a greater number of tetravalent vanadium ions in the
lithiated sample compared to the initial one. As previously mentioned, V4+ ions have an
electron spin of S = 1/2, whereas V3+ ions have a spin of 1. Therefore, the valence change
from 3+ to 4+ leads to a reduction in the spin of individual centers and, consequently, a
decrease in the macroscopic magnetic moment, i.e., magnetization. Indirect confirmation
of this hypothesis can be seen in the divergence of the FC-ZFC curves (inset in Figure 11)
and the appearance of a hysteresis loop in the field dependence of magnetization of the
lithiated sample (inset in Figure 12). This may be due to the presence of ferromagnetic or
ferrimagnetic correlated regions arising from the presence of magnetic ions with mixed
valency (V3+/V4+). Apparently, the process of intercalation/deintercalation during multiple
cycling is not entirely reversible in terms of restoring the valence state of the vanadium
ions. However, this does not lead to a deterioration of the electrochemical properties.

The core focus of our study is to elucidate the pivotal role of the synthesis tech-
nique in producing carbon-free LVPO and its significant impact on electrochemical perfor-
mance. Our work demonstrates that the methodology of obtaining carbon-free LVPO is
of paramount importance because the traditional synthesis methods for LVPO are shown
to result in a significantly shorter lithiation–delithiation cycle life [51–53]. The emphasis
on the innovative synthesis approach of carbon-free LVPO in our study is to highlight the
enhanced electrochemical stability and performance derived from the improved structural
integrity, which is substantiated by the powder diffraction and X-ray phase analysis data.
These analyses provide crucial insights into the material’s crystal structure and phase
purity, which are directly correlated with the observed electrochemical performance. The
comprehensive analysis through powder diffraction and X-ray phase analysis already
contributes significantly to the understanding of the material’s performance characteris-
tics, underscoring the methodological advancements made in the synthesis of LVPO for
improved electrochemical applications.

4. Materials and Methods
4.1. New Method for Sample Synthesis

The pure Li3V2(PO4)3 (LVPO) investigated in this study was obtained via the hy-
drothermal method, followed by subsequent annealing in an Ar atmosphere. The synthesis
was realized according to the scheme shown in Figure 14:

(i) Chemically pure vanadyl formate VO(HCOO)2·H2O, lithium carbonate Li2CO3 and
ammonium dihydrogen phosphate NH4H2PO4 were used in stoichiometric molar ratios as
starting materials.

Ammonium dihydrogen phosphate (NH4H2PO4) was selected as a reagent for the
synthesis due to its amphoteric properties, chemical stability, high water solubility and
potential to achieve the highest purity of product synthesis. Lithium carbonate (Li2CO3)
was chosen for its electrochemical properties, high reactivity at elevated temperatures, low
toxicity and safety during storage, low cost and widespread availability. It should be noted
that lithium hydroxide LiOH, often used in similar synthesis processes, is hygroscopic,
making it challenging to control the stoichiometry of the resulting reaction products.
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Vanadyl formate (VO(HCOO)2·H2O) is a complex vanadium-containing salt of car-
boxylic (formic) acid and vanadyl ion VO2+. The vanadium ions in VO2+ are in a tetravalent
state, a more reduced form compared to V2O5 or ammonium metavanadate NH4VO3. Dur-
ing the hydrothermal action inside the VO(HCOO)2·H2O molecule, the HCOO-VO-OOCH
chemical bond is broken, and the 2HCOO− anion decomposes into 2CO2 and H2 gaseous
products. This provides a reducing atmosphere in the closed reactor and allows for a
reduction in the temperature and time of hydrothermal treatment of the precursor. The syn-
thesis details of vanadyl formate (VO(HCOO)2·H2O) are provided in the Supplementary
Materials (Figures S1 and S2).

(ii) The reagents mentioned above were combined in an autoclave reactor (100 mL),
using 5–6 mL of distilled water for homogenization. The autoclaving was conducted at
180 ◦C for 10 h, followed by cooling to room temperature without air exposure.

(iii) The resulting dark violet gel-like precursor was dried in an open Teflon glass
in a drying oven until a constant weight was achieved (approximately 5 h). The dried
precursor was then ground, pressed and subjected to carbothermal reduction: calcination
at 400 ◦C in an argon flow (99.998%, “Linde”, TS 6-21-12-94) for 5 h in the presence of a
carbon substrate (CT-900, Donkarb-Graphite). The carbon was placed in a separate crucible
to prevent precursor contamination and the formation of by-products.

(iv) The resulting precursor was pressed at a pressure of 100 bar, placed onto a
carbon substrate in a crucible and annealed at 750 ◦C for 5 h in a tube furnace within an
inert atmosphere.

4.2. Structural and Microstructural Investigations Methods

The composition of the obtained Li3V2(PO4)3 (LVPO) samples was controlled using
a Shimadzu XRD-7000 S automatic diffractometer (Shimadzu Corporation, Kyoto, Japan)
(monochromatic Cukα—radiation, λ = 1.54 Å) with 0.03◦ steps in the 10–70◦ range. An
exposure of 2 s at a point was used. The phase analysis of the reaction products was
performed using the crystallographic database “Database of Powder Standard–PDF2”
(ICDD, USA, Release 2005). X-ray pattern processing was conducted according to the
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Rietveld method using the FULLPROF software (Version date 23.11.2023, https://www.ill.
eu/sites/fullprof/php/downloads.html).

During the synthesis process, the phase composition of the final product was con-
trolled using X-ray phase analysis with a temperature step of 50–100 ◦C. The resulting
diffraction patterns are shown in Supplementary Materials (Figure S3). It can be observed
that carbon starts to leave the system at 400 ◦C and is completely removed by 600 ◦C.
The phase formation begins at 500 ◦C and is totally completed at 750 ◦C. An increase in
temperature above 750 ◦C (up to 850 ◦C) does not change the phase composition but leads
to agglomeration and partial melting of LVPO particles.

The surface morphology of the LVPO structure was analyzed using a Merlin scan-
ning electron microscope (SEM) (Carl Zeiss AG, Oberkochen, Germany). The elemental
composition and elemental mapping were investigated by the X-ray fluorescence analysis
(XRF) method using Bruker M4 TORNADO micro-XRF Spectrometer (Bruker Corporation,
Bremen, Germany).

4.3. Magnetic Property Investigation Methods

The electron spin resonance (ESR) spectra of the LVPO sample were measured using
an ER 200 SRC (EMX/plus) spectrometer (Bruker Corporation, Germany) at a frequency
of 9.4 GHz at room temperature. This was achieved using a double rectangular X-band
resonator, ER 4105DR. This equipment enables the detection of the electron spin resonance
spectrum of the investigated sample and the benchmark spectrum simultaneously.

The magnetization of LVPO was measured using a commercial PPMS-9 platform
(Quantum Design, San Diego, CA, USA) in temperatures ranging from 5 to 305 K in field-
cooled (FC) and zero field-cooled (ZFC) regimes. The magnetic hysteresis loops were
measured in the magnetic field range of 1 T. The magnetization as a function of temperature
(M-T curve) was measured in a magnetic field of H = 0.1 T in the FC regime and in a
magnetic field of 5 mT in FC and ZFC regimes.

4.4. Electrochemical Property Investigation Methods

Electrochemical property investigations were carried out using the galvanostatic method
in a three-electrode electrochemical cell with a PARSTAT 4000 galvanostat/potentiostat (AME-
TEK Scientific Instruments, Oak Ridge, TN, USA). The working electrode was a Li3V2(PO4)3
(LVPO) sample, while metallic Li plates were used as reference and counter electrodes. The
used electrolyte was a solution of LiPF6 in ethylene carbonate (EC) and dimethyl carbonate
(DMC), specifically a 1.0 M LiPF6 in an EC/DMC mix at a 50/50 volume ratio. All reagents
were purchased from Sigma Aldrich and were of “Battery grade”. Electrochemical cell
assembly was carried out in a glovebox under a dry argon atmosphere with oxygen content
not exceeding 1 ppm. Galvanostatic cycling tests and cycle characteristics were studied
within a voltage window of 2.5–4.5 V at room temperature. The mass loading value of the
LVPO electrode is 7.4 mg/cm2.

Cyclic voltammetry (CV), commonly used in traditional electrochemical analysis to
determine lithium diffusion coefficients, was applied to study the kinetics of ion diffusion
in LVPO electrodes at scan rates ranging from 0.5 to 100 mV s−1. To calculate the diffusion
coefficient for lithium ions in lithium vanadium phosphate (LVPO) or similar materials
in electrochemical systems, the Randles–Sevcik equation is often used, especially in the
context of cyclic voltammetry [18]. The Randles–Sevcik equation is given by

Ip =
(

2.69 × 105
)

n3/2 AD1/2CLiv1/2 (3)

where Ip is the peak current in amperes (A), n is the number of electrons transferred in the
redox event, A is the area of the electrode in square centimeters (cm2), D is the diffusion
coefficient in square centimeters per second (cm2/s), CLi is the concentration of the reactive
species in moles per cubic centimeter (mol/cm3), v is the scan rate in volts per second
(V/s). This equation allows for the calculation of the diffusion coefficient (D) of lithium
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ions moving through the electrode material during the electrochemical reaction based on
the observed peak current during a cyclic voltammetry scan. The equation highlights how
the peak current is directly proportional to the square root of the scan rate and the diffusion
coefficient, providing a method to estimate D from experimental data.

5. Conclusions

In this study, Li3V2(PO4)3 cathodes, synthesized via a hydrothermal method and
further treated in an argon atmosphere, demonstrated promising characteristics for use
in lithium-ion batteries (LIBs). The synthesis process ensured a single-phase material, as
verified through X-ray diffraction analysis. The resulting granular structure, observed via
scanning electron microscopy, suggested an advantageous uniformity in particle size, which
is beneficial for the electrochemical functionality of these cathodes. Detailed magnetic
analyses, including magnetometry and electron spin resonance, indicated the presence of
tetravalent vanadium ions (V4+), a key factor influencing the cathode’s electrochemical
traits. This particular valence state implied a lithium deficit in the initial structure, though
the concentration of V4+ ions remained relatively low and evenly distributed across the
material. This uniform distribution, evidenced by consistent magnetic properties, is crucial
for reliable electrochemical performance.

For the synthesized pure phase Li3V2(PO4)3 sample, free from contaminants like car-
bon or salts, thorough electrochemical testing revealed high lithium diffusion coefficients,
signifying exceptional ionic conductivity vital for LIB performance. The material also dis-
played outstanding stability over 1000 charge–discharge cycles, indicating its suitability for
prolonged use in LIBs. The combination of these high lithium diffusion rates and sustained
cycle stability underlines the potential of Li3V2(PO4)3 as a viable material for advanced
energy storage solutions. Further investigations on the relithiated Li3V2(PO4)3 sample post
multiple cycling, using methods such as scanning electron microscopy, magnetometry and
electron spin resonance, were instrumental in assessing any material degradation.

6. Patents

The herein presented new method for sample synthesis is protected by patents: patent
RU 2801381 C1, 8 August 2023, Synthesis Method of Cathode Material with the Composition
Li3V2(PO4)3, Gyrdasova O.I., Deeva Yu.A., Chupakhina T.I., Gavrilova T.P., Khantimerov
S.M.; patent RU 2732254 C1, 14 September 2020, Synthesis method of vanadyl (IV) formate
(variants), Gyrdasova O.I., Krasil’nikov V.N.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms25052884/s1. Reference [54] is cited in the Supplementary Materials.
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