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Abstract: Specific subpopulations of neurons in nerve and sensory systems must be developed and
maintained, and this is accomplished in significant part by neurotrophins (NTs) and the signaling
receptors on which they act, called tyrosine protein kinase receptors (Trks). The neurotrophins–
tyrosine protein kinase receptors (NTs/Trks) system is involved in sensory organ regulation, including
the visual system. An NTs/Trks system alteration is associated with neurodegeneration related to
aging and diseases, including retinal pathologies. An emergent model in the field of translational
medicine, for instance, in aging study, is the annual killifish belonging to the Nothobranchius genus,
thanks to its short lifespan. Members of this genus, such as Nothobranchius guentheri, and humans
share a similar retinal stratigraphy. Nevertheless, according to the authors’ knowledge, the occurrence
and distribution of the NTs/Trks system in the retina of N. guentheri has never been investigated
before. Therefore, the present study aimed to localize neurotrophin BDNF, NGF, and NT-3 and
TrkA, TrkB, and TrkC receptors in the N. guentheri retina using the immunofluorescence method. The
present investigation demonstrates, for the first time, the occurrence of the NTs/Trks system in N.
guentheri retina and, consequently, the potential key role of these proteins in the biology and survival
of the retinal cells.
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1. Introduction

The visual system of vertebrates supports interaction with the environment and is
crucial for vital processes such as reproduction, migration, food search, and physical activ-
ity [1]. In both mammals and fish, visual system performance relies on specialized cells [2]
under the control of neurotrophins (NTs) and their specific receptors. Neurotrophins
are growth factors involved in the development, maintenance, and neuronal plasticity of
different neuronal subpopulations of the central and peripheral nervous system [3–7].

The limitation of neurotrophin amounts during development controls the number
of surviving neurons to ensure a match between neurons and the need for the adequate
innervation density of the target. Neurotrophins also regulate decisions about cell fate,
axon growth, dendrite growth and pruning, and protein expression, such as ion channels,
biosynthetic transmitter enzymes, and neuropeptide transmitters which are essential for
normal neuronal function [8]. The availability of neurotrophins is also required in adult-
hood, where it controls synaptic function and plasticity and supports neuronal cell survival,
morphology, and differentiation [9].
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Moreover, their role has been observed in the regenerative events of sensory epithe-
lia of teleosts, including zebrafish [10,11]. There are two signal transduction systems
that support the biological functions of neurotrophins determined by interactions with
two types of receptors: the high affinity Trk receptors (tyrosine kinase receptors) and the
low affinity neurotrophin P75 receptor (p75NTR). Three main types are known as trans-
membrane tyrosine kinase proteins, TrkA (tyrosine protein kinase receptors type A), TrkB
(tyrosine protein kinase receptors type B), and TrkC (tyrosine protein kinase receptors
type C) [5,12]. The recognition and interaction with the substrate occur in a specific but
not exclusive way. TrkA is a receptor for the nerve growth factor (NGF), TrkB binds both
brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT-4), and TrkC recognizes
neurotrophin-3 (NT-3). TrkA and TrkB can also interact, with a lower affinity, with NT-3.
Furthermore, the p75 receptor can bind to unprocessed or mature neurotrophin and act as
a Trks coreceptor [13]. By interacting with their receptors, neurotrophins play a regulatory
role in neuronal proliferation, development, survival, growth, differentiation, and synaptic
plasticity [4–6]. As a highly differentiated neuroectodermal tissue, retina maintenance
is governed by neurotrophin-receptor systems. NGF, BDNF, and NT-3 play distinct and
crucial roles in the generation of retinal neurons. For instance, NGF and its receptor are
expressed in rat retinal ganglion cells where they play a role during development [14,15].

Specifically, it determines the provisional quantity of newly generated neurons in the
retina inducing cell death in the developing retina by activating the neurotrophin receptor
p75 [16,17].

Neurotrophins, particularly BDNF, play a crucial role in the structural and functional
development of retinal ganglion cells, guiding morphological differentiation and controlling
the functional adaptability of visual circuits [18].

In vitro studies have shown that BDNF significantly enhances neurite regeneration
in the human retina [19]. Furthermore, the TrkB/BDNF signaling pathway regulates the
commitment to and/or differentiation of photoreceptor cells from retinal progenitor cells,
guiding and controlling cell fate decisions [20]. NT-3 supports neuron differentiation and
sustains the survival of differentiated retinal ganglion and amacrine cells during a distinct
post-differentiation period [21].

Microscopic examinations showed that the retina consists of distinct layers of nerve
cell bodies and two layers of synapses in all vertebrates, from fish to mammals. Although
less complex, fish share many anatomical and physiological characteristics with mammals,
including humans [22–25].

Hence, they are an important additional element to consider in mammalian model
research [26]. As a matter of fact, the teleost retina shares a lot of anatomical similarities with
the mammalian one. For instance, the retina of the teleost Nothobranchius guentheri shows a
clear-layered structure with distinct cells layers: retinal pigment epithelium (RPE), inner
segment/outer segment of the photoreceptor layer (PRL), outer nuclear layer (ONL), outer
plexiform layer (OPL), inner nuclear layer (INL), inner plexiform layer (IPL), and ganglion
cell layer (GCL). The ONL shows differentiated photoreceptors with well-developed outer
segments suggesting the high quality of the vision of this species of fish [1].

N. guentheri belongs to the Nothobranchiidae family, a large group of fish, typical of
North Africa where they mainly inhabit shallow ephemeral pools and seasonal swamps.
The adaptation to this kind of habitat influenced visual system development. For instance,
the embryogenesis study of Nothobranchius revealed that the duration of its visual system
development can be influenced by diapause that is fundamental in ephemeral ponds.
However, the crucial steps of this process are similar in other teleosts [27]. Moreover, the
adaptation to the natural environment has meant that the visual system of N. guentheri is
already functional at the hatching moment [28]. Nevertheless, the differentiation of retinal
cells does not stop after hatching but continues throughout life [29,30]. The development
of new cells in the fish retina occurs from the proliferation of multipotent progenitor cells
located in the ciliary marginal zone (CMZ) [31,32] and from the division of Müller glial
cells [32]. Finally, the ecological adaptability of Nothobranchius to life in shallow waters
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influenced the thickness of retinal layers [33]. Indeed, the thickness of the temporal, nasal,
and cranial areas of the retina are possibly associated with peripheral vision, which plays
a fundamental role in various behavioral acts. Some differences between young and old
Nothobranchius occur. For instance, aged fish show a thinning of the retina layers and
a decrease in the pigment epithelium layer [1]. More specifically, some authors [1,34]
demonstrated that in older fish, GCLIPL and INL become thinner because of the significant
decrease in the number of GCL and INL cells [1]. The species of the genus Nothobranchius
have a short life expectancy, both in the wild and in captivity [35], and they hold the
record for the fastest maturing vertebrate with a short life circle [35]. Indeed, maximum
life expectancies range from 3 to 28 months depending on the species. Nothobranchius
embryo storage is inexpensive, commercially available, and easily reared in captivity.
Moreover, the isolation of vertebrate aging-related genes is easy by homology cloning, so
it is suitable for test manipulation on aging [36–39]. The short lifespan allows to perform
long-life experiments that are unthinkable in other vertebrates, and the fish of this genus
offers the possibility to track the process of tissue aging thanks their different age-related
biomarkers [40,41]. In addition, the Nothobranchius retina undergoes neurogenesis and
regeneration phenomena, even in postnatal life [24], thanks to the persistence of stem
cells. For all these reasons, the Nothobranchius is being established as a model organism
in aging research [42], which has been impaired for a long time in vertebrates due to the
lack of short-lived models [36]. N. guentheri is not only a suitable object of study in the
fields of evolution and development, but has recently also been proposed as a model for
studying the structure, formation, and stages of the onset of age-related changes in the
visual system [1].

Aging is a complex phenomenon that depends on the interaction of numerous genes,
cell pathways, and environmental risk factors. Among the feared complications of aging,
there is the age-related degeneration of the retina. Retinal neurons are sensitive to age-
related neurodegenerative events. Indeed, it has been demonstrated that alterations and the
loss of neuronal cells occur in the aging retina of different experimental models (zebrafish,
mice, rats) and humans [43–55]. The retina is an integral part of the CNS, so it is an
intriguing model for studying neurodegenerative phenomena [56–58]. However, the aging
mechanisms of the killifish retinal system are still poorly understood, and it’s unclear
whether changes to the neurotrophin-receptor system could play a role in this process.
To shed some light on this aspect, it is necessary to start from the investigation of the
occurrence of neurotrophins and their specific receptors in the retina of a model organism
for aging studies.

Hence, the present study aims to localize Neurotrophins and tyrosine neurotrophin
receptors in the different retinal layers of adult N. guentheri.

2. Results

In order to analyze the localization of neurotrophin/tyrosine kinase receptors (NTs/Trks)
system (brain-derived neurotrophic factor/tyrosine protein kinase receptors type B (BDNF/TrkB),
nerve growth factor/tyrosine protein kinase receptors type A (NGF/TrkA), and neurotrophin-
3/tyrosine protein kinase receptors type C (NT-3/TrkC), an immunohistochemistry study was
conducted. The cells that are immunoreactive to the neurotrophin/receptors system have been
identified using a topographic approach and using anti-Opsin, anti-Chat, Parvalbumin, and
s100p antibodies as specific markers. The observed immunoreaction showed no differences
between samples of different sexes. In this perspective, male retinal images will be shown in the
present work.

2.1. Histology of N. guentheri Retina

According to the morphological investigation, the retina of Nothobranchius guentheri
had a similar stratigraphy to other vertebrates. The retina of N. guentheri was made up of
seven layers: retinal pigment epithelium (RPE), photoreceptor layer (PRL) containing inner
and outer segment of rods and cones, outer nuclear layer (ONL) containing cells body of



Int. J. Mol. Sci. 2024, 25, 2732 4 of 20

rods and cones, inner nuclear layer (INL) containing different subpopulation of amacrine
cells (ACs), bipolar cells (BCs), and horizontal cells (HCs), the GCL containing ganglion
cells, the outer plexiform layer (OPL) containing the cellular prolongation between ONL
and INL, and the inner plexiform layer (IPL) with the cellular prolongation between INL
and ganglion cell layer (GCL) (Figure 1).
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Figure 1. (a) N. guentheri retina (arrows), optic nerve (asterisk). (b) Stratigraphy of N. guentheri retina:
RPE, PRL, ONL, OPL, INL, IPL, GCL. Hematoxylin-Eosin. Magnification (a) 20× (b) 40×.

2.2. Trks Immunofluorescences in N. guentheri Retina

In the retina of N. guentheri, the neurotrophins receptors TrkA, TrkB, and TrkC were
always localized in the extensions of RPE and in the inner and outer segments of the
PRL (Figure 2a–d,f). In the OPL TrkA, TrkB, and TrkC were found (Figure 2a–c). In the
INL, several subpopulations of ACs and some BCs were immunopositive to Trks (tyrosine
protein kinase receptors) (Figure 2). Also, the neurotrophin receptor TrkB and TrkC were
localized in HCs (Figure 2d,f). Different subpopulations of GCs immunostained to Trk
receptors (Figure 2) were also observed.
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(asterisk) of the photoreceptors layer; in the OPL (red arrows); in different subpopulation of ACs
(white and red gallon-arrows); in the soma of GCs (stars). (b) BCs TrkA immunopositive (white
bold arrows). (c) TrkB immunoreactivity in the cytoplasmic prolongations of the cells of the RPE
(arrowheads); in the inner segment (arrows) and outer segment (asterisks) of the photoreceptors layer;
in the OPL (red arrows); in several subpopulation of ACs (white and red gallon-arrows); in cellular
prolongation in IPL (yellow arrows); in the soma of GCs (stars). (d) TrkB immunostaining in the inner
segment of PRL (arrows indicate the soma of rods and cones); in BCs (yellow arrows); in the HCs
(white bold cells), and in GCs (stars). (e) TrkC immunoreactivity in the cytoplasmic prolongations of
the cells of the RPE (arrowheads); in the inner segment (arrows) and outer segment (asterisk) of the
photoreceptors layer; in the OPL (red arrows); in the INL several subpopulations of ACs (white and
red gallon-arrows) and, in the soma of GCs (stars). (f) TrkC immunostaining in the inner segment
of PRL (arrows indicate the soma of rods and cones); in the BCs (yellow arrows); in the HCs (white
bold cells), and in the GCs (stars). (a–c) Magnification 40×; Scale bar 20 µm. (d–f) Magnification 63×;
scale bar 10 µm.

2.3. Double Immunofluorescences of BDNF and TrkB in N. guentheri Retina

In the retina of N. guentheri, the BDNF/TrkB system was immunolocalized in RPE
prolongations, and in the inner segment of the PRL (Figure 3). In the PRL, the outer
segment was exclusively BDNF immunostained (Figure 3a), and the inner segment of the
photoreceptors is BDNF and TrkB was double-marked (Figure 3c). BDNF and TrkB were
observed in the OPL, but they did not overlap (Figure 3). Distinct subpopulations of ACs
exhibited immunoreactivity to BDNF and TrkB separately (Figure 3a,b), just some of them
showed double staining (Figure 3c). In the GCL, the soma of the GCs (ganglion cells) was
BDNF and TrkB immunostained (Figure 3a,b).
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Figure 3. BDNF/TrkB immunostaining in N. guentheri retina. (a) BDNF-immunoreactivity in the
cytoplasmic prolongations of the cells of the RPE (arrowheads); in the inner segment (white-arrows)
and outer segment of PRL (asterisk); in the OPL (yellow-arrows); in a subpopulation of ACs (gallon-
arrows); weakly stained in the soma of GCs (stars). (b) TrkB-immunoreactivity in the cytoplasmic
prolongations of the cells of the RPE (arrowheads); in the inner segment of PRL (white-arrows); in
the OPL (yellow-arrows); in different subpopulations of ACs (gallon-arrows and red-arrows); in the
soma of GCs (stars) poorly stained. (c) Colocalization view of BDNF and TrkB in the cytoplasmic
prolongations of the cells of the RPE (arrowheads); in the inner segment of PRL (white-arrows);
in a subpopulation of ACs (gallon-arrows). Some ACs and GCs TrkB immunopositive did not
show double staining with BDNF. A similar condition was observed for the OPL: BDNF and TrkB
immunostained but non-overlapping. Magnification 40×. Scale bar 20 µm.

2.4. Double Immunofluorescences of NGF and TrkA in N. guentheri Retina

Research on the NGF/TrkA system in the retina N. guentheri showed RPE extensions
are immunopositive to the neurotropin receptor TrkA but not to NGF (Figure 4). In the
photoreceptor layer, the outer segment labeled NGF and the double stained inner segment
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NGF e TrkA were observed (Figure 4). NGF and TrkA were immunolocalized in the
OPL (Figure 4b), but merging has not been observed (Figure 4c). In the INL, several
subpopulations of ACs were immunopositive to NGF and TrkA (Figure 4a,b), some of these
immunopositive exclusively to TrkA (Figure 4b) and some of these colocalized (Figure 4c).
BCs immunoreactive to NGF were found (Figure 4a). Moreover, different subpopulations
of GCs were NGF and TrkA immunostained (Figure 4a,b) in GCL, and no colocalization
views were observed (Figure 4c).
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view of NGF and TrkA in the inner segment of PRL (white-arrows) and in a subpopulation of ACs 

Figure 4. NGF/TrkA immunostaining in N. guentheri retina. (a) NGF-immunoreactivity in the inner
segment (white-arrows) and outer segment (asterisk) of the photoreceptors layer; in the OPL (yellow
arrows); in a subpopulation of ACs (gallon-arrows); in the BCs (blue arrows); in the soma of GCs
(stars). (b) TrkA-immunoreactivity in the cytoplasmic prolongations of the RPE (arrowheads); in
the inner segment of PRL (white-arrows); in the OPL (yellow-arrows); in different subpopulation of
ACs (gallon-arrows and red-arrows); in the soma of GCs (stars) poorly stained. (c) Colocalization
view of NGF and TrkA in the inner segment of PRL (white-arrows) and in a subpopulation of ACs
(gallon-arrows). Some ACs and GCs TrkA immunopositive did not show double staining with NGF.
A similar condition was observed for the OPL: NGF and TrkA immunostained but non-overlapping.
Magnification 40×. Scale bar 20 µm.

2.5. Double Immunofluorescences of NT-3 and TrkC in N. guentheri Retina

Regarding the NT-3/TrkC system in the N. guentheri retina, RPE cell prolongation
immunostain was found. In the PRL, the inner segment immunopositive to NT-3 and the
outer segment immunoreactive to TrkC have been observed. The OPL was NT-3 and TrkC
immunoreactive (Figure 5). In the INL, BCs immunoreactive with NT-3 (Figure 5a) and
a subpopulation of ACs immunopositive to TrkC (Figure 5b) were seen. In GCL, several
subpopulations of GCs were NT-3 and TrkC immunostained, respectively (Figure 5a,b).
Colocalization views were never observed (Figure 5c).

2.6. Immunofluorescences of Anti-Opsin, Anti-Chat, Parvalbumin and s100p in N.
guentheri Retina

To ascertain the cellular identity of the immunopositive cells shown, anti-Opsin (spe-
cific for rods), anti-Chat (specific for ACs), parvalbumin (specific for BCs), and s100p
(specific for HCs and GCs) antibody immunoreactions were investigated. The observed
immunostaining perfectly overlapped the specificity of the antibodies used as markers
(Figure 6). In addition, the RPE was immunoreactive to anti-chat, anti-opsin, s100, and
parvalbumin; the outer segment of the PRL was anti-chat, parvalbumin, and s100 immunos-
tained, and the inner segment of the PRL was parvalbumin and s100 immunoreactive. In the
INL, ACs were parvalbumin and s100 immunolabeled; finally, GCs were also parvalbumin
immunopositive (Figure 6).
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Figure 5. NT-3/TrkC immunostaining in N. guentheri retina. (a) NT-3-immunoreactivity in the
cytoplasmic prolongations of the cells of the RPE (arrowheads); in the inner segment of PRL (white
arrows); in OPL (yellow-arrows); in the BCs (red arrows); in the soma of GCs (asterisks). (b) TrkC-
immunoreactivity in the cytoplasmic prolongations of the cells of the RPE (arrowheads); in the outer
segment of PRL (white-arrows), in the OPL (yellow-arrows); in different subpopulations of ACs
(gallon-arrows and blue-arrows); in the soma of GCs (asterisks) poorly stained. (c) No colocalization
view was observed. Magnification 40×. Scale bar 20 µm.

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 8 of 22 
 

 

 
Figure 6. Anti-opsin, anti-chat, parvalbumin, and s100 as specific markers of subpopulation cells in 
N. guentheri retina. (a) Anti-Opsin immunoreactivity in the cytoplasmatic prolongation of RPE 
(arrowheads) and in the rods (red arrows) of PRL. (b) Anti-chat immunoreactivity in the 
cytoplasmatic prolongation of RPE (arrowheads); in the outer segment of the photoreceptor layer 
(red arrows); in different subpopulations of ACs (white and red gallon-arrows). (c) Parvalbumin 
immunoreactivity in the cytoplasmatic prolongation of RPE (arrowheads); in the outer segment (red 
arrows) and inner segment (white arrows) of PRL; in the ACs (gallon-arrows); in the BCs (yellow 
arrows) of INL; in the cellular prolongation in IPL (blue arrows); in the soma of GCs (asterisk). (d) 
s100p immunoreactivity in the cytoplasmatic prolongation of RPE (arrowheads); in the outer 
segment (red arrows) and inner segment (white arrows) in PRL; in the BCs (yellow arrows), HCs 
(white bold arrows), ACs (gallon arrows) in the INL; in cellular prolongation of the IPL (blue 
arrows); in the soma of GCs (asterisk). Magnification 40×. Scale bar 20 µm. 

2.7. Quantitative Analysis 
According to the results of the quantitative analysis, the cellular prolongations of the 

RPE were immunoreactive to neurotrophin BDNF and NT-3 and to neurotrophin 
receptors type A, B, and C. The inner segment of the PRL was always immunopositive to 
BDNF/TrkB, NGF/TrkA, and the NT-3/TrkC systems; however, the outer segment of the 
PRL was BDNF and NGF immunoreactive. In the INL, several subpopulations of ACs 
immunopositive to neurotrophin BDNF and NGF and to Trks (type A, B, and C) were 
observed. BCs were immunoreactive to Trks (A, B, and C) and to neurotrophins NGF and 
NT-3, whereas HCs were exclusively immunostained by TrkB and TrkC. Finally, the GCs 
were immunoreactive to the neurotrophin systems BDNF/TrkB, NGF/TrkA, and NT-
3/TrkC, but not always colocalized. The distributions of cellular markers: anti-Chat, anti-
Opsin, Parvalbumin, and s100p were perfectly overlapping concerning their specificity. 
Comparison between the neurotrophin/tyrosine kinase receptor system and specific 
marker distribution patterns is shown in Figure 7 and Table 1. 

Figure 6. Anti-opsin, anti-chat, parvalbumin, and s100 as specific markers of subpopulation cells
in N. guentheri retina. (a) Anti-Opsin immunoreactivity in the cytoplasmatic prolongation of RPE
(arrowheads) and in the rods (red arrows) of PRL. (b) Anti-chat immunoreactivity in the cytoplasmatic
prolongation of RPE (arrowheads); in the outer segment of the photoreceptor layer (red arrows); in
different subpopulations of ACs (white and red gallon-arrows). (c) Parvalbumin immunoreactivity in
the cytoplasmatic prolongation of RPE (arrowheads); in the outer segment (red arrows) and inner
segment (white arrows) of PRL; in the ACs (gallon-arrows); in the BCs (yellow arrows) of INL; in the
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cellular prolongation in IPL (blue arrows); in the soma of GCs (asterisk). (d) s100p immunoreactivity
in the cytoplasmatic prolongation of RPE (arrowheads); in the outer segment (red arrows) and inner
segment (white arrows) in PRL; in the BCs (yellow arrows), HCs (white bold arrows), ACs (gallon
arrows) in the INL; in cellular prolongation of the IPL (blue arrows); in the soma of GCs (asterisk).
Magnification 40×. Scale bar 20 µm.

2.7. Quantitative Analysis

According to the results of the quantitative analysis, the cellular prolongations of the
RPE were immunoreactive to neurotrophin BDNF and NT-3 and to neurotrophin receptors
type A, B, and C. The inner segment of the PRL was always immunopositive to BDNF/TrkB,
NGF/TrkA, and the NT-3/TrkC systems; however, the outer segment of the PRL was BDNF
and NGF immunoreactive. In the INL, several subpopulations of ACs immunopositive
to neurotrophin BDNF and NGF and to Trks (type A, B, and C) were observed. BCs were
immunoreactive to Trks (A, B, and C) and to neurotrophins NGF and NT-3, whereas HCs
were exclusively immunostained by TrkB and TrkC. Finally, the GCs were immunoreactive
to the neurotrophin systems BDNF/TrkB, NGF/TrkA, and NT-3/TrkC, but not always
colocalized. The distributions of cellular markers: anti-Chat, anti-Opsin, Parvalbumin, and
s100p were perfectly overlapping concerning their specificity. Comparison between the
neurotrophin/tyrosine kinase receptor system and specific marker distribution patterns is
shown in Figure 7 and Table 1.
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Figure 7. Graphical representation of immunoreactivity quantitative analysis in: RPE, PRL (inner and
outer segments), OPL, ACs, BCs, HCs, IPL, and GCs detected by BDNF, NGF, NT-3, TrkA, TrkB, TrkC,
anti-Opsin, anti-Chat, Parvalbumin and, s100p. The statistical analysis shows a different distribution
pattern of the antibodies used in this study in cellular layer of N. guentheri retina. N◦: mean of
retinal layer cells immunopositive to BDNF, NGF, NT-3, TrkA, TrkB, TrkC, anti-Opsin, anti-Chat,
Parvalbumin and, s100p.
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Table 1. Mean data ± standard deviation (∆σ) of immunopositivity of: RPE, PRL (inner and outer segments), OPL, ACs, BCs, HCs, IPL, and GCs detected by BDNF,
NGF, NT-3, TrkA, TrkB, TrkC, and compared with anti-Opsin, anti-Chat, Parvalbumin and, s100p. The statistical analysis shows a different distribution pattern of the
antibodies used in this study in cellular layer of N. guentheri retina. Mean values ± standard deviation (∆σ). ( I) No value. Statistical significance: *** p < 0.001,
** p < 0.01, * p < 0.05.

Antibodies Investigated Specific Antibodies for Retinal Cells

BDNF TrkB NGF TrkA NT-3 TrkC Opsin Chat Parv S100p

Mean ± ∆σ
in RPE

28.4 ± 2.15
***

27.8 ± 1.95
* I 28.6 ± 2.45

***
25.9 ± 2.46

***
25.9 ± 2.85

***
27.2 ± 1.24

**
26.3 ± 1. 83

***
26.5 ± 2.57

***
28.8 ± 5.11

***

Mean ± ∆σ in PRL
(outer segment)

27.7 ± 2.49
* I 27.7 ± 2.49

* I I 25.3 ± 3.13
***

26.9 ± 3. 82
*

26.8 ± 2. 40
**

25.8 ± 2.35
***

26 ± 3.66
***

Mean ± ∆σ in PRL
(inner segment)

26.4 ± 2.9
**

26.3 ± 2.86
**

27.9 ± 2.80
*

28.4 ± 2.74
***

25.2 ± 3.6
** I 27.1 ± 4. 19

** I 23.7 ± 3.95
***

27.8 ± 5.97
***

Mean ± ∆σ in OPL 26 ± 3.66
***

25.3 ± 3.13
***

25.8 ± 2.35
***

26.5 ± 2.57
***

26.2 ± 2.08
***

25.4 ± 2.15
** I I I I

Mean ± ∆σ of ACs 27.8 ± 2.31
*

26.9 ± 2.58
***

27.7 ± 2.49
* 27.9 ± 2.79 * I 26.8 ± 2. 52

*** I 27.9 ± 3. 04
*

26.5 ± 5.48
***

26.7 ± 4.64
***

Mean ± ∆σ of BCs I 26.9 ± 2.36
***

26.5 ± 2.57
***

27.8 ± 3.65
*

26.5 ± 2.57
***

27.7 ± 2.14
*** I I 27.7 ± 5.36

***
25.8 ± 4.6

***

Mean ± ∆σ of HCs I 27.7 ± 2.49
* I I I 25.8 ± 2.67

*** I I I 26.3 ± 4
**

Mean ± ∆σ in IPL I I I I I I I I 27.4 ± 4.8
**

26.5 ± 5.12
***

Mean ± ∆σ in GCs 27.2 ± 1.24
**

26.9 ± 1. 42
**

26 ± 2.89
*

26.7 ± 3. 40
***

27.9 ± 2.38
*

27.2 ± 2.62
** I I 26.7 ± 4.42

***
27.4 ± 4.84

***
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3. Discussion

According to the latest WHO estimates, 285 million people worldwide suffer visual
impairment, and most of the major eye diseases are age-related. As life expectancy rises
worldwide, the prevalence of age-related visual impairments has also seen a notable
increase. The retina is one of the eye structures that undergoes various structural and
functional changes with advancing age. Aging is frequently accompanied by retinal de-
generation phenomena commonly associated with conditions such as age-related macular
degeneration (AMD) and the progressive degeneration of photoreceptor cells, impaired
retinal pigment epithelium function, and alterations in the vascular network [59]. Hence,
visual impairment due to retinal degeneration constitutes one of the significant concerns
in the aging population, affecting its quality of life and the healthcare system [60,61]. Ag-
ing impacts not only the function of the visual system but also its ability to protect and
repair damaged and/or degenerating neurons [34,59,62]. Unfortunately, there is no treat-
ment to curb the neurodegenerative disease of the eye, and the lifespan length of most
traditional experimental models has impaired the study of the aging process. Among
killifish, Nothobranchius spp. has a relatively short life cycle compared to other vertebrate
models and has several aging features already described for humans [63], which makes
it an excellent aging model to fill this gap [30]. In addition, it has been observed that
Nothobranchius’ central nervous system, including the visual system, shows typical aging
features [29,64–68]. Therefore, Nothobranchius spp. seems to be the ideal model for studying
cellular and molecular age-dependent changes to understand and deal with neurodegen-
erative events effectively. Moreover, the visual system is considered an important tool
to investigate the brain overall, both in mammals and fish, since the retina is an integral
part of the central nervous system [69]. It has been shown that the pathological processes
occurring in the retina indicate similar processes occurring in the central nervous system
and vice versa [56–58,70]. For instance, alterations in neurotrophin balance are involved
in both AMD and retinopathy and in Alzheimer’s disease pathogenesis [71–74]. The re-
search on the aging of the eyes, particularly of the retina, represents a promising strategy
for studying neurodegenerative diseases [75], as it is considered a window to the brain.
As a sensory system, retina development [76,77] and maintenance [78] are controlled by
neurotrophins, in particular, brain-derived neurotrophic factor (BDNF) [7]. Neurotrophins
and their receptors have been shown to be evolutionarily conserved and they have been
detected in different vertebrates from fish to mammals, including humans [4,79–82].

They play a key role in guiding the maintenance, regulation, and neurogenesis of
teleosts and the human nervous system, the sensory organs, and, among them, the retina.

Being that the retina is an integral part of the nervous system and given the established
link between neurotrophins and the overall well-being of the nervous system, it is plausible
to hypothesize a relationship between neurotrophin and retinal neurodegeneration during
aging. As aging progresses, the decline in neurotrophin support could contribute to the
degenerative changes observed in the retina, such as those associated with age-related
macular degeneration and retinal degeneration due to the loss of retinal cells [27–32,57–61].
Consequently, scientific research focused on the potential neuroprotective and therapeutic
role of neurotrophins and their receptors in treatment of retinal diseases and, neurodegen-
eration [10]. Indeed, studies have reported that intraocular administration of NTs promotes
the survival of GCs and axons after injuries [83–90] and, in particular, the intraocular admin-
istration of BDNF has shown a protective action on photoreceptors in retinal degeneration
and retinal detachment [91]. Hence, the relevance of this field of investigation is intuitive,
and choosing appropriate models that mimic human physiological conditions is crucial for
the translational relevance of findings. In this context, N. guentheri represents a suitable
experimental model because of the functional and morphological similarities of it and the
human retina and its emergent role in aging studies. Moreover, the N. guentheri retina has
demonstrated properties of neurogenesis and regeneration [1].
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However, evidence of NTs-Trks system expression in the retina of this experimental
model is still scarce. According to the authors’ knowledge, only TrkB has been localized in
the retina of one species of the Nothobranchius genus, N. furzeri [26,91–93].

Therefore, this work aimed at studying the localization of the neurotrophins BDNF,
NGF (nerve growth factor), NT-3 (neurotrophin-3), and tyrosine protein kinase receptors
type A (TrkA), TrkB, and tyrosine protein kinase receptors type C (TrkC) neurotrophin
receptors, in the retina of adult N. guentheri as a first step in assessing the suitability of this
model organism for translational medicine studies.

This study shows, for the first time, that NTs/Trks systems are widely detectable in
the adult N. guentheri retina, mainly in the RPE, PRL (photoreceptor layer inner and outer
segments), OPL (outer plexiform layer), and several populations of ACs (amacrine cells),
BCs (bipolar cells), and HCs (horizontal cells) in the INL and in the GCL (ganglion cell
layer). The present study’s data agree with the localization of NTs/Trks in the retina of
other species, including humans [83]. In the present study, NGF neurotrophin and TrkA
receptors were observed in RPE, PRL, and OPL, in several populations of ACs, in BCs, and
in several GCs populations. This data overlaps with the location of NGF and TrkA retina of
mice [94].

In the retina of N. guentheri Trks receptor types A, B, and C were immunolocalized
in the external and internal segments of the photoreceptors. In addition, several popula-
tions of ACs identified by morpho-topographic approach showed immunoreactivity to
neurotrophin receptors type A, B, and C. BCs were always immunopositive to Trks and
HCs TrkB and TrkC immunoreactive. Finally, TrkB and TrkC are immunolocalised in differ-
ent GC populations recognizable by using a morpho-topographic approach and have not
shown double staining with neurotrophins. The above-mentioned results partly overlap
with the data concerning the mouse retina [95–97] and other teleosts, including zebrafish.

In this study, the authors found that the location of Trks receptors in N. guentheri’s
retina overlaps with the distribution of BDNF in other teleosts [60,82,85,86].

In addition, the results of this study show the presence of TrkA, TrkB, and TrkC
receptors in GCs, where BDNF had already been detected by Gatta et al. [71]. The present
results support Gatta’s hypothesis [71] on the mode of autocrine action of BDNF on GCs.
in addition, BDNF was observed in the N. guentheri retina in the RPE, in the external and
internal segment of photoreceptors layer, and in ACs in the INL. Localizing the BDNF
is intriguing because it has been demonstrated that its decrease is associated with age-
dependent macular degeneration and retinopathy [10,71,84–94,98–101].

Based on our knowledge, no data are known in regard to the localization of neu-
rotrophin NT-3 in the retina of N. guentheri. In this study, the authors show, for the first
time, that the prolongations of the RPE, the external and internal segments of the photore-
ceptors, BCs, some ACs, and GCs are immunopositive. These data are similar to what is
recognized in other species such as the pigeon (Columba livia [96], lizard (Gallotia galloti) [97],
frog [102], chick [17,103], and mice [104]. In addition, Das and colleagues [105] investigated
BDNF/TrkB and NT-3/TrkC systems and observed localization in the external segment of
the PRL, OPL, INL, IPL, and GCL, as shown in this work in the N. guentheri retina.

Finally, in the retina di N. guentheri BDNF and NT-3 neurotrophins and neurotrophin
receptors Trks (A, B, C) were found immunolocalized in the pigmented epithelium, a retinal
layer relevant to the study of age-induced damage. Indeed, research demonstrates that
RPE changes are a typical characteristic of the aging retina [49]. The thinning of the retinal
layers and a decrease in the pigment epithelium layer typical in old specimens of Oryzias
latipes and D. rerio [94,106] occur in a short time before the end of the N. guentheri life cycle.
This evidence makes the retina of the annual killifish an excellent model in the biomedical
research of age-dependent pathologies [1].

To compare the localization of neurotrophins and neurotrophin receptors A, B, and C
in different retinal cell layers of the different models with humans, see Table 2.
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Table 2. Comparison of different species’ neurotrophin (BDNF, NGF, and NT-3), and tyrosine kinase
receptor (TrkA, TrkB, TrkC) localization and expression in the retina layers of N. guentheri.

Species N. guentheri * Zebrafish Mouse Human

A
nt

ib
od

ie
s

B
D

N
F

N
G

F

N
T-

3

Trks

B
D

N
F

N
G

F

N
T-

3

Trks

B
D

N
F

N
G

F

N
T-

3

Trks

B
D

N
F

N
G

F

N
T-

3

Trks

A B C A B C A B C A B C

C
el

ll
ay

er
s

R
PE + n/a + + + + + + − + + + + + n/a + + − + n/a n/a + + −

R. [10,81,105,107–112] [17,96,101] [97,113]

PR
L

+ + + + + + + + − + + + + + + + + + + n/a n/a + + +

R. [10,81,110–112] [95,101,108,114] [97,115]

O
PL − − − − − − + + − + + + + n/a + + − + + n/a n/a + + +

R. [10,81,110–112] [95,108] [97,115]

IN
L

+ + + − − − + + − + + + + + + + + − + n/a n/a + + +

R. [10,81,110–112] [95,108,116] [97,115]

H
C

s

− − − − − − + + − + + + + + n/a + + + n/a n/a n/a + + +

R. [10,81,110–112] [95,108] [97]

BC
s

− + + + + − + + − + + + + + n/a − − − n/a n/a n/a n/a n/a n/a

R. [10,81,110–112] [95,101,108,114,116]

A
C

s

+ + + + + + + + − + + + + n/a + + − − + n/a n/a + + +

R. [10,110–112,117] [95,108] [97,118]

IP
L − − − − − − + + − + + + + n/a n/a + + + + n/a n/a + + +

R. [10,81,102,110–112] [95,108] [97,119]

G
C

L

+ + + + + + + + − + + + + + + + + + + + + + + +

R. [10,81,102,110–112] [17,95,96,107,120] [97,121–123]

(*) these data refer to the sample of the present study. (+) positive for the considered antibody; (−) negative for
the considered antibody; (n/a) references data not known, to the best of the authors’ knowledge. References (R.),
Brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin-3 (NT-3), tyrosine protein
kinase receptors type A (TrkA), tyrosine protein kinase receptors type B (TrkB), tyrosine protein kinase receptors
type C (TrkC), retinal pigment epithelium (RPE), photoreceptor layer (PRL), outer nuclear layer (ONL), outer
plexiform layer (OPL), inner nuclear layer (INL), amacrine cells (ACs), bipolar cells (BCs), horizontal cells (HCs),
inner plexiform layer (IPL), ganglion cell layer (GCL).

The data of the present investigation, together with the known evidence on N. furz-
eri [26,91,93,120,121] and other species [99,102,122] confirm the fundamental role of the
neurotrophins/receptors system in the maintenance and modulation of excitatory input
in retinal neurons. Consequently, it might also suggest a mode of autocrine action of the
NT/Trks system in the retina of the adult N. guentheri.
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4. Materials and Methods
4.1. Fish and Tissue Treatment

In this study, paraffin embedded tissue of Nothobranchius guentheri from previous
studies were used [123]. Adult specimens of N. guentheri, (discovered dead of unknown
causes) 1-year-old, 1 male, and 2 females, from ornamental aquariums (freshwater, 22 ◦C,
pH 6.8–7.0) were used. The heads were quickly removed, fixed in 4% paraformaldehyde
(Sigma-Aldrich, Inc., St. Louis, MO, USA # 158127) in phosphate-buffered saline (PBS,
Sigma-Aldrich, Inc., St. Louis, MO, USA # P4417) 0.1 m (pH = 7.4) for 12–18 h, dehydrated
through graded ethanol series, clarified in xylene, for paraffin wax (Bio-Optica Milano S.p.a
Milano, Italy # 08-7910) embedding.

4.2. Optical Microscopy

Included tissues of N. guentheri were cut into 7 µm thick serial sections and collected
on gelatin-coated microscope slides [123,124].

Then, serial sections were deparaffinized and rehydrated, washed in distilled water,
and stained with Hematoxylin-Eosin (Hematoxylin nuclear staining Bio-Optica Milano
S.p.a Italy cat. # 05-M06012. Eosin Y cytoplasmic staining Bio-Optica Milano S.p.a Italy
cat. # 05-M10002). At the end, stained sections were examined under a Leica DMRB light
microscope equipped with Leica MC 120 HD camera (Leica Application Suite LAS V4.7).

4.3. Immunohistochemistry

To analyze the localization of neurotrophins (NTs) and tyrosine protein kinase recep-
tors (Trks) in N. guentheri retina, some serial slides were deparaffinized and rehydrated,
finally washed in PBS. The sections were incubated in 0.1% Triton X100 (Sigma-Aldrich,
Inc., St. Louis, MO, USA cat. #X100) PBS solution to permeate the membranes, after
incubated in a 0.3% hydrogen peroxide solution (H2O2 Sigma-Aldrich, Inc., St. Louis,
MO, USA cat. # 1085971000) to prevent the activity of endogenous peroxidase. The 25%
fetal bovine serum solution (Sigma-Aldrich, Inc., St. Louis, MO, USA cat. #F7524) was
then added to the rinsed sections. Sections were incubated overnight at 4 ◦C in a humid
chamber with primary antibodies (steps below). Representative sections were incubated
with appropriately preabsorbed antisera as mentioned above to provide negative controls.
In these circumstances, there was no evidence of positive immunostaining.

4.3.1. TrkA, TrkB, TrkC, Anti-Opsin, Anti-Chat, Parvalbumin and s100p
Immunofluorescences

To identify anti-neurotrophin receptors in retinal cells of N. guentheri some serial
sections were incubated with tyrosine protein kinase receptors type A (TrkA), tyrosine
protein kinase receptors type B (TrkB), tyrosine protein kinase receptors type C (TrkC) (for
details see Table 1). Moreover, some representative sections have been incubated with
anti-Opsin, anti-Chat, Parvalbumin, and S100p antibodies, recognized as specific markers
for retinal cells (for details see Table 1). After rinsing in PBS solution, the sections were
incubated for 1 h with a fluorescent secondary antibody Anti-mouse IgG (H+L) Alexa Fluor
488 and Anti-rabbit IgG (H + L) Alexa Fluor 488 (for details see Table 1) at room temperature
in a dark humid chamber. Washing, and mounting using Fluoromount Aqueous Mounting
Medium (Sigma-Aldrich, Inc., St. Louis, MO, USA cat. #F4680 manufacturer’s notice) were
the final steps.

4.3.2. NTs/Trks System Double Immunofluorescences

To investigate the immunolocalization of the NTs/Trks system in n guentheri retina
polyclonal BDNF brain-derived neurotrophic factor and NGF (nerve growth factor) were
used in double-labelled experiment with monoclonal TrkB and TrkA, respectively, and mon-
oclonal NT-3 (neurotrophin-3) was used in double-labelled experiment with monoclonal
TrkC (for details see Table 1). After rinsing in PBS solution, the sections were incubated for
1 h with a fluorescent secondary antibody anti-rabbit alexa fluor 594 and anti-mouse alexa
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fluor 488 (for details see Table 3) at room temperature in a dark humid chamber. Washing,
and mounting using Fluoromount Aqueous Mounting Medium (Sigma-Aldrich, Inc., St.
Louis, MO, USA cat. #F4680 manufacturer’s notice) were the final steps.

Table 3. Details of antibodies.

Primary Antibodies Supplier Catalogue
Number Source Dilution Antibody ID

BDNF Sigma-Aldrich, Inc., St. Louis,
MO, USA AB1534SP rabbit 1:100 AB_90748

NGF Sigma-Aldrich, Inc., St. Louis,
MO, USA AB1526 rabbit 1:100 AB_90733

NT-3 (A4) Santa Cruz Biotechnology, Inc.,
Dallas, TX, USA sc-518099 mouse 1:100

TrkA (Y32Ex) Santa Cruz Biotechnology, Inc.,
Dallas, TX, USA sc-80398 mouse 1:100 AB_1130726

TrkB (F-1) Santa Cruz Biotechnology, Inc.,
Dallas, TX, USA sc-377218 mouse 1:100 AB_2801499

TrkC (798) Santa Cruz Biotechnology, Inc.,
Dallas, TX, USA sc-117 rabbit 1:100 AB_632560

Anti-Opsin Clone RET-P1 Sigma-Aldrich, Inc., St. Louis,
MO, USA O4886 mouse 1:100 AB_260838

Anti-Chat Sigma-Aldrich, Inc., St. Louis,
MO, USA AMAB91130 mouse 1:100 AB_2665812

Parvalbumin clone PA235 Sigma-Aldrich, Inc., St. Louis,
MO, USA P-3171 mouse 1:1000 AB_2313693

S100p Dako Agilent, Santa Clara,
CA, USA Z0311 rabbit 1:100 AB_10013383

Secondary Antibody Supplier Catalogue
Number Source Dilution Antibody ID

Anti-rabbit IgG (H + L)
Alexa Fluor 594

Molecular Probes, Invitrogen,
Waltham, MA, USA A32754 Donkey 1:300 AB_2762827

Anti-rabbit IgG (H + L)
Alexa Fluor 488

Molecular Probes, Invitrogen,
Waltham, MA, USA A-11008 goat 1:300 AB_143165

Anti-mouse IgG (H + L)
Alexa Fluor 488

Molecular Probes, Invitrogen,
Waltham, MA, USA A-11001 goat 1:300 AB_2534069

4.3.3. Confocal Laser Scanning Microscope

A Zeiss LSMDUO confocal laser scanning microscope with META module (Carl
Zeiss MicroImaging GmbH, München, Germany) was used to detect the immunofluo-
rescence, and Zen 2011 (LSM 700 Zeiss software ZEN 3.7) was employed to process the
images [125–127]. Each image was rapidly acquired to minimize photodegradation.

4.4. Statistical Analysis

ImageJ software was used to evaluate microscope fields collected randomly. One-
way ANOVA was used to examine the statistical significance of the quantity of retinal
pigment epithelium (RPE), PRL (photoreceptor layer inner and outer segments), OPL (outer
plexiform layer), Acs (amacrine cells), IPL (inner plexiform layer), BCs (bipolar cells), HCs
(horizontal cells) and GCs (ganglion cells) detected by BDNF, NGF, NT-3, TrkA, TrkB, TrkC,
anti-Opsin, anti-Chat, Parvalbumin and, s100p. SigmaPlot version 14.0 (Systat Software,
San Jose, CA, USA) was used to conduct the statistical analysis. An unpaired Z test was
also performed. The information was given as mean values with standard deviations
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(∆σ). Values of p below 0.05 were considered statistically significant in the following
order *** p < 0.001, ** p < 0.01, * p < 0.05.

5. Conclusions

In conclusion, our study provides new insights into the localization of neurotrophins
and their specific receptors in the retina of Nothobranchius guentheri, showcasing its potential
as an experimental model for investigating retinal aging. Furthermore, the conservation of
neurotrophin signaling pathways in N. guentheri suggests its relevance as a translational
model for studying retinal aging in humans. However, while our findings offer valuable
insights, they just represent a starting point in comprehensively characterizing retinal aging
in N. guentheri, future studies are needed to better understand the expression patterns of the
NTs/Trks system during development, the aging process, and/or in transgenic N. guentheri
models for neurodegenerative diseases. It is still necessary to elucidate the functional
consequences of NT-Trk system alteration in the aged retinas of N. guentheri and explore
potential therapeutic interventions to mitigate age-related retinal degeneration.
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