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Abstract: Cypridina luciferin (CypL) is a marine natural product that functions as the luminous
substrate for the enzyme Cypridina luciferase (CypLase). CypL has two enantiomers, (R)- and
(S)-CypL, due to its one chiral center at the sec-butyl moiety. Previous studies reported that (S)-CypL
or racemic CypL with CypLase produced light, but the luminescence of (R)-CypL with CypLase
has not been investigated. Here, we examined the luminescence of (R)-CypL, which had undergone
chiral separation from the enantiomeric mixture, with a recombinant CypLase. Our luminescence
measurements demonstrated that (R)-CypL with CypLase produced light, indicating that (R)-CypL
must be considered as the luminous substrate for CypLase, as in the case of (S)-CypL, rather than a
competitive inhibitor for CypLase. Additionally, we found that the maximum luminescence intensity
from the reaction of (R)-CypL with CypLase was approximately 10 fold lower than that of (S)-CypL
with CypLase, but our kinetic analysis of CypLase showed that the Km value of CypLase for (R)-CypL
was approximately 3 fold lower than that for (S)-CypL. Furthermore, the chiral high-performance
liquid chromatography (HPLC) analysis of the reaction mixture of racemic CypL with CypLase
showed that (R)-CypL was consumed more slowly than (S)-CypL. These results indicate that the
turnover rate of CypLase for (R)-CypL was lower than that for (S)-CypL, which caused the less
efficient luminescence of (R)-CypL with CypLase.

Keywords: Cypridina luciferin; bioluminescence; marine natural product; Cypridina luciferase;
chiral separation

1. Introduction

Cypridina luciferin (CypL, IUPAC name: 2-[3-[2-[(2S)-butan-2-yl]-3-hydroxy-6-(1H-
indol-3-yl)imidazo [2,1-c]pyrazin-8-yl]propyl]guanidine) is a chiral imidazopyrazinone
compound and is responsible for blue light emission from luminous ostracods of the
family Cypridinidae, commonly known as sea firefly or marine firefly in English, and
umi-hotaru in Japanese (Figure 1a,b) [1–3]. In the bioluminescence system, CypL reacts
with molecular oxygen to produce light, Cypridina oxyluciferin (CypOxyL), and CO2
(Figure 1c) [4]. The luminescence reaction requires the specific enzyme Cypridina luciferase
(CypLase) to proceed and, thus, many efforts have been made to enzymologically un-
derstand the luminescence reaction of CypL with CypLase. CypLase genes have been
cloned from two different species of luminous ostracods, Vargula (Cypridina) hilgendorfii and
Cypridina noctiluca [5–10], and recent transcriptome analyses of luminous ostracods that
inhabit the Caribbean Sea and the coast of California showed putative CypLase genes [11].
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These CypLase genes share sequence similarity, and the reported recombinant CypLases
can use CypL as their luminous substrate. Furthermore, different heterologous expression
systems for CypLase have been developed [5,8,12–15], and various mutagenesis studies of
CypLase with a focus on subjects such as active amino acid residues, glycan modification,
and bioluminescence color have been reported [15–17]. However, the detailed catalytic
mechanism of CypLase, especially its chirality-recognition ability, remains to be clarified.

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 2 of 15 
 

 

noctiluca [5–10], and recent transcriptome analyses of luminous ostracods that inhabit the 
Caribbean Sea and the coast of California showed putative CypLase genes [11]. These Cy-
pLase genes share sequence similarity, and the reported recombinant CypLases can use 
CypL as their luminous substrate. Furthermore, different heterologous expression sys-
tems for CypLase have been developed [5,8,12–15], and various mutagenesis studies of 
CypLase with a focus on subjects such as active amino acid residues, glycan modification, 
and bioluminescence color have been reported [15–17]. However, the detailed catalytic 
mechanism of CypLase, especially its chirality-recognition ability, remains to be clarified. 

 
Figure 1. Luminescence reaction of Cypridina luciferin (CypL) with Cypridina luciferase (CypLase). 
(a) A photo of the bioluminescence of a Cypridina specimen including CypL. The photo was taken 
on a smartphone (AQUOS SH-01M; Sharp, Osaka, Japan) equipped with a mobile microscope (L-
eye; Science Communication Research Institute/SCRI, Kanagawa, Japan). (b) Chemical structures of 
(R)- and (S)-CypL. (c) Luminescence reaction scheme of CypL with CypLase. 

To understand the substrate recognition of CypLase, the structure–activity relation-
ship has been investigated with a focus on the side-chain moieties at the C2, C6, and C8 
positions in the imidazopyrazinone ring of CypL (Figure 1b). Goto reported that the light 
yield of CypL with CypLase was dramatically decreased by substitution of the indole ring 
moiety at the C6 position with a phenyl ring moiety or a change of length of the alkyl 
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ring moiety at the C6 position produced light with lower efficiencies in the presence of 
CypLase [19]. On the other hand, Wu et al. showed that the substitution of the sec-butyl 
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the luminescence of (R)-CypL with CypLase is more essential for understanding the abil-
ity of CypLase to recognize the chirality of CypL for light emission than previous studies 
with a focus on the luminescence of CypL analogs. Therefore, the ability of CypLase to 
recognize the chirality of CypL for light emission is still unclear. 

Following the intensive efforts of various groups in the first half of the twentieth cen-
tury to study the bioluminescence of a Cypridina specimen [21,22], Shimomura et al. finally 
succeeded in the isolation and crystallization of CypL from pulverized dry Vargula 
(Cypridina) hilgendorfii in 1957 [23]. The chemical structure with an imidazopyrazinone 

Figure 1. Luminescence reaction of Cypridina luciferin (CypL) with Cypridina luciferase (CypLase).
(a) A photo of the bioluminescence of a Cypridina specimen including CypL. The photo was taken on
a smartphone (AQUOS SH-01M; Sharp, Osaka, Japan) equipped with a mobile microscope (L-eye;
Science Communication Research Institute/SCRI, Kanagawa, Japan). (b) Chemical structures of
(R)- and (S)-CypL. (c) Luminescence reaction scheme of CypL with CypLase.

To understand the substrate recognition of CypLase, the structure–activity relationship
has been investigated with a focus on the side-chain moieties at the C2, C6, and C8 positions
in the imidazopyrazinone ring of CypL (Figure 1b). Goto reported that the light yield
of CypL with CypLase was dramatically decreased by substitution of the indole ring
moiety at the C6 position with a phenyl ring moiety or a change of length of the alkyl
guanidine moiety at the C8 position [18]. Additionally, Nakamura et al. reported that
CypL analogs that have an oxygen or a sulfur atom instead of the NH group in the indole
ring moiety at the C6 position produced light with lower efficiencies in the presence
of CypLase [19]. On the other hand, Wu et al. showed that the substitution of the sec-
butyl moiety at the C2 position with a propyl moiety retained 67% of the original light
yield [20]. This result suggests that the recognition of the sec-butyl moiety in CypLase for
the luminescence reaction is not very strict, despite the existence of one chiral center in
the sec-butyl moiety of CypL. However, the luminescence of the (R)-enantiomer, (R)-CypL
(IUPAC name: 2-[3-[2-[(2R)-butan-2-yl]-3-hydroxy-6-(1H-indol-3-yl)imidazo [2,1-c]pyrazin-
8-yl]propyl]guanidine), with CypLase has not yet been compared with that of (S)-CypL with
CypLase. Furthermore, characterization of the luminescence of (R)-CypL with CypLase is
more essential for understanding the ability of CypLase to recognize the chirality of CypL
for light emission than previous studies with a focus on the luminescence of CypL analogs.
Therefore, the ability of CypLase to recognize the chirality of CypL for light emission
is still unclear.

Following the intensive efforts of various groups in the first half of the twentieth cen-
tury to study the bioluminescence of a Cypridina specimen [21,22], Shimomura et al. finally
succeeded in the isolation and crystallization of CypL from pulverized dry
Vargula (Cypridina) hilgendorfii in 1957 [23]. The chemical structure with an imidazopy-
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razinone skeleton and one chiral center was determined by chemical synthesis [24–27].
The absolute configuration of the sec-butyl moiety of natural CypL was determined to be (S)
according to analysis using Cypridina hydroluciferin, which was obtained by hydrogena-
tion of natural CypL, and D- and L-amino acid oxidases [24]. In addition, previous studies
showed that the light yields of both natural CypL and chemically synthesized (S)-CypL
with CypLase were approximately 160% of that of racemic CypL with CypLase [19,20,28],
suggesting that natural CypL is not a racemic mixture but an (S)-enantiomer. Notably,
CypL can be biosynthesized from L-arginine, L-tryptophan, and L-isoleucine in living
V. hilgendorfii specimens [29–32]. Kato et al. showed that L-isoleucine, which had an abso-
lute configuration identical to that of the sec-butyl moiety of (S)-CypL, was stereoselectively
incorporated into CypL in an in vivo incorporation experiment [31]. However, none of the
literature has reported the conditions for chiral high-performance liquid chromatography
(HPLC) separation of the enantiomeric mixture of CypL, and there has been no report
confirming the absence of (R)-CypL in nature. Furthermore, although the function of the
enantiomers of chiral luciferins (e.g., firefly luciferin) in some bioluminescence systems has
attracted attention, no report reveals whether (R)-CypL functions as a luminous substrate
or an inhibitor for CypLase.

In this study, to confirm whether the enantiomer of (S)-CypL functions as a luminous
substrate for CypLase, we examined the luminescence of (R)-CypL, which had undergone
chiral separation from the enantiomeric mixture, with a recombinant CypLase. As a result,
we demonstrated for the first time that (R)-CypL functions as the luminous substrate for
CypLase, and our kinetic analysis of CypLase suggests a higher affinity of (R)-CypL for
CypLase than (S)-CypL. Additionally, we found that the turnover rate of CypLase for
(R)-CypL was different from that of CypLase for (S)-CypL, which would be expected to
cause the luminescence of (R)-CypL with CypLase to become less efficient than that of
(S)-CypL with CypLase.

2. Results
2.1. Chiral Separation of (R)-CypL from the Enantiomeric Mixture

To prepare (R)-CypL, we had two options: the asymmetric synthesis or the chiral
separation of the enantiomeric mixture of CypL. Following the first total synthesis of
CypL by Kishi et al., other methods have been developed for the chemical synthesis of
racemic CypL or (S)-CypL [19,20]. However, as far as we know, chiral separation of the
enantiomeric mixture of CypL has not yet been reported. Therefore, we tried to prepare
(R)-CypL by chiral separation using a chiral column.

Based on chiral column screening for racemic CypL, we subjected an enantiomeric
mixture of CypL (Supplementary Figure S1 and Table S1) to chiral HPLC separation using
chiral columns under solvent conditions that employed a mixture of acetonitrile and
100 mM aqueous solution of potassium hexafluorophosphate (see Section 4 “Chiral HPLC
Separation of Enantiomers of CypL”). As a result, we observed two clearly separated peaks
in the obtained HPLC chromatogram at 430 nm (Figure A1a). The absorption spectra of
the two peaks were identical to each other (Figure A1b,c). To identify which peak was
(R)-CypL, we next analyzed chemically synthesized (S)-CypL and CypL extracted from
natural luminous Cypridina specimens under the same chiral HPLC conditions. The elution
times of the chemically synthesized (S)-CypL and the extracted natural CypL corresponded
to the latter peak found in the chiral HPLC analysis of the enantiomeric mixture of CypL
(Figure 2). The absorption spectra of the two peaks separated from the enantiomeric
mixture of CypL were also identical to those of the synthesized (S)-CypL and the extracted
natural CypL. This result showed that the former peak under our chiral HPLC conditions
was (R)-CypL and the latter was (S)-CypL.
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rated CypL (93.5 pmol, 37.9 ng), which was initially eluted under our chiral HPLC conditions (see 
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(d) chiral-separated CypL (83 pmol, 33.7 ng) which was next eluted in our chiral HPLC separation 
(see Figure A1 and the Section 4 “Chiral HPLC separation of enantiomers of CypL”) at an RT of 19.1 
min, (e) a 1:1 mixture of chiral-separated CypLs from panel c (93.5 pmol, 37.9 ng) and panel d (83 
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the luminescence of (S)-CypL with a recombinant CypLase (464 nm) (Figure 3). This result 
indicates that (R)-CypL functioned as a luminous substrate for CypLase, as in the case of 
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Figure 2. Chiral HPLC analysis of (R)- and (S)-CypL used in luminescence measurements.
HPLC chromatograms with fluorescence detection (excitation wavelength, 430 nm; emission wave-
length, 570 nm) and absorption spectra were simultaneously obtained via PDA detection in the
chiral HPLC analyses. (a) Chemically synthesized (S)-CypL (185 pmol, 75.0 ng) at a retention time
(RT) of 19.1 min, (b) methanolic extract from ten dried luminous ostracods at a RT of 19.1 min,
(c) chiral-separated CypL (93.5 pmol, 37.9 ng), which was initially eluted under our chiral HPLC
conditions (see Figure A1 and Section 4 “Chiral HPLC Separation of Enantiomers of CypL”) at an RT
of 10.6 min, (d) chiral-separated CypL (83 pmol, 33.7 ng) which was next eluted in our chiral HPLC
separation (see Figure A1 and Section 4 “Chiral HPLC Separation of Enantiomers of CypL”) at an RT
of 19.1 min, (e) a 1:1 mixture of chiral-separated CypLs from panel c (93.5 pmol, 37.9 ng) and panel d
(83 pmol, 33.7 ng). A chiral column CHIRALCEL OZ-RH (ϕ4.6 × 150 mm, 5 µm; Daicel Chemical
Industry, Osaka, Japan) was used in this chiral HPLC analysis.

2.2. Luminescence Spectrum of (R)-CypL with CypLase

To test whether (R)-CypL functions as a luminous substrate for CypLase, we mea-
sured the luminescence spectrum from the reaction of the chiral-separated (R)-CypL with a
recombinant CypLase (Supplementary Figure S2). The luminescence spectrum was suc-
cessfully obtained, and the maximum emission wavelength (466 nm) was almost identical
to that in the luminescence of (S)-CypL with a recombinant CypLase (464 nm) (Figure 3).
This result indicates that (R)-CypL functioned as a luminous substrate for CypLase, as in the
case of (S)-CypL.
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2.3. Luminescence Intensity of (R)-CypL with CypLase

Next, to characterize the luminescence of (R)-CypL with CypLase, we compared the
luminescence intensity of (R)-CypL with that of (S)-CypL via luminescence measurements
using a recombinant CypLase. In our luminescence measurements over 120 min using
black 96-well plates, the values of the maximum luminescence intensity of (R)-CypL
with a recombinant CypLase were 1232 (at a final substrate concentration of 0.1 µM)
and 1318 (at a final substrate concentration of 1 µM), whereas those of (S)-CypL with a
recombinant CypLase were 7051 (at a final substrate concentration of 0.1 µM) and 14,804
(at a final substrate concentration of 1 µM) (Figure 4). The time-course change in the
luminescence intensity of (R)-CypL with a recombinant CypLase was different from that of
(S)-CypL with a recombinant CypLase (Table A1). Additionally, when we calculated the
Km values of CypLase for (R)- and (S)-CypL based on the Michaelis–Menten equation, the
calculation showed that the Km value of CypLase for (R)-CypL (0.23 µM) was approximately
three fold lower than that for (S)-CypL (0.75 µM) (Table A2 and Supplementary Figure S3).
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Figure 4. Luminescence of (R)- and (S)-CypL with a recombinant CypLase. (a) Maximum lumi-
nescence intensity of CypLs with a recombinant CypLase over 120 min. Luminescence kinetics
of (b) (R)-CypL and (c) (S)-CypL over 120 min. The amount of CypL used in this measurement was
4.05 ng or 40.5 ng, respectively. The amount of CypLase used in this experiment was 0.5 ng. Relative
light unit is abbreviated as rlu.

Previously, we discovered that human alpha 1-acid glycoprotein (AGP), which is a
human plasma glycoprotein, caused the luminescence of racemic CypL [33]. Therefore,
we further examined the luminescence intensity of (R)- and (S)-CypL with human AGP
under Tris–HCl (pH 9.0) buffer conditions, which are optimal conditions for the induction
of luminescence of CypL by human AGP [33]. Luminescence measurements taken over
180 min using white 96-well plates (see Section 4 “Measurement of Luminescence Intensity
of CypLs with Human AGP”) showed that these luminescence kinetics differed from those
of (R)- and (S)-CypL with CypLase. Furthermore, the values of the maximum luminescence
intensity of (R)-CypL were 1264 (at a final substrate concentration of 0.1 µM) and 5070 (at a
final substrate concentration of 1 µM), whereas those of (S)-CypL with human AGP were
905 (at a final substrate concentration of 0.1 µM) and 2831 (at a final substrate concentration
of 1 µM) (Figure A2). The time-course change in the luminescence intensity of (R)-CypL
with human AGP was similar to that of (S)-CypL with human AGP (Table A3).

Collectively, these results indicate that both (R)- and (S)-CypL with CypLase and
human AGP produced light, but the values of the maximum luminescence intensity of (R)-
and (S)-CypL varied depending on the protein used for the luminescence reaction.
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2.4. Turnover Rate of CypLase for (R)- and (S)-CypL

Since the maximum luminescence intensity from the reaction of (R)-CypL with a
recombinant CypLase was significantly lower than that of (S)-CypL with a recombinant
CypLase, we next examined whether (R)-CypL was consumed more slowly than (S)-CypL
in the presence of CypLase, via chiral HPLC analysis of the reaction mixture of racemic
CypL (initial concentration of 98.4 µM >> the Km values of CypLase for (R)-CypL and
(S)-CypL) with a recombinant CypLase. The chiral HPLC analysis of the reaction mixture
at 2 min after starting the reaction in the presence of CypLase showed that the proportions
of the peak areas of (R)-CypL and (S)-CypL to the total CypL were 80.9% and 19.1%,
respectively, despite the use of racemic CypL (Figure 5a and Table A4). This result indicated
that (R)-CypL was consumed more slowly than (S)-CypL. At 7 min after starting the
reaction in the presence of CypLase, only (S)-CypL was almost fully consumed in the
presence of CypLase, and the proportions of the peak areas of (R)-CypL and (S)-CypL to
the total CypL were 94.6% and 5.4%, respectively (Figure 5b and Table A4). At 17 min after
starting the reaction in the presence of CypLase, neither the peak of (R)-CypL nor that of
(S)-CypL were detected, whereas in the absence of CypLase neither (R)- nor (S)-CypL in
the reaction mixture were consumed (Figure 5c and Table A4). These results indicate that
CypLase completely consumed both (R)- and (S)-CypL with different turnover rates.
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Figure 5. Chiral HPLC analysis of the reaction mixture of racemic CypL with CypLase. Shown are
the HPLC chromatograms with fluorescence detection (excitation wavelength, 430 nm; emission
wavelength, 570 nm) of the reaction mixture at (a) 2 min, (b) 7 min, and (c) 17 min after the start of the
reaction. The initial concentration of CypL was 98.4 µM. The amounts of racemic CypL and CypLase
used in this experiment were 23.9 µg and 7.2 µg, respectively. A chiral column CHIRALCEL OZ-RH
(ϕ4.6 × 150 mm, 5 µm; Daicel Chemical Industry) was used in this chiral HPLC analysis.

3. Discussion

In this study, we successfully obtained (R)-CypL by chiral HPLC separation of the
enantiomeric mixture of CypL instead of asymmetric synthesis (Figures 2 and A1). Al-
though asymmetric synthesis can efficiently provide a large amount of (R)- or (S)-CypL in
a laboratory, the chiral separation of CypL is useful not only for obtaining optically pure
CypL but also for analyzing the optical purity of CypL. Until this study, optical rotation
measurement was the only way to determine the optical purity of CypL [20]. However,
such measurement requires milligrams of CypL, and the optical rotation is affected by the
concentration of CypL, the temperature condition and the solvent used in the measurement.
In contrast, chiral HPLC analysis with fluorescence detection enables us to analyze the
optical purity of a solution of a few micromoles of CypL. In fact, we detected only (S)-CypL
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from a methanolic extract of ten dried luminous ostracods (Figure 2b), suggesting for
the first time the absence of (R)-CypL in nature. Our method of chiral HPLC analysis
of CypL is expected to contribute to studies on the biosynthesis of CypL, since the chi-
ral HPLC analysis of firefly luciferin has been used to study the biosynthesis of firefly
luciferin [34–36].

In the luminescence measurements of (R)-CypL with a recombinant CypLase, we
showed that (R)-CypL reacted with CypLase to produce light in the same way as the
reaction of (S)-CypL with CypLase (Figure 3). This result is reasonable based on the fact
that the reaction of CypLase with the CypL analog that had a propyl moiety substituted for
the original chiral sec-butyl moiety at the C2 position of the imidazopyrazinone ring gave
67% of the original light yield, suggesting that the recognition of the sec-butyl moiety in
CypLase for the luminescence reaction is not especially strict. It is noted that some known
luciferins including CypL are chiral compounds, and their chirality is recognized by their
corresponding luciferases for the luminescence reaction [37–40]. For example, in the firefly
bioluminescence system, D-firefly luciferin is the substrate for firefly luciferase, whereas the
(R)-enantiomer (L-firefly luciferin) shows an inhibitory effect on the luminescence reaction
of D-luciferin with firefly luciferase [41,42]. Therefore, we can consider CypLase, which uses
both (R)- and (S)-CypL for the luminous substrate, as an exceptional luciferase. However,
we found that the maximum luminescence intensity of (R)-CypL with a recombinant
CypLase was significantly lower than that of (S)-CypL with the CypLase (Figure 4).

Given that (1) (R)-CypL should have chemical and physical properties identical to
those of (S)-CypL, and (2) the maximum luminescence intensity of (R)-CypL with human
AGP was significantly higher than that of (S)-CypL with human AGP (Figure A2), we
considered that the difference in the maximum luminescence intensity with CypLase
resulted from the character of CypLase rather than a property of CypL. In the chiral HPLC
analysis of the reaction mixture of racemic CypL with a recombinant CypLase, we found
that CypLase consumed (R)-CypL more slowly than (S)-CypL (Figure 5 and Table A4).
This result showed that the turnover rate of CypLase for (R)-CypL was lower than that
of CypLase for (S)-CypL, which would account for the lower maximum luminescence
intensity and the difference in the time-course change of the luminescence intensity of
(R)-CypL with CypLase compared with those of (S)-CypL with CypLase (Figure 4 and
Table A1). However, we do not exclude the possibility that CypLase modifies the three
factors that determine the quantum yield of the bioluminescence—namely, the yield of
the high energy intermediate for CypOxyL, the yield of CypOxyL in a singlet excited
state, and the yield of the fluorescence quantum yield of CypOxyL, between (R)-CypL
and (S)-CypL—and thereby affects the efficiency of luminescence of (R)- and (S)-CypL
with CypLase [43–50]. In fact, Shimomura reported that the fluorescence of CypOxyL was
enhanced in CypLase [51]. In addition, the difference between the inhibitory effects of (R)-
and (S)-CypOxyL on the luminescence reaction of CypL with CypLase might also affect
the efficiency of luminescence of (R)- and (S)-CypL with CypLase.

It is noteworthy that the difference between the maximum luminescence intensities
of (R)- and (S)-CypL with a recombinant CypLase varied depending on the concentration
of CypL (0.1 µM or 1 µM) (Figure 4). This result can be explained by the difference in
the calculated Km values of CypLase (0.23 µM for (R)-CypL and 0.75 µM for (S)-CypL)
(Table A2). Although the finding that the Km value of CypLase for (R)-CypL was lower
than that for (S)-CypL suggested a higher affinity of (R)-CypL for CypLase than (S)-CypL,
the efficiency of luminescence of (R)-CypL with CypLase was lower than that of (S)-CypL
with CypLase. This result is different from results in previous studies with a focus on
CypL analogs that produce light less efficiently, because Km values of such CypL analogs
for CypLase were higher than that of (S)-CypL with CypLase [19]. The less efficient
luminescence of (R)-CypL with CypLase is possibly because the luminescence reaction
of (R)-CypL with CypLase proceeds more slowly than that of (S)-CypL with CypLase,
or because (R)-CypOxyL formed from (R)-CypL dissociates more slowly from CypLase
to decrease the turnover rate of CypLase for the luminescence reaction in comparison
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with (S)-CypOxyL formed from (S)-CypL. This finding suggests that the higher affinity of
the substrate for CypLase is not the only important point for engineering of CypLase to
produce light more efficiently. In fact, a recent study suggested that the optimization of
not only the binding of a substrate to an enzyme but also releasing the product from the
enzyme can maximize enzymatic activity [52].

In future work based on our findings, we anticipate that crystallographic character-
ization of CypLase will help to elucidate why the recognition of the sec-butyl moiety in
CypLase for the luminescence reaction is not very strict.

4. Materials and Methods
4.1. Materials

The enantiomeric excess (S)-CypL (the enantiomeric mixture of CypL; lot number: L1816)
was from NanoLight Technology, Prolume (Pinetop, AZ, USA) (see Supplementary Figure S1
and Table S1). Human AGP (alpha 1-acid glycoprotein form human plasma) and potassium
hexafluorophosphate were from Sigma-Aldrich (St. Louis, MO, USA). Tris–HCl buffer,
L-ascorbic acid sodium salt, and sodium chloride were from FUJIFILM Wako Pure Chemical
Corporation (Osaka, Japan). All materials were used without further purification. Racemic
CypL and (S)-CypL were prepared according to the method reported previously [19,20].
A recombinant CypLase from C. noctiluca was prepared using plant cells according to
the method reported previously (see Supplementary Figure S2) [14]. The concentrations of
CypL solutions were determined spectrophotometrically using a spectrophotometer (V-660;
Jasco, Tokyo, Japan), according to the reported molar absorption coefficient [24]. The
concentrations of human AGP and recombinant CypLase solutions were determined by
SDS-PAGE analysis or by using the corresponding molar extinction coefficient at 280 nm,
as calculated via the peptide property calculator available at https://www.biosyn.com/
peptidepropertycalculator/peptidepropertycalculator.aspx (accessed on 6 October 2023).

4.2. Chiral HPLC Separation of Enantiomers of CypL

CypL (NanoLight Technology, Prolume) was dissolved in methanol. A 10 uL or 50 uL
aliquot was subjected to chiral HPLC separation. Chiral HPLC separation was performed
on a Waters ACQUITY UPLC H-Class system (Waters, Milford, MA, USA) equipped with
a chiral column CHIRALCEL OZ-RH (ϕ4.6 × 150 mm, 5 µm; Daicel Chemical Industry)
and a multiwavelength detector (ACQUITY UPLC PDA eλ detector; Waters), or on a
Waters alliance system (2695; Waters) equipped with a CHIRALPAK IM chiral column
(ϕ4.6 × 250 mm, 5 µm; Daicel Chemical Industry) and a multiwavelength detector
(2996 PDA detector; Waters). The HPLC conditions of the Waters ACQUITY UPLC H-Class
system were as follows: mobile phase, 20% (v/v) acetonitrile in a 100 mM solution of
potassium hexafluorophosphate in H2O; flow rate, 1.0 mL min−1. The HPLC conditions
on the Waters alliance system (see Figure A1) were as follows: mobile phase, 25% (v/v)
acetonitrile in a 100 mM solution of potassium hexafluorophosphate in H2O; flow rate,
1.0 mL min−1. The eluted fractions containing (R)- or (S)-CypL were lyophilized for 67 h
followed by dissolving in methanol or were subjected to solid-phase extraction using a
solid-phase extraction column (Polymer-based HLB, AS ONE, Osaka, Japan) followed by
elution with ethanol.

4.3. Chiral HPLC Analysis of Chiral-Separated CypLs

The methanolic solutions of chiral-separated (R)- and (S)-CypL were filtered through a
centrifugal filter Ultrafree-MC (0.22 µm; Millipore, Billerica, MA, USA) and diluted 2 fold
with methanol or mixed together in a 1:1 ratio. The methanolic extract of dried lumi-
nous ostracods was prepared as follows: ten dried luminous ostracods in a commercially
available kit for observation of bioluminescence of sea-firefly (Hatenouruma, Tokyo) were
homogenized in 200 µL of ice-cold methanol on ice and centrifuged at 14,000× g for 3 min
at 4 ◦C followed by filtration through an Ultrafree-MC centrifugal filter (0.22 µm; Milli-
pore). Ten microliter aliquots of these prepared solutions were subjected to chiral HPLC

https://www.biosyn.com/peptidepropertycalculator/peptidepropertycalculator.aspx
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analysis. Chiral HPLC analysis was performed on a Waters ACQUITY UPLC H-Class
system (Waters) equipped with a CHIRALCEL OZ-RH chiral column (ϕ4.6 × 150 mm,
5 µm; Daicel Chemical Industry), a multiwavelength detector (ACQUITY UPLC PDA eλ
detector; Waters), and a fluorescence detector (ACQUITY FLR detector; Waters). The HPLC
conditions were as follows: mobile phase, 30% (v/v) acetonitrile in a 100 mM solution of
potassium hexafluorophosphate in H2O; flow rate, 0.8 mL min−1; fluorescence detection,
excitation/emission, 430/570 nm.

4.4. Measurement of Luminescence Emission Spectra

The luminescence emission spectra were measured using a LumiFLspectrocapture
high-sensitivity charge-coupled device (CCD) spectrophotometer (AB-1850C; ATTO) with
the following settings: measurement mode, single; measurement time, 1 min; slit width,
0.5 mm; camera gain, high; diffraction grating, 150 lines mm−1; shutter for measurement,
automatic. To 50 µL of a 100 ng mL−1 solution of a recombinant CypLase in 100 mM
Tris–HCl (pH 7.5) containing 300 mM L-ascorbic acid sodium salt in a 0.2 µL micro-tube
(0.2 mL thin-walled tube; Thermo Fisher Scientific, Waltham, MA, USA) was manually
added 50 µL of a 2 µM solution of chiral-separated (R)- or (S)-CypL in 100 mM Tris–HCl
(pH 7.5) containing 300 mM L-ascorbic acid sodium salt, followed by immediate measure-
ment of the luminescence emission spectrum at room temperature. The final volume of
each solution for measurement of the luminescence emission spectrum was 100 µL.

4.5. Measurement of the Luminescence Intensity of CypLs with CypLase

Fifty microliters of a 10 ng mL−1 solution of a recombinant CypLase in 100 mM
Tris–HCl (pH 7.5) containing 300 mM L-ascorbic acid sodium salt and 100 mM NaCl
was automatically added to 50 µL of a 0.2 or 2 µM solution of chiral-separated (R)-
or (S)-CypL in 100 mM Tris–HCl (pH 7.5) containing 300 mM L-ascorbic acid sodium
salt and 100 mM NaCl on a black 96-well plate (FIA Plate; Greiner Bio-One, Kremsmun-
ster, Austria) using an injector equipped with a multimode microplate reader (TriStar 5;
Berthold Technologies, Bad Wildbad, Germany), followed by immediate measurement of
luminescence intensity at room temperature. The luminescence intensity was recorded in
relative light units (RLU) in 0.1 s intervals over 120 min.

4.6. Measurement of Luminescence Intensity of CypLs with Human AGP

Fifty microliters of a 53 µg mL−1 solution of human AGP in 100 mM Tris–HCl
(pH 9.0) was automatically added to 50 µL of a 0.2 or 2 µM solution of chiral-separated (R)-
or (S)-CypL in water on a white 96-well plate (Eppendorf microplate 96/F-PP; Eppendorf,
Hamburg, Germany) using the injector equipped with the multimode microplate reader
(TriStar 5; Berthold Technologies), followed by immediate measurement of luminescence
intensity at room temperature. The luminescence intensity was recorded in relative light
units (RLU) in 0.1 s intervals over 180 min. As a point of caution, in this measurement, a
white 96-well plate was used instead of the black 96-well plate described in Section 4.5.
A white 96-well plate reflects light, but a black 96-well plate absorbs light. Therefore, the
value of light intensity with a white 96-well plate is higher than that with a black 96-well plate.

4.7. Kinetic Analysis of CypLase

The luminescence intensity for the kinetic analysis was recorded on a luminometer
(AB2200; ATTO), after adding 40 µL of a recombinant CypLase solution (1 ng mL−1 in 150 mM
phosphate buffer (pH 7.2) containing 100 mM NaCl to 40 µL of a (R)- or
(S)-CypL ethanol solution (0.0156–2 µM) in 0.1 M phosphate buffer (pH 7.2) with antioxidants
(300 mM sodium ascorbate/20 mM Na2SO3) in a test tube at room temperature. Each measure-
ment was performed in duplicate. The obtained data (see Supplementary Figure S3) were
subjected to kinetic analysis using the R program [53] to fit the Michaelis–Menten equation.
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4.8. Chiral HPLC Analysis of the Reaction Mixtures of Racemic CypL and CypLase

Immediately before this experiment, 594 µL of a 99.4 µM solution of racemic CypL in
100 mM Tris–HCl (pH 7.5) containing 300 mM L-ascorbic acid sodium salt was mixed with
6 µL of water or a 1.2 mg mL−1 solution of a recombinant CypLase in 20 mM Tris–HCl
(pH 8.0). The mixtures were incubated at room temperature, and 200 µL of each mixture
was collected at 2 min, 7 min, and 17 min after starting the reaction, followed by immediate
filtration through an Amicon Ultra-0.5 centrifugal filter device with nominal molecular
weight limit (NMWL) of 10 KDa (Millipore). Ten aliquots of the resultant filtrates were
subjected to chiral HPLC analysis. Chiral HPLC analysis was performed on a Waters AC-
QUITY UPLC H-Class system (Waters) equipped with a CHIRALCEL OZ-RH chiral column
(ϕ4.6 × 150 mm, 5 µm; Daicel Chemical Industry), a multiwavelength detector (ACQUITY
UPLC PDA eλ detector; Waters), and a fluorescence detector (ACQUITY FLR detector;
Waters). The HPLC conditions were as follows: mobile phase, 30% (v/v) acetonitrile in a
100 mM solution of potassium hexafluorophosphate in H2O; flow rate, 0.8 mL min−1;
fluorescence detection, excitation/emission, 430/570 nm.

5. Conclusions

In this study, we successfully obtained (R)-CypL by chiral HPLC separation using a
chiral column and for the first time demonstrated that the reaction of the chiral-separated
(R)-CypL with a recombinant CypLase produced light. In addition, we found that the maxi-
mum luminescence intensity from the reaction of (R)-CypL with CypLase was significantly
lower than that from the reaction of (S)-CypL with CypLase, but our kinetic analysis of
CypLase suggested a higher affinity of (R)-CypL for CypLase than (S)-CypL. Furthermore,
we showed that CypLase consumed (R)-CypL more slowly than (S)-CypL. This result
indicates that the slower turnover rate of CypLase for (R)-CypL was probably the cause of
the luminescence of (R)-CypL with CypLase being less efficient than that of (S)-CypL with
CypLase. These findings provide a new insight into the engineering of CypLase to produce
light efficiently. A future study such as crystallographic characterization of CypLase with
CypL, CypOxyL, or CypL analogs would be expected to reveal the enzymological reason
for the differences in luminescence between (R)- and (S)-CypL with CypLase.
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at 430 nm. Absorption spectra obtained via PDA detection at the retention times of (b) 14.1 and (c) 
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Figure A1. Chiral HPLC separation of the enantiomeric mixture of CypL. (a) HPLC chromatogram at
430 nm. Absorption spectra obtained via PDA detection at the retention times of (b) 14.1 and (c) 18.8
shown in panel (a) (see Section 4 “Chiral HPLC Separation of Enantiomers of CypL”). The amount
of CypL (NanoLight Technology, Prolume) used in this experiment was 10 µg. A CHIRALPAK IM chi-
ral column (ϕ4.6 × 250 mm, 5 µm; Daicel Chemical Industry) was used in this chiral HPLC analysis.
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Figure A2. Luminescence of CypL with human AGP. (a) Maximum luminescence intensity of CypLs
with human AGP over 180 min. Luminescence kinetics of (b) (R)-CypL and (c) (S)-CypL with human
AGP over 180 min. The amount of CypL used in this measurement was 4.05 ng or 40.5 ng, and the
amount of human AGP used in this experiment was 2.65 µg.

Table A1. The ratio of the partially integrated luminescence intensity of (R)- and (S)-CypL with
CypLase to integration over 120 min in the luminescence measurements shown in Figure 4b,c.

Concentration of
the Substrate Substrate

The Ratio of the Partially Integrated Luminescence
Intensity to the Integration over 120 min

0–12 min 12–120 min

0.1 µM (R)-CypL 43.0% 57.0%
(S)-CypL 51.2% 48.8%

1 µM (R)-CypL 35.6% 64.4%
(S)-CypL 49.5% 50.5%

Table A2. Km values of CypLase for (R)- and (S)-CypL.

Substrate Km Value of CypLase

(R)-CypL 0.23 µM
(S)-CypL 0.75 µM

Table A3. The ratio of the partially integrated luminescence intensity of (R)- and (S)-CypL with
human AGP to integration over 180 min in the luminescence measurements shown in Figure A2b,c.

Concentration of
the Substrate Substrate

The Ratio of the Partially Integrated Luminescence
Intensity to the Integration over 180 min

0–18 min 18–180 min

0.1 µM (R)-CypL 28.7% 71.3%
(S)-CypL 29.5% 70.5%

1 µM (R)-CypL 26.6% 73.4%
(S)-CypL 26.6% 73.4%
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Table A4. The ratio of the peak area of (R)- and (S)-CypL to the total CypL in the chiral HPLC analysis
of the reaction mixtures shown in Figure 5.

Reaction Time CypLase
The Ratio of the Peak Area of

(R)- and (S)-CypL to the Total CypL

(R)-CypL (S)-CypL

2 min + 80.9% 19.1%
- 56.7% 43.3%

7 min + 94.6% 5.4%
- 56.7% 43.3%

17 min + N.D. 1 N.D. 1

- 56.7% 43.3%
1 N.D. indicates “not detected”.
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