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Abstract: Metal phthalocyaninates and their higher homologues are recognized as deep-red luminophores
emitting from their lowest excited singlet state. Herein, we report on the design, synthesis, and in-depth
characterization of a new class of dual-emissive (visible and NIR) metal naphthalocyaninates. A 4-N,N-
dimethylaminophen-4-yl-substituted naphthalocyaninato zinc(II) complex (Zn-NMe2Nc) and the derived
water-soluble coordination compound (Zn-NMe3Nc) exhibit a near-infrared fluorescence from the lowest
ligand-centered state, along with a unique push–pull-supported luminescence in the visible region of
the electromagnetic spectrum. An unprecedentedly broad structural (2D-NMR spectroscopy and mass
spectrometry) as well as photophysical characterization (steady-state state and time-resolved photolumi-
nescence spectroscopy) is presented. The unique dual emission was assigned to two independent sets of
singlet states related to the intrinsic Q-band of the macrocycle and to the push–pull substituents in the
molecular periphery, respectively, as predicted by TD-DFT calculations. In general, the elusive chemical
aspects of these macrocyclic compounds are addressed, involving both reaction conditions, thorough
purification, and in-depth characterization. Besides the fundamental aspects that are investigated herein,
the photoacoustic properties were exemplarily examined using phantom gels to assess their tomographic
imaging capabilities. Finally, the robust luminescence in the visible range arising from the push–pull charac-
ter of the peripheral moieties demonstrated a notable independence from aggregation and was exemplarily
implemented for optical imaging (FLIM) through time-resolved multiphoton micro(spectro)scopy.

Keywords: dual fluorescence; multiscale–multimodal imaging; photoacoustic/optoacoustic spectroscopy;
steady-state and time-resolved multiphoton micro(spectro)scopy (FLIM); (TD-)DFT

1. Introduction

Over the past decade, there has been a rising interest in the design and synthesis of
compounds exhibiting dual emission (DE) [1]. While most organic molecules typically
manifest a single characteristic fluorescence, certain distinctive luminophores, wherein
electron donor and electron acceptor moieties are connected by a single bond, may exhibit
a dual emission [2]. The phenomenon of dual fluorescence (DF) was initially observed for
4-(dimethylamino)benzonitrile (DMABN) by Lippert et al. [3]. It arises from two distinct
conformations of the same molecule in the first excited singlet state (S1), specifically, the
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locally excited state (LE) and the intramolecular charge-transfer state (ICT) [4]. Subse-
quently, several other systems were designed incorporating a strong electron-donating or
-withdrawing group [5–11]. Owing to their nonlinear optical properties, these compounds
have been extensively explored as part of the development of organic materials, serving
various applications including their use as electrooptical switches, chemical sensors, and
fluorescent markers [12–15].

Generally, due to their broad application range as functional materials for semicon-
ductors, gas sensors, nonlinear optical limiters, liquid crystals and as sensitizers for photo-
dynamic therapy (PDT) in cancer treatments, among many others, metal phthalocyanines
(Pcs) are counted among the most extensively investigated dyes in history, besides others
such as cyanine colorants and BODIPY derivatives [16–18]. Metal naphthalocyanines (Ncs)
constitute expanded analogues of their Pc counterparts that possess a linearly annulated
benzene ring in the periphery of the macrocyclic core that leads to an about 100 nm red
shift of the absorption band in the red if compared with Pcs. This shift, known as the rule
of “100 nm”, results from the destabilization of the HOMO (highest occupied molecular
orbital) and the associated decrease in the HOMO-LUMO (lowest unoccupied molecular
orbital) gap [19]. Thus, Ncs are able to act as versatile tetradentate chelators for various
metals and show a strong absorption in the near-infrared region (750–900 nm) with high
molar absorption coefficients. The intense absorption and fluorescence bands of naphthalo-
cyanines in the near-infrared offers interesting opportunities such as the fabrication of
high-performance NIR photodiodes and bioimaging [20,21], and the complexation of open-
shell or late-transition element cations can add further functionalities related to spin–spin
or spin–orbit coupling, respectively.

The structural flexibility of Ncs has been extensively illustrated through a diverse
range of metal complexes and a wide array of substituents that can be attached to the
periphery of the core or as axial ligands [19,22–27]. This chemical modification induces spe-
cific alterations in the electronic structure of the macrocyclic core, providing precise control
over the physicochemical characteristics. However, despite their ability to absorb in the far
red/near-infrared region, Ncs have been relatively neglected, mainly because of their intri-
cate synthesis, with difficult purification, poor solubility, and a tendency to form inactive
aggregates, owing to strong van der Waals interactions upon stacking [28,29]. As a conse-
quence of their high tendency to form aggregates, a drop of fluorescence and singlet oxygen
quantum yields is observed [30,31]. There have been several structural variations intro-
duced to overcome the solubility and aggregation issues of (na)phthalocyanines, including
the insertion of bulky substituents in the peripheral positions of the macrocycles [25,32–35],
the addition of axial ligands to the central atom [28,30,36–39], or the encapsulation of the
dye in colloidal particles [40,41]. Furthermore, peripheral functional groups in Ncs macrocy-
cles may be utilized to further tailor intra- and intermolecular interactions as well as optical,
photochemical, and electrochemical properties; particularly, aromatic groups increase in-
termolecular π-π interactions [19,34]. However, all these derivatives still exhibit a strong
tendency to aggregate in aqueous media, which can significantly reduce their performance
due to self-quenching [42]. In the case of Pcs, these issues were solved by the introduction
of several hydrophilic and amphiphilic groups (e.g., carboxylates, sulfonates, phospho-
nates, PEG chains) [43–48], as well as bulky axial ligands (e.g., −OSiMe2(CH2)3NMe2 and
−OCH(CH2NMe2)2) [49–53] in the periphery of the macrocycle or at the central atom,
respectively. Among these strategies, positively charged macrocycles are of particular inter-
est, as they might target highly vulnerable intracellular sites and produce effective DNA
damage in the context of phototherapy [42]. Moreover, positively charged Pcs have been
successfully employed for the photoinactivation of both Gram-negative and Gram-positive
bacteria [54–56]. However, in the case of water-soluble Ncs, the majority of the reported
exemplars are based on silicon(IV)-based coordination compounds, mainly due to the
presence of two axial positions that can be readily modified to reduce aggregation while im-
proving solubility in aqueous media [27,57]. While peripherally substituted water-soluble
Pcs have been widely discussed in the literature [30,58], their Ncs counterparts with aque-
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ous solubility have remained vastly unexplored [29,59]. Despite exhibiting NIR absorption
and emission, Ncs exhibiting dual fluorescence (vis/NIR) have not been reported so far.

With this background in mind, we herein report on an unprecedented design pat-
tern for single-component yet dual-emissive zinc(II) naphthalocyaninates, including a
detailed synthesis as well as a structural and photophysical characterization. In order to
suppress the intermolecular interactions and to improve their solubility, we aimed at the
tailored substitution on the γ-position of the macrocyclic ligand to introduce eight 4-N,N-
dimethylaminophen-4-yl moieties, which were further quaternized with methyl iodide to
enhance their hydrophilicity. Moreover, substitution with 4-N,N-dimethylaminophen-4-
yl moieties opens up new possibilities for push–pull-based two-photon excitability and
aggregation-independent luminescence in the visible region of the electromagnetic spec-
trum. To assess the charge-transfer nature of the excited state that was provided by the
dimethylamino substitutents, an analogous 4-methoxyphen-4-yl-substituted zinc(II) naph-
thalocyaninate was synthesized. The assignment of the emissive states was carried out by
TD-DFT calculations while rationalizing the electronic transitions dominating the absorp-
tion and emission spectra of these complexes. Thus, we anticipate that this strategy for
preparing dual-emissive (visible and NIR) naphthalocyanines will pave the way for future
innovation and accelerated developments in a broad range of application fields, including
optoelectronics, energy conversion, and as contrast agents that are able to provide two
orthogonal readouts for multiscale–multimodal imaging.

2. Results and Discussion
2.1. Design, Synthesis, Purification, and Structural Characterization

The peripheral functionalization was achieved by means of a Suzuki–Miyaura cou-
pling reaction between 6,7-dibromo-2,3-dicyanonaphthalene (1) and the corresponding
boronic acids, following our previously reported methodology [60]. This substitution
pattern was chosen in accordance with our recent report showing that the push–pull char-
acter and perpendicular-to-plane rigidified arrangement of the two phenyl moieties can
provide strong luminescence in aggregates as well as in solution. The detailed synthetic
procedure is shown in Section 3 (vide infra). The substituted naphthalonitriles NMe2 and
OMe were converted into the corresponding naphthalocyaninato zinc(II) complexes Zn-
OMeNc and Zn-NMe2Nc by refluxing them in isoamyl alcohol (i-amOH) in the presence
of 1,8-diazabicycloundec-7-ene (DBU) in catalytic amounts (Figure 1).

The reaction was performed under inert conditions in order to prevent the oxidation
of the macrocycle by atmospheric oxygen at high temperatures. The obtained products
contained some fluorescent impurities (most likely low-molecular-weight condensates
preceding the cyclotetramerization); attempts to use column chromatography with silica
or alumina as stationary phases in combination with classical organic solvent gradients
failed, as the polar components of the reaction mixture strongly bind to both materials.
Reverse-phase silica was also explored for purification; also in this case, it was observed that
the product strongly binds to the stationary phase. Thus, the crude reaction mixture was
subjected to multiple Soxhlet extractions to remove bulk impurities. The obtained products
were further purified by size exclusion chromatography (Sephadex LH-20, Amersham
Pharmacia Biotech AB, Uppsala, Sweden) in N,N-dimethylformamide (DMF). Finally,
the water-soluble octa-cationic zinc(II) naphthalocyaninate Zn-NMe3Nc was obtained by
treating Zn-NMe2Nc with an excess of methyl iodide in DMF (Figure 2). Besides UV-
vis absorption spectroscopy, the Ncs were structurally characterized by means of mass
spectrometry and NMR spectroscopy. Due to their intrinsic aggregation tendency, attaining
well-resolved 1H- and 13C-NMR spectra proved to be particularly challenging. Nonetheless,
we were able to obtain precise 2D-NMR spectra (including an unambiguous assignment
for all peaks).
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naphthalocyaninato zinc(II) (Zn-NMe3Nc).

In order to obtain a better resolution in the 1H-NMR spectra of Zn-OMeNc, Zn-
NMe2Nc, and Zn-NMe3Nc, DMSO was used as the solvent in NMR spectroscopy, as it
suppresses aggregation caused by stacking. Due to the de-shielding effect of the porphyraz-
inato core, a clear downfield shift of Hα protons compared to Hβ was observed [34]. The
interpretation of all signals in the 1H-NMR spectra of the Ncs Zn-OMeNc, Zn-NMe2Nc,
and Zn-NMe3Nc were enabled by 1H-1H-COSY, 1H-13C-HSQC, 1H-13C-HMBC, and 1H-
1H-ROESY spectroscopies, where all signals were unambiguously assigned (also for the
naphthalonitriles, see SI, Figures S1–S26). From the 1H-NMR spectra of Zn-OMeNc and
Zn-NMe2Nc, it was clear that these two coordination compounds aggregate at the re-
quired concentrations, whereas the eight positive charges in the periphery of Zn-NMe3Nc
suppressed aggregation and yielded well-resolved 1H-NMR spectra (Figure S21). Hence,
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the proton signals from Zn-NMe3Nc were better resolved than those from Zn-OMeNc
and Zn-NMe2Nc. In the 1H-1H-ROESY spectra, cross-peaks were observed between the
signals of Hα and Hβ protons and between the protons of the phenyl groups and signals
corresponding to Hβ (see SI, Figures S14, S20 and S26). From 1H-1H-COSY, additional
groups of cross-peaks were found between the protons of the phenyl groups (see SI,
Figures S11, S17 and S23). The mass spectra of Zn-NMe3Nc were obtained by using ESI-
EM, whereas for Zn-OMeNc and Zn-NMe2Nc, MALDI-TOF had to be employed. The
MS demonstrated a good agreement between the expected and observed peaks (see SI,
Figures S27–S31).

2.2. UV-Vis Absorption, Steady-State, and Time-Resolved Photoluminescence Spectroscopies

In agreement with the characteristic spectroscopic features of metal (na)phthalocyaninates,
the UV-vis absorption spectra of the herein reported complexes feature a Soret-band (or B-band)
in the UV range and Q-band in the NIR region [25]. Figure 3 depicts the absorption spectra of
Zn-OMeNc, Zn-NMe2Nc, and Zn-NMe3Nc in DMSO and in water. A red shift of the Q-band
was observed when going from Zn-OMeNc (794 nm) to Zn-NMe2Nc (800 nm), implying
that the energy gap between the HOMO and the LUMO is reduced when introducing a
stronger electron π-donor (i.e., replacement of methoxy by dimethylamino moieties) [61,62].
Consistently, in the case of Zn-NMe3Nc, a blue shift was observed (781 nm) in DMSO, due to
the reduced electron-donating capacity of the cationic trimethylammonium groups (Table 1).
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Figure 3. UV-vis absorption spectra normalized at the corresponding λmax for Zn-OMeNc (a),
Zn-NMe2Nc (b), and Zn-NMe3Nc (c) in DMSO, as well as for Zn-NMe3Nc in water (d).
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Table 1. Q- and B-bands observed in the absorption spectra. The corresponding molar absorption
coefficient (ε) for each band is also listed in square brackets.

Compound/
Solvent

Q-Band (λmax/nm)
[ε/104 M−1 cm−1]

B-Band (λmax/nm)
[ε/105 M−1 cm−1]

Zn-OMeNc/DMSO 794
[4.4]

293
[1.9]

Zn-NMe2Nc/DMSO 800
[5.3]

350
[2.0]

Zn-NMe3Nc/DMSO 781
[55]

350
[1.8]

Zn-NMe3Nc/H2O 732, 784
[22], [18]

340
[2.7]

As shown in Figure 3a,b, the Q-band appears to be less intense than the B-band, which is
surprising when considering that the latter is usually weaker in metal (na)phthalocyaninates.
This observation can be attributed to the strong absorption in the blue and in the UV re-
lated to the eight methoxy- or dimethylamino-substituted moieties, which actually exhibit
a sizeable push–pull character (in fact, this blue-shifted band is drastically reduced upon
quaternization, as seen by the comparison of Zn-NMe2Nc with its derivative Zn-NMe3Nc;
vide infra regarding the additional influence of aggregation phenomena on the relative in-
tensities in the red and in the blue region of the spectrum). Similar trends were previ-
ously reported for Zn(II) phthalocyanines [63,64]. The formation of red-shifted aggregates
plays a role in the case of Zn-OMeNc, in agreement with the broadened signals that are
observed in NMR spectroscopy (see SI, Figure S9); hence, the low molar absorption coef-
ficient (ε) at λmax = 794 nm (ε = 4.4 × 104 M−1 cm−1) and the rather weak absorption band
at around 876 nm point towards J-aggregation. Similarly, in the case of Zn-NMe2Nc, the
intensity of the Q-band appears to be reduced if compared with the B-band, an observation
that is reinforced by aggregation; therefore, a relatively low molar absorption coefficient
at λmax = 800 nm (ε = 5.3 × 104 M−1 cm−1) is measured. Typically, the values for Q-bands
in metal (na)phthalocyaninates are of the order of 105 M−1 cm−1. Thus, by comparison of
the three compounds presented herein, it is clear that the relatively high intensity of the
B-band is prominently enhanced in the cases of Zn-OMeNc and Zn-NMe2Nc, due to the
charge-transfer absorption of the eight aromatic electron-donating moieties (methoxy- or
dimethylaminophenyl, respectively), which overlap with the B-band and disappear upon
quaternization (vide infra); in addition, aggregation compromises the intensity of the Q-band.

Nonetheless, the eight positive charges of Zn-NMe3Nc suppress aggregation in DMSO,
and the relative intensity of the Q-band vs. the B-band fall in the expected range for metal
(na)phthalocyaninates [25,65]. However, the absorption spectrum of Zn-NMe3Nc in water
showed clear differences when compared to its spectrum in DMSO. In water, Zn-NMe3Nc
still exhibits H-aggregation, as evidenced by the presence of two non-vibrational shoulders
in the Q-band region (Figure 3d). The lower energy (red-shifted) band at about 784 nm can
be attributed to the monomeric species, whereas the higher energy (blue-shifted) band at
732 nm suggests the presence of H-aggregates, as it was previously reported for comparable
(na)phthalocyanines [29–31,66]. The formation of H-aggregates in water is more evident
when comparing the molar absorption coefficients (ε) of Zn-NMe3Nc in DMSO vs. water.
In DMSO, the H-aggregates are disrupted, and Zn-NMe3Nc shows a characteristically
high ε value at λmax = 781 nm (ε = 5.5 × 105 M−1 cm−1). This contrasts with the spectrum
in water, where Zn-NMe3Nc peaks at λmax = 732 nm (ε = 2.2 × 105 M−1 cm−1), and
λmax = 784 nm (ε = 1.8 × 105 M−1 cm−1) (Table 1). In water, H-aggregation reduces the
Q-band intensity with respect to the B-band, and the molar absorption coefficient in the
red drops by a factor of roughly two, which points toward dimerization. Despite the clear
aggregation phenomena discussed above, the Lambert–Beer law was obeyed within the
experimental range for all these compounds (see SI, Figures S35–S47) [67]. In general,
the molar absorption coefficients were obtained from the slope of the absorbance versus
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the concentration of the samples (the latter were determined by total reflection X-ray
fluorescence (TXRF) addressing the concentration of Zn).

The UV-vis absorption, steady-state photoluminescence emission and excitation spec-
tra of Zn-OMeNc, Zn-NMe2Nc, and Zn-NMe3Nc were measured in DMSO (Figure 4). In
the case of Zn-NMe3Nc in water, a clear narrowing of the excitation spectrum was observed
compared with the absorption spectrum, as only the emissive monomers were addressed,
whereas all species (even aggregates) in a solution contribute to the broadened absorption.
The proximity of the Q-band-related emission with respect to the Q-band excitation and ab-
sorption for Zn-OMeNc, Zn-NMe2Nc, and Zn-NMe3Nc in DMSO indicate that the nuclear
configurations of the ground and excited states are comparable and therefore practically
not affected by the excitation wavelength.
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Figure 4. Absorption (red), excitation (black, λem = 920 nm), and emission (blue, λex = 750 nm)
spectra of Zn-OMeNc (a), Zn-NMe2Nc (b), Zn-NMe3Nc in DMSO (c) and Zn-NMe3Nc in water (d).

In agreement with previous reports on metal (na)phthalocyaninates, the photolumines-
cence emission spectra of Zn-OMeNc, Zn-NMe2Nc, and Zn-NMe3Nc mirror the excitation
spectra with a typically small Stokes shift (Figure 4), if referring to the red-shifted Q-band.
As can be observed in the full-range emission spectra (recorded while exciting in the UV),
the compounds feature a surprisingly prominent dual emission, which will be discussed
below (vide infra). This phenomenon was initially noticed while measuring the emission
spectra of Zn-NMe2Nc in DMSO at different excitation wavelengths (λex). After varying
λex, a broad emission band with a λem = 560 nm (λex = 335 nm) and a sharp near-infrared
emission with λem = 811 nm (λex = 750 nm) was observed (Figure 5c,d, Table 2). In order to
understand this rather unique dual emission, the analogous Zn-OMeNc was also designed,
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prepared, and studied. Interestingly, Zn-OMeNc also exhibited two clear emission bands,
with a λem = 508 nm (λex = 335 nm) and λem = 804 nm (λex = 750 nm) in DMSO (Figure 5c,d,
Table 2). It is important to mention that when using λex = 335 nm and screening the
emission from the blue to the NIR region to acquire the full-range fluorescence spectra,
both bands are visible in the case of Zn-OMeNc and Zn-NMe2Nc (Figure 5a,b, Table 2).
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Figure 5. Fluorescence in DMSO: (a) full-range emission spectrum of Zn-OMeNc (blue), λex = 335 nm;
(b) full-range spectrum of Zn-NMe2Nc (red), λex = 335 nm; (c) normalized emission spectra of Zn-
OMeNc (blue) and Zn-NMe2Nc (red) in the visible region, λex = 335 nm; (d) normalized emission
spectra of Zn-OMeNc (blue) and Zn-NMe2Nc (red) in the near-infrared region, λex = 750 nm. In the
full-range emission spectra (a,b), the bands may appear slightly different (if compared with (c,d),
both in shape and intensity), due to the different instrumental settings and filters employed (for
details, see Section 3.3).

A similar trend was observed for Zn-NMe3Nc when measured in water and in DMSO.
In DMSO, Zn-NMe3Nc exhibited two emission bands, with a λem = 550 nm (λex = 335 nm)
and λem = 801 nm (λex = 750 nm) (Figure 6c,d, Table 2). In contrast, the emission bands
measured in water were observed at λem = 432 nm (λex = 335 nm) and λem = 804 nm
(λex = 750 nm) (Figure 6c,d, Table 2). When a full-range emission spectrum for Zn-NMe3Nc
in DMSO was measured (from blue to the NIR region using λex = 335 nm), a relatively faint
emission band with λem = 550 nm and a high-intensity luminescence with λem = 800 nm
were observed (Figure 6a). This can be attributed to the reduction in the push–pull charac-
ter upon quaternization of the peripheral 4-N,N-dimethylaminophen-4-yl groups and the
monomeric nature of Zn-NMe3Nc in DMSO, yielding a comparably strong NIR fluores-
cence and a weak visible emission. Thus, it is inferred that the monomers of Zn-NMe3Nc
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in DMSO yield an intense NIR emission and a comparatively weak luminescence between
400 nm and 500 nm. In contrast, the full-range emission spectrum of Zn-NMe3Nc in
water (from blue to the NIR region using λex = 335 nm) exhibited a substantially stronger
emission band, peaking at λem = 400 nm, when compared with the NIR fluorescence band
at λem = 801 nm (Figure 6b); this can be understood when taking into account that in water,
H-aggregation suppresses the fluorescence in the NIR, and a comparatively strong residual
emission remains in the visible range. The dual emission of Zn-OMeNc, Zn-NMe2Nc, and
Zn-NMe3Nc was interpreted and assigned by TD-DFT calculations (vide infra).

Table 2. Photophysical properties of the compounds (λmax and τ). P1 and P2 are the peaks in the visi-
ble and NIR regions in the emission spectra, respectively. For the bi-exponential photoluminescence
decays, the amplitude-weighted average lifetimes (τav_amp) are shown. The τ values are rounded to
match the significant figures of the uncertainties; raw time-resolved photoluminescence decays and
fitting parameters are shown in the SI, Figures S48–S55.

Compound/
Solvent

λmax/nm
P1/P2

τ/ns
[P1]

τ/ns
[P2]

Zn-OMeNc/DMSO 508/804
τ1 = 8.2 ± 0.3 (21%)
τ2 = 2.7 ± 0.1 (79%)
τav_amp = 3.8 ± 0.1

τ1 = 2.05 ± 0.03 (68%)
τ2 = 1.0 ± 0.1 (32%)
τav_amp = 1.7 ± 0.1

Zn-NMe2Nc/DMSO 560/811
τ1 = 8.4 ± 0.2 (34%)
τ2 = 2.3 ± 0.2 (61%)
τav_amp = 4.6 ± 0.1

τ1 = 1.80 ± 0.08 (21%)
τ2 = 0.61 ± 0.03 (79%)
τav_amp = 0.86 ± 0.04

Zn-NMe3Nc/DMSO 550/801
τ1 = 9.1 ± 0.2 (55%)
τ2 = 3.4 ± 0.4 (45%)
τav_amp = 6.6 ± 0.2

τ = 5.69 ± 0.02

Zn-NMe3Nc/H2O 432/804
τ1 = 8.5 ± 0.4 (9%)
τ2 = 5.2 ± 0.1 (91%)

τav_amp = 5.51 ± 0.03

τ1 = 5.43 ± 0.05 (28%)
τ2 = 1.20 ± 0.08 (72%)

τav_amp = 2.4 ± 0.1

The dual fluorescence can be explained by two sets of singlet states (with orthogo-
nal charge-transfer vs. main-ligand-centered character). The near infrared fluorescence
originates from the S1/2 → S0 transition, and the visible emission stems from the S3 → S0
transition. The doubly degenerate S1/2 state has a π–π* character, whereas the S3 states have
a charge-transfer (n–π*) character involving the electron-rich methoxy- or dimethylamino-
substituted phenyl moieties. The energy gap between S1/2 and S3 states is relatively large;
the lack of excited state geometry distortion (i.e., parallel potential hypersurfaces or “nested
states”) hamper the non-adiabatic crossover, leading to relatively slow internal conversion
processes. Hence, in the case of Zn-OMeNc, Zn-NMe2Nc, and Zn-NMe3Nc, both an emis-
sion in the visible region and an NIR fluorescence are observed. In the case of Zn-NMe3Nc
in water, the S1/2 state is quenched due to aggregation, the intensity of the NIR emission is
low, and the push–pull character is reduced due to quaternization.

Taking into account that the relative intensities of the two emission bands remain in-
variant when comparing independently synthesized batches, and considering the thorough
purification that was carried out with no traces of impurities in the NMR spectra, we can
confidently exclude spurious emission from side products or other contamination (pho-
todecomposition is ruled out, as the absorption and emission spectra do not significantly
vary during the photophysical characterization). Moreover, TD-DFT calculations support
the assignment (vide infra).
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Figure 6. Fluorescence in DMSO and in water: (a) full-range emission spectrum of Zn-NMe3Nc
(blue) in DMSO, λex = 335 nm; (b) full-range emission spectrum of Zn-NMe3Nc (red) in water,
λex = 335 nm; (c) normalized emission spectra of Zn-NMe3Nc in DMSO (blue) and water (red) in
the visible region, λex = 335 nm; (d) normalized emission spectra of Zn-NMe3Nc in DMSO (blue)
and water (red) in the near-infrared region, λex = 750 nm. In the full-range emission spectra (a,b), the
bands may appear slightly different (if compared with (c,d), both in shape and intensity) due to the
different instrumental settings and filters employed (for details see Section 3.3).

2.3. TD-DFT Calculations

In order to assign the transitions that were observed in the absorption and fluorescence
spectra, we optimized the structures of Zn-OMeNc, Zn-NMe2Nc, and Zn-NMe3Nc in their
electronic ground states (for computational details, see Section 3.4). All three complexes
exhibited a highly planar core, which was marginally influenced by the peripheral sub-
stituents (see Figure 7). At the optimized ground state geometries, the UV-vis absorption
spectra were calculated using TD-DFT/B3LYP.
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Figure 7. Optimized ground state structures of Zn-OMeNc, Zn-NMe2Nc, and Zn-NMe3Nc, obtained
with DFT.

As can be seen from Figure 8, the theoretical spectra generally agree well with the
experimental data. Due to the degeneracy of the LUMO and LUMO + 1 orbitals, the S1 and
S2 states are also doubly degenerate, as they can be described by HOMO → LUMO and
HOMO → LUMO+1 excitations, respectively. The band corresponding to the S0 → S1/2
transition—located at 805 nm, 756 nm, and 740 nm for Zn-NMe2Nc, Zn-OMeNc, and
Zn-NMe3Nc, respectively—shows a progressive blue shift with decreasing electron donor
ability, in good agreement with the experimental data (and also qualitatively with re-
spect to the relative intensities of the B- and Q-bands). The high intensity of this NIR
maximum can be explained by the fact that it represents a local excitation within the 2,3-
naphthalocyaninato ligand (the black part of the structure depicted in Figure 1, see Figure 9
for a visualization of the relevant frontier orbitals).
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Zn-NMe3Nc, with the highest contributions describing the S1/2 → S0 de-excitation.

In addition, we calculated the 0-0 fluorescence wavelengths from the S1/2 and S3 states by
optimizing the respective excited state geometries and subtracting the optimized ground state
energy. While the S1/2 → S0 de-excitation involved a local LUMO/LUMO + 1 → HOMO
configuration change (Figure 9), which was reasonably well described by all functionals that
were tested herein, the S3 → S0 de-excitation turned out to be much more problematic, as it
involved a pronounced charge-transfer character for the relevant excited state—at least for
Zn-OMeNc and Zn-NMe2Nc (see Figure 10). For Zn-NMe2Nc, geometry optimization with
the B3LYP functional leads to a collapse of the S3 state onto the S1/2 state, yielding spurious
emission wavelengths. The long-range corrected functional CAM-B3LYP, on the other hand,
significantly overestimated the S3 energy (see SI, Table S1). In fact, the PBE0 functional
emerged as the best compromise for all three compounds, considering both emission lines in
the visible and the NIR (see Figure 11). It is able to reproduce the position of the experimental
0-0 peaks accurately, including the slight blue shift when going from Zn-NMe2Nc to Zn-
NMe3Nc via Zn-OMeNc. For Zn-OMeNc, the S3 peak was also described very well, while
for Zn-NMe2Nc, the agreement with the experiment was particularly poor, with the PBE0
peak being red-shifted by about 150 nm.

Presumably, this is due to the stronger charge-transfer character in the case of Zn-
NMe2Nc, with a notable amount of charge density being located at the NMe2 substituent in the
HOMO-1. In addition, the S3 state contains a 7% contribution of the local HOMO → LUMO
+ 1 excitation. The use of the M06-2X functional leads to a considerable improvement for
Zn-NMe2Nc (see Figure 11), but not for the other two compounds. PBE0 predicts the S3
state to be governed by a HOMO-1 → LUMO excitation in the case of Zn-NMe2Nc and
Zn-OMeNc, whereas for Zn-NMe3Nc, the S3 state is dominated by a HOMO → LUMO + 2
excitation (Figure 10).
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2.4. MSOT Imaging in Gel Phantoms

In recent studies, it has been demonstrated that naphthalocyaninato complexes (Ncs)
hold significant potential as photoacoustic contrast agents [27,68,69]. In comparison with
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other organic compounds, such as cyanine dyes and nanoparticles, naphthalocyanines
exhibit higher molar absorption coefficients in the NIR region, featuring sharp maxima
between 770 nm and 850 nm [16]. The well-defined NIR absorption peaks mentioned above
contribute to more precise spectral unmixing, distinguishing them from other exogenous
contrast agents [70]. As a result, Zn-NMe2Nc and Zn-NMe3Nc were employed as rep-
resentative examples for generating photoacoustic (PA) images utilizing multi-spectral
optoacoustic tomography (MSOT). These measurements were conducted within tissue-
mimicking gel phantoms, as depicted in Figure 12 [69]. The experiments were carried out
at different concentrations, and the obtained photoacoustic profiles qualitatively agree with
the absorption spectra regarding the wavelengths that induce the highest photoacoustic
response. The phantom studies were performed by dissolving Zn-NMe2Nc in DMSO,
Zn-NMe3Nc in DMSO, and Zn-NMe3Nc in water, respectively.
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Figure 12. MSOT photoacoustic images of gel phantoms at different concentrations: (a) Zn-Nme2Nc
in DMSO, (b) Zn-Nme3Nc in DMSO, and (c) Zn-NMe3Nc in water (λex = 745 nm).

Among these, Zn-NMe3Nc in DMSO provided the highest photoacoustic signal even at
a low concentration (1 µM), with Zn-NMe2Nc in DMSO and Zn-NMe3Nc in water showing
similar yet slightly lower PA signals (Figure 13). The observed difference in signal intensity
of Zn-NMe3Nc in DMSO and water can be attributed to the monomerization in DMSO and
aggregation in water. Also, when comparing the photoacoustic (Figure 13) and absorption
spectra (Figure 3c) of Zn-NMe3Nc in DMSO at λmax = 781 nm, the relative intensities of the
vibronic features appear distorted. For the photoacoustic spectra of Zn-NMe3Nc in DMSO,
the inner filter effect limits the excitation at the main maxima, even at very low concentra-
tions (1 µM), while causing a saturation plateau between λmax = 781 nm and λmax = 700 nm.
As Zn-NMe3Nc in DMSO provides the best photoacoustic signals at a low concentration, it
is clear that the suppression of aggregation enhances the photoacoustic output. In the fu-
ture, this could be further improved with vanadyl- or silicon-naphthalocyanines, where the
axial ligands could prevent aggregation [30,69,71]; the insertion of vanadyl centers could
further shift the absorption maxima to longer wavelengths in the infrared region [72–74].
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and water (blue) at different concentrations, obtained from reconstructed MSOT photoacoustic
images. Spectra at concentration of 5 µM (a), 2.5 µM (b), and 1 µM (c).

2.5. Time-Resolved Multiphoton Micro(spectro)scopy

In order to demonstrate the ability to image structural features by time-resolved
multiphoton micro(spectro)scopy, we employed Zn-NMe2Nc to stain 1 µm sized aminated
polystyrene microparticles (PSMPs) by a swelling–diffusion processes [75], as these are well-
established models for microstructured samples (Figure 14b). As depicted in Figure 14, the
photoluminescence emission spectra of Zn-NMe2Nc-loaded PSMPs (Zn-NMe2Nc@PSMP)
in water show a broad emission band in the green (λmax ≈ 470 nm), but no emission was
observed in the near-infrared region (Figure 14a); this points towards aggregation-caused
quenching of the fluorescence from the macrocycle, as it was previously reported for other
(na)phthalocyanines [76]. However, the distinct emission in the visible region, originating
from the push–pull character of the excited side groups, can be utilized as an additional
optical readout, despite the lack of intrinsic luminescence from the macrocycle. In fact,
the push–pull side groups have been previously introduced in our recent work as robust
luminophores, both in aggregated and in monomeric forms [60]. The excited state lifetime
of the stained microparticles in liquid water was determined, and a τav_amp = 5.1 ns was
obtained (Figure S56).

Further experiments were carried out to assess the photophysical properties of dis-
crete Zn-NMe2Nc@PSMP. Briefly, Zn-NMe2Nc@PSMP were placed on a microscope
slide and analyzed using single-photon excitation (SPE) to carry out fluorescence lifetime
imaging microscopy (FLIM). As depicted in Figure 15, the particles were homogeneously
stained with the push–pull luminophore, confirming the observation that is shown in
Figure 14, while possessing a homogeneously distributed amplitude-weighted average
lifetime of τ ≈ 3.9 ns (Figures 15 and S57). In addition, employing a spectrophotometer
coupled by an optical fiber to the confocal microscope, the emission spectra of discrete
Zn-NMe2Nc@PSMP entities were obtained as dry samples while consistently reproducing
the results for Zn-NMe2Nc@PSMP that was suspended in liquid water (Figure 15). In
contrast to single-photon excitation (SPE), two-photon excitation (TPE) laser scanning
microscopy is often anticipated to increase cell survival and tissue penetration [77]. Thus,
we explored herein a way to increase the detection sensitivity due to an improved sample
penetration employing a near-infrared TPE laser; we therefore performed comparable FLIM
experiments using a high-intensity Ti:Sa oscillator as the two-photon excitation source
(Figure 15), where comparable photoluminescence lifetime maps were obtained. In addi-
tion, the emission spectra of discrete Zn-NMe2Nc@PSMP were also measured by TPE.
These experiments demonstrate that no significant differences are to be expected when
using SPE and TPE (both in lifetimes (Figures S57 and S58) and in the emission spectra) for
optical imaging, while providing a second readout for microscopic imaging.
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bar = 10 µm; λex = 355 ± 20 nm).
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810 nm, center); emission spectrum of a discrete particle using TPE (λex = 810 nm, right). Raw pho-
toluminescence decays and further details can be found in Figures S57 and S58. 
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Figure 15. Upper row: Fluorescence micrograph of Zn-NMe2Nc@PSMP (left); fluorescence life-
time map measured with single-photon excitation (SPE, λex = 375 nm, center); emission spectrum
of a discrete particle using SPE (λex = 375 nm, right). Lower row: Fluorescence micrograph of
Zn-NMe2Nc@PSMP (left); fluorescence lifetime map measured with two-photon excitation (TPE,
λex = 810 nm, center); emission spectrum of a discrete particle using TPE (λex = 810 nm, right). Raw
photoluminescence decays and further details can be found in Figures S57 and S58.
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3. Materials and Methods

All chemicals were purchased with the maximum quality available from Sigma Aldrich
(Taufkirchen, Germany) or from TCI Chemicals (Eschborn, Germany) and used without
further purification. Reactions were carried out using dried solvents (99.9% purity) under
argon atmosphere. They were monitored by thin-layer chromatography (TLC), which was
performed on 0.2 mm Macherey-Nagel ALUGRAM (Eupen, Belgium) precoated silica gel
aluminum sheets. Spots were visualized by a UV handlamp (254 and 365 nm). Silica gel
60 (0.063–0.200 mm, Merck, Darmstadt, Germany) was used for column chromatography,
if not otherwise stated. Fresh spectroscopic-grade solvents (Uvasol®, Merck, Darmstadt,
Germany) were utilized for the spectroscopic studies.

3.1. Synthesis and Characterization of 6,7-Disubstituted Naphthalene-2,3-dicarbonitriles and
Zinc(II) Naphthalocyanines
3.1.1. General Procedure for the Synthesis of 6,7-Disubstituted
Naphthalene-2,3-dicarbonitriles

6,7-dibromonaphthalene-2,3-dicarbonitrile (1) was synthesized according to a published
procedure [23,78,79]. The 6,7-disubstituted naphthalene-2,3-dicarbonitriles were obtained by
Suzuki–Miyaura reactions from 1 with the corresponding boronic acids (Scheme 1) [60]. Briefly,
a mixture of 1 (1 equiv.), the corresponding p-substituted-phenylboronic acid (4 equiv.), and a
saturated aqueous solution of K2CO3 (5 mL) were stirred in 50 mL of a boiling mixture of 1,4-
dioxane:acetonitrile (8:3 v/v) under argon. Afterwards, palladium(II)bis(triphenylphosphane)
dichloride (0.01 equiv.) was added to the boiling mixture. The reaction was stirred for 6 h (TLC
control: Al2O3, F254, ethyl acetate:hexane, 1:4). After consumption of the starting materials,
the reaction mixture was cooled down to room temperature and water was added. The
product was collected by extraction with dichloromethane, and the organic layer was dried
with anhydrous MgSO4. The residue was treated by flash chromatography on silica (ethyl
acetate:hexane, 1:2) to remove impurities. The resulting compound was additionally purified
by column chromatography on silica using DCM as the eluent to obtain the corresponding
p-phenyl-6,7-disubstituted naphthalene-2,3-dicarbonitrile.
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3.1.2. Synthesis of 6,7-Bis(4-methoxyphenyl)naphthalene-2,3-dicarbonitrile (OMe)

OMe was synthesized according to the general procedure using 1 (50 mg, 0.15 mmol),
4-methoxyphenylboronic acid (91 mg, 0.6 mmol), and a catalytic amount of palladium(II)bis
(triphenylphosphane) dichloride (1 mg, 0.0015 mmol). Molecular formula: C26H18N2O2
(pale yellow solid). Yield: 51% (29 mg, 0.07 mmol).

1H-NMR (500 MHz, DCM-d2): δ (ppm) = 8.37 (s, 2H, 3-H), 7.96 (s, 2H, 5-H), 7.18–7.12
(m, 4H, 8-H), 6.86–6.82 (m, 4H, 9-H), 3.80 (s, 6H, 12-H).

13C-{1H}-NMR (126 MHz, DCM-d2): δ (ppm) = 159.76 (C-10), 144.47 (C-6), 136.01 (C-3),
132.72 (C-4), 132.54 (C-7), 131.34 (C-8), 130.13 (C-5), 116.69 (C-1), 114.09 (C-9), 110.16 (C-2),
55.65 (C-12).

MS-ESI-EM (CH2Cl2, M = C26H18N2O2): m/z calc. for [M + H]+ = 390.13628; found
390.13624 for [M + H]+.
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3.1.3. Synthesis of 6,7-Bis(4-(dimethylamino)phenyl)naphthalene-2,3-dicarbonitrile (NMe2)

NMe2 was synthesized according to the general procedure using 1 (50 mg, 0.15 mmol),
4-methoxyphenylboronic acid (98 mg, 0.6 mmol), and a catalytic amount of palladium(II)bis
(triphenylphosphane) dichloride (1 mg, 0.0015 mmol). Molecular formula: C28H24N4
(yellow solid). Yield: 63% (39 mg, 0.09 mmol).

1H-NMR (400 MHz, DCM-d2): δ (ppm) = 8.30 (s, 2H, 3-H), 7.88 (s, 2H, 5-H), 7.15–7.09
(m, 4H, 8-H), 6.69–6.61 (m, 4H, 9-H), 2.96 (s, 12H, 12-H).

13C-{1H}-NMR (101 MHz, DCM-d2): δ (ppm) = 150.36 (C-10), 145.08 (C-6), 135.81 (C-3),
132.55 (C-4), 130.88 (C-8), 129.70 (C-5), 128.09 (C-7), 116.90 (C-1), 112.19 (C-9), 109.49 (C-2),
40.49 (C-12).

MS-ESI-EM (CH2Cl2, M = C28H24N4): m/z calcd. for [M + H]+ = 417.20737; found
417.20710 for [M + H]+.

3.1.4. General Procedure for the Synthesis of Zinc(II) Naphthalocyanines

A mixture of the corresponding 6,7-disubstituted naphthalene-2,3-dicarbonitrile (1 equiv.)
and Zn(OAc)2·2H2O (0.5 equiv.) was refluxed in 10 mL i-amOH (isoamyl alcohol) for 6 h with
catalytic amounts of DBU (Figure 1). The reaction mixture was cooled to room temperature,
and a MeOH:H2O mixture (20:1 v/v) was added. The precipitate was filtered and washed
with a MeOH:H2O (10:1 v/v) mixture. However, the obtained precipitate contained some
impurities, which were removed by a Soxhlet extraction with successive solvents of increasing
polarity (from diethyl ether to hexane and ethyl acetate). The product was further purified
by size exclusion chromatography using a resin (Sephadex-LH20, Amersham Pharmacia
Biotech AB, Uppsala, Sweden) in N,N-dimethylformamide to obtain the corresponding zinc(II)
naphthalocyanines.

3.1.5. Synthesis of 3,4,12,13,21,22,30,31-Octakis(4-methoxyphenyl) Naphthalocyaninato
Zinc(II) (Zn-OMeNc)

Zn-OMeNc was prepared by treating OMe (0.1 g, 0.25 mmol) with Zn(OAc)2·2H2O
(0.028 g, 0.127 mmol) and using DBU as the catalyst in 10 mL i-amOH. The obtained product
was precipitated with a MeOH:H2O (10:1 v/v) mixture and filtered. The purification of the
obtained products involved a sequential two-step approach. Initially, a Soxhlet extraction
was employed using solvents of increasing polarity (from diethyl ether to hexane and
ethyl acetate). Subsequently, the resulting product underwent a final purification using
size exclusion chromatography with a resin (Sephadex-LH20) in N,N-dimethylformamide.
The collected fractions were concentrated to obtain the Zn-OMeNc. Molecular formula:
C104H72N8O8Zn (brown solid). Yield: 21% (90 mg, 0.05 mmol).

1H-NMR (400 MHz, DMSO-d6): δ (ppm) = 8.50–8.26 (br, m, 8H, 3-H), 8.24–7.97 (br, m,
8H, 5-H), 7.15 (m, 16H, 8-H), 6.90 (m, 16H, 9-H), 3.76 (s, 24H, 11-H).

13C-{1H}-NMR (125 MHz, DMSO-d6): δ (ppm) = 168.80 (C-1), 158.40 (C-10), 141.00
(C-6), 134.10 (C-4), 132.50 (C-7), 131.25 (C-5), 130.70 (C-8), 128.70 (C-2), 123.90 (C-3), 113.54
(C-9), 55.00 (C-11).

MALDI-TOF-MS (CHCl3, M = C104H72N8O8Zn): m/z calcd. for [M]+ = 1624.48; found
1777.51 for [M + 2 Ph]+, 1624.40 for [M]+, and 1400.36 for [M-2 OMePh]+.

3.1.6. Synthesis of 3,4,12,13,21,22,30,31-Octakis(4-(N,N-dimethylamino)phenyl)
Naphthalocyaninato Zinc(II) (Zn-NMe2Nc)

Zn-NMe2Nc was prepared by treating NMe2 (0.100 g, 0.24 mmol) with Zn(OAc)2·2H2O
(0.026 g, 0.120 mmol) and using DBU as the catalyst in 10 mL i-amOH. The obtained product
was precipitated with a MeOH:H2O (10:1 v/v) mixture and filtered. The purification of the
obtained products involved a sequential two-step approach. Initially, a Soxhlet extraction
was performed using solvents of increasing polarity (from diethyl ether to hexane and
ethyl acetate). Subsequently, the resulting product underwent final purification using
size exclusion chromatography with a resin (Sephadex-LH20) in N,N-dimethylformamide.
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The collected fractions were concentrated to obtain the complex Zn-NMe2Nc. Molecular
formula: C112H96N16Zn (brown solid). Yield: 25% (102.50 mg, 0.06 mmol).

1H-NMR (400 MHz, DMSO-d6): δ (ppm) = 8.43–8.22 (m, 8H, 3-H), 8.14–7.89 (m, 8H,
5-H), 7.08 (m, 16H, 8-H), 6.65 (m, 16H, 9-H), 2.91 (s, 48H, 11-H).

13C-{1H}-NMR (125 MHz, DMSO-d6): δ (ppm) = 168.80 (C-1), 149.10 (C-10), 141.70
(C-6), 133.9 (C-4), 130.90 (C-5), 130.10 (C-8), 128.00 (C-7), 128.0 (C-2), 123.80 (C-3), 111.70
(C-9), 39.90 (C-11).

MALDI-TOF-MS (CHCl3, M = C112H96N16Zn): m/z calcd. for [M]+ = 1728.73; found
1766.79 for [M + 2H2O]+, 1728.80 for [M]+, 1646.71 for [M-NMe2Ph + 2H2O]+, and 1610.74
for [M-NMe2Ph]+.

3.1.7. Synthesis of 3,4,12,13,21,22,30,31-Octakis(4-(N,N,N-trimethylammonium)phenyl)
naphthalocyaninato Zinc(II) Octaiodide (Zn-NMe3Nc)

Zn-NMe3Nc was prepared by treating Zn-NMe2Nc (0.030 g, 0.017 mmol) with methyl
iodide (excess) in N,N-dimethylformamide for 3 days to quarternize the amino groups
(Figure 2). Once the reaction was completed, the desired product was precipitated us-
ing acetone and then dried. The compound was further purified with a size exclusion
resin (Sephadex-G25, Amersham Pharmacia Biotech AB, Uppsala, Sweden) using wa-
ter as the eluent. The collected fractions were subjected to lyophilization to obtain Zn-
NMe3Nc. Molecular formula: [C120H120N16Zn]I8 (greenish brown solid). Yield: 87%
(28 mg, 0.015 mmol).

1H-NMR (400 MHz, DMSO-d6): δ (ppm) = 10.08 (s, 8H, 3-H), 8.87 (s, 8H, 5-H), 8.04 (d,
J = 8.6 Hz, 16H, 9-H), 7.70 (d, J = 8.4 Hz, 16H, 8-H), 3.70 (s, 72H, 11-H).

13C-{1H}-NMR (100 MHz, DMSO-d6): δ (ppm) = 153.48 (C-1), 146.16 (C-10), 142.19
(C-7), 137.35 (C-6), 136.11 (C-2), 132.67 (C-4), 131.59 (C-5), 131.33 (C-8), 121.97 (C-3), 120.31
(C-9), 56.56 (C-11).

MS-ESI-EM (H2O, M = C120H120N16Zn8+): m/z calcd. for [M]8+ = 231.24; found
231.23987 for [M]8+.

3.1.8. ZnNMe2Nc Loaded onto Polystyrene Microparticles (PSMPs)

1 µm sized aminated polystyrene microparticles (PSMPs) were bought from Micromod
GmbH (Rostock, Germany). The highly hydrophobic complex was encapsulated in the
1 µm sized aminated polystyrene microparticles (PSMPs) via a simple one-step staining
procedure as follows: First, 50 mg/mL of PS microparticles were diluted in deionized water
to 2.5 mg/mL (1.2 mL). A 0.8 mM solution of the ZnNMe2Nc complex in tetrahydrofuran
(THF) was prepared. Then, 200 µL of this solution in THF was added to the PSMP
dispersion in water, and the sample was subsequently shaken for 40 min. Shrinkage
of the particles was induced by adding 200 µL of deionized water to the dispersion, thereby
encapsulating the complex in the microparticles. The particles were then centrifuged at
16.000 rpm for 5 min (Megafuge™ 16 from Thermo Scientific, Schwerte, Germany). The
precipitate was washed three times with ethanol/water mixtures (volume ratios of 40/60,
30/70, and 20/80) and once with deionized water to remove the excess of dye that was
adsorbed onto the particles’ surface. Finally, the suspension containing the PSMPs loaded
with the ZnNMe2Nc complex was diluted to 5 mg/mL (600 µL).

3.2. NMR Spectroscopy and Mass Spectrometry

NMR spectra were obtained at the Institut für Anorganische und Analytische Chemie
(Universität Münster), using Bruker Avance Neo 500 and Bruker Avance III 400. All mea-
surements were performed at room temperature unless otherwise specified. The 1H-NMR
and 13C-NMR chemical shifts (δ) of the signals are given in parts per million and are refer-
enced to the residual proton signal in the deuterated solvent DCM-d2 (1H: 5.32 ppm/13C:
54.0 ppm) or DMSO-d6 (1H: 2.50 ppm/13C: 39.52 ppm). The signal multiplicities are
abbreviated as follows: s, singlet; d, doublet; t, triplet; q, quartet; br, broad; m, multiplet.
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Exact mass (EM) determination by mass spectrometry (MS) was carried out at the
Organisch-Chemisches Institut (Universität Münster) using a LTQ Orbitap LTQ XL (Thermo-
Fisher Scientific, Bremen, Germany) with electrospray ionization (ESI). MALDI-TOF mass
spectra were taken on Autoflex Speed MALDI-TOF spectrometer with 2-[(2E)-3-(4-tert-
butylphenyl)-2-methylprop-2-enylidene]malonitrile (DCTB) as the matrix.

3.3. Absorption and Fluorescence Spectroscopy

Absorption spectra were measured using quartz Hellma® (Müllheim, Germany)
square cuvettes on a Shimadzu UV-3600i Plus UV-vis-NIR spectrophotometer (Shimadzu,
Kyoto, Japan) and baseline-corrected.

Steady-state excitation and emission spectra were recorded on a FluoTime 300 spectrometer
from PicoQuant (Berlin, Germany), equipped with a 300 W ozone-free Xe lamp (250–900 nm), a
10 W Xe flash lamp (250–900 nm, pulse width < 10µs) with repetition rates of 0.1–300 Hz, a single-
grating excitation monochromator (Czerny-Turner 2.7 nm/mm dispersion, 1200 grooves/mm,
blazed at 300 nm), diode lasers (pulse width < 80 ps) operated by a computer-controlled laser
driver PDL-820 (repetition rate up to 80 MHz, burst mode for slow and weak decays), two single-
grating emission monochromators (Czerny-Turner, selectable gratings blazed at 500 nm with
2.7 nm/mm dispersion and 1200 grooves/mm, or blazed at 1250 nm with 5.4 nm/mm dis-
persion and 600 grooves/mm), Glan–Thompson polarizers for excitation (Xe-lamps) and
emission, a Peltier-thermostatized sample holder from Quantum Northwest (Washington,
DC, USA) (−40–105 ◦C), and two detectors, namely, a PMA Hybrid 40 (transit time spread
FWHM < 120 ps, 300–720 nm) and a R5509-42 NIR photomultiplier tube (transit time spread
FWHM 1.5 ns, 300–1400 nm) with external cooling (−80 ◦C) from Hamamatsu (Shizuoka, Japan).
Steady-state and fluorescence lifetimes were recorded in the TCSPC mode by a PicoHarp 300
(minimum base resolution 4 ps) from PicoQuant (Berlin, Germany). Emission and excitation
spectra were corrected for source intensity (lamp and grating) by standard correction curves.
Lifetime analysis was performed using the commercial EasyTau software (version 2.2) package
from PicoQuant (Berlin, Germany). The quality of the fit was assessed by minimizing the
reduced chi squared function (χ2) and through visual inspection of the weighted residuals and
their autocorrelation. At least three independent batches of the compounds were synthesized
and measured, with the samples undergoing multiple measurements to ensure data consistency
and to mitigate measurement errors. Across these different batches, the results were consistently
identical, underscoring the reliability of our findings.

3.4. Computational Details

All density functional theory (DFT) and time-dependent density functional theory
(TD-DFT) calculations were performed using the quantum chemistry package Gaussian 09
Rev. D.01 [80]. Geometry optimizations in the ground state S0 were carried out with DFT,
while TD-DFT was employed to obtain the optimized S1 and S3 excited state structures.
The solvent dimethyl sulfoxide (DMSO) was modelled by the polarizable continuum
model (PCM) in an integral equation formalism framework [81] with atomic radii from the
universal force field model (UFF) [82]. In all cases, the spectral properties were calculated
using the same functional as employed for geometry optimization.

UV-vis absorption spectra were calculated using the B3LYP functional [83], along with
Grimme’s D3 dispersion correction with Becke–Johnson damping (BJ) [84] and the SDD
basis set, which applies an effective core potential for the Zn atom [85] and the D95 basis set
for H, C, N, and O atoms [86]. For each absorption spectrum, the 120 lowest excited singlet
states were considered. A Lorentzian broadening with a half width of half maximum
(HWHM) of 30 nm was used for each transition.

The emission wavelengths were obtained from the difference in energy between the
optimized ground state and the corresponding excited state geometries (0-0). In addition
to the B3LYP functional, emission spectra were also calculated with the CAM-B3LYP [87],
PBE0 [88], and M06-2X [89] functionals due to the delicate balance between local and
charge-transfer excitations. A Lorentzian broadening with a half width of half maximum
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(HWHM) of 20 nm was used for the S1 → S0 transition, while a value of 60 nm was applied
for the S3 → S0 transition to match the experimental line shape.

3.5. MSOT Photoacoustic Imaging

Phantom photoacoustic imaging experiments were performed using a Multispectral
Optoacoustic Tomography system (MSOT inVision 512-echo, iThera Medical, Munich,
Germany). The phantom consists of a cylinder of 1.5% agarose with 2% of 20% soybean
cream as scattering medium and 0.75% 2.5 mM Nigrosin, which was cast, including 2 straws
as placeholders. Once hardened, these placeholders were removed and replaced with
sealed straws, which had been filled with test solution and a control containing only the
solvent. Multispectral photoacoustic imaging of phantoms containing the probe and control
samples were performed tomographically for the length of the straw using an excitation
wavelength ranging from 680 to 900 nm in steps of 5 nm. Images were loaded into an
in-house developed image processing software, MEDgical (Version 0.9.9, EIMI, Münster,
Germany). Spectra were exported and processed to create the presented plots.

3.6. Fluorescence Lifetime Imaging Microscopy (FLIM) by Time-Resolved Multiphoton
Micro(spectro)scopy

Fluorescence lifetime imaging microscopy (FLIM) was recorded on a fluorescence
microscope IX 73 from Olympus (Shinjuku, Japan) with a complete confocal system and a
laser-combining unit (LCU), an inverted microscope body, and a multichannel detection
unit, namely a MicroTime 200 from PicoQuant (Berlin, Germany) equipped with diode
lasers (providing adjustable output power and repetition rates up to 80 MHz inside a
compact fiber couple unit with wavelengths between 375 and 900 nm). For beam diag-
nostics, a charge-coupled device (CCD) camera and a photodiode were available in the
main optical unit (MOU) of the microscope. The MOU was equipped with two detectors,
namely, a hybrid photomultiplier-based single photon counting module (PMA Hybrid 40,
PicoQuant) and an SPAD-based photon-counting module (SPCM-AQR-14, Perkin-Elmer,
Hopkinton, MA, USA). Different band-pass (BP) and low-pass (LP) filters were placed
before these detectors on demand to acquire lifetime maps. Data acquisition was based on
the unique time-tagged time-resolved (TTTR) measurement mode, where simultaneous
data acquisition on two channels is possible. Data were processed and analyzed with
the SymphoTime 64 (PicoQuant) software. In order to couple the MicroTime 200 and
the FluoTime 300 instruments (both from PicoQuant, Berlin, Germany), a fiber coupler
was employed. In this way, the spectrometer can be used to record either steady-state or
time-resolved luminescence spectra and decays from a sample mounted on the microscope.
Luminescence micrographs were acquired using the same microscope mentioned above,
equipped with an X-CiteQ Lamp module (Excelitas Technologies, Waltham, MA, USA)
as excitation source and a UI-5580SE (IDS) digital camera. Different band-pass (BP) and
low-pass (LP) cubes were using accordingly.

Additionally, a two-photon (Mai Tai® from SpectraPhysics, Darmstadt, Germany)
Ti:Sapphire laser (Ti:Sa oscillator) with a pulse with <100 fs and tuning range of 690–1040 nm,
connected to the MOU, can be used as excitation source. In order to reduce the repetition
rate, the Ti:Sapphire laser was connected to a double pulse picker (A.P.E.®, Berlin, Germany).

4. Conclusions

In conclusion, we report on a set of novel Zn(II) naphthalocyaninates with a prominent
dual fluorescence encompassing the visible and the NIR portion of the electromagnetic
spectrum. A proper synthesis, purification, and full characterization of the peripherally
octa-substituted zinc(II) naphthalocyaninato complexes Zn-OMeNc, Zn-NMe2Nc, and
Zn-NMe3Nc was undertaken for the first time; hence, a detailed structural elucidation
based on NMR studies is provided. The introduction of a push–pull system on the macro-
cycle enabled the integration of two orthogonal chromophores with unprecedented dual
emission, which was assigned by means of TD-DFT calculations. Upon quaternization of
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Zn-NMe2Nc, we produced the first to-date reported octa-cationic water-soluble zinc(II)
naphthalocyaninate, namely, Zn-NMe3Nc. The quaternized species, Zn-NMe3Nc, exhib-
ited excellent solubility in water; even though aggregation phenomena can be traced in
aqueous media, stacking is suppressed in DMSO. Furthermore, due to its good absorption
in the near-infrared region, we also investigated the photoacoustic imaging capability
of Zn-NMe2Nc and Zn-NMe3Nc. The photoacoustic profiles of these Ncs, studied in
gel phantoms, show a high intensity and red-shifted photoacoustic maxima in a broad
concentration range. Among Zn-NMe2Nc and Zn-NMe3Nc, the best photoacoustic perfor-
mance was observed for Zn-NMe3Nc in DMSO, particularly in terms of its detectability
at lower concentrations. Staining microparticles with Zn-NMe2Nc revealed that the addi-
tional readout in the visible range stemming from the side groups enables time-resolved
multiphoton micro(spectro)scopy. This holds true even when aggregation quenches the
intrinsic fluorescence of the macrocycle. Since well-defined purification and characteriza-
tion techniques for Ncs are sparsely found in the literature, this work could expand the
possibilities of water-soluble dyes for PDT and diagnostics. More generally, the unprece-
dented dual emission (visible and NIR) unlocks the prospective use of naphthalocyanines
for multiscale–multimodal bioimaging and for applications in sensing or optoelectronics.
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