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Abstract: 2H-Benzo[e][1,2,4]thiadiazin-3(4H)-one 1,1-dioxide (BTD) based carbonic anhydrase (CA)
inhibitors are here explored as new anti-mycobacterial agents. The chemical features of BTD deriva-
tives meet the criteria for a potent inhibition of β-class CA isozymes. BTD derivatives show chemical
features meeting the criteria for a potent inhibition of β-class CA isozymes. Specifically, three β-CAs
(MtCA1, MtCA2, and MtCA3) were identified in Mycobacterium tuberculosis and their inhibition was
shown to exert an antitubercular action. BTDs derivatives 2a-q effectively inhibited the mycobac-
terial CAs, especially MtCA2 and MtCA3, with Ki values up to a low nanomolar range (MtCA3,
Ki = 15.1–2250 nM; MtCA2, Ki = 38.1–4480 nM) and with a significant selectivity ratio over the
off-target human CAs I and II. A computational study was conducted to elucidate the compound
structure-activity relationship. Importantly, the most potent MtCA inhibitors demonstrated efficacy
in inhibiting the growth of M. tuberculosis strains resistant to both rifampicin and isoniazid—standard
reference drugs for Tuberculosis treatment.
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1. Introduction

Mycobacterium tuberculosis, also known as Koch bacillus, is the primary etiological
agent responsible for the transmissible, chronic, and granulomatous infectious disease
known as Tuberculosis (TB) [1]. In 2022 alone, this disease affected 10.6 million people
and claimed the lives of 1.3 million individuals [1]. Among the infected population of all
age groups, only 10% exhibit symptoms and are contagious [2]. Additionally, within this
symptomatic group, only 50% survive with medical treatments [3].

TB primarily affects the lungs through the airborne transmission of bacteria when
infected individuals cough, sneeze, or spit [4–7]. Upon entering the bloodstream, the
bacteria can attack other organs and tissues, including the brain, kidneys, bones, spine, skin,
peripheral lymph nodes, heart, pancreas, thyroid, spleen, eye, and skeletal muscles [8–20].

The common symptoms of TB vary depending on where in the body the infection
becomes active and typically include a prolonged cough (sometimes with blood), chest
pain, fatigue, weight loss, weakness, fever, and night sweats [1,4]. Several conditions, such
as diabetes, a weakened immune system (e.g., HIV), malnutrition, and tobacco use, pose
risk factors for Tuberculosis [21–25]. While the Bacille Calmette–Guérin (BCG) vaccine can
be administered to infants or young children to prevent TB outside the lungs, it does not
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provide protection within the lungs [26]. Currently, the most effective vaccines are in phase
I, II, and III of clinical trials [27–30]. Presently, the pharmacological treatment involves
isoniazid and rifampicin for 4–6 months, representing the primary solution to combat TB
infection [31,32].

Incorrect prescription or use of antibiotics, as well as premature therapy cessation, have
led to the emergence of multidrug-resistant strains (MDR-TB) of M. tuberculosis against first-
line drugs [33–35]. In such cases, second-line drugs like pyrazinamide, ethambutol, and
streptomycin are employed [31,32]. However, anti-TB therapy shows serious side effects
(e.g., hepatotoxicity) in almost 80% of the treated patients [36–38]. The ongoing research
aims to develop more effective and safe medication to combat TB and MDR-TB [33,39].

Carbonic anhydrases (CAs, EC 4.2.1.1) constitute a superfamily of metalloenzymes that
facilitate the reversible hydration of carbon dioxide into bicarbonate and a proton [40,41].
This reaction plays a crucial role in various physiological processes, including CO2 and
HCO3

− transport, electrolytic secretion, biosynthetic reactions (such as gluconeogenesis,
lipogenesis, and ureagenesis), tumorigenesis (in vertebrates), photosynthesis (in plants and
cyanobacteria), pH regulation, virulence, growth, and the acclimatization of pathogens in
specific niches [40,41].

Among the eight non-correlated gene families of CAs (α, β, γ, δ, η, ζ, θ, and ι)
discovered to date, α, β-, γ-, and ι-class CAs have been identified in bacteria [40,41].
the activity of bacterial CAs is essential for supporting microbial central metabolism by
maintaining the correct balance of CO2 and HCO3

−, and these enzymes are promising
and currently validated antibacterial targets [41–45]. Consequently, inhibiting carbonic
anhydrase with inhibitors (CAIs) disrupts the growth of microbes and impedes virulence
processes that render a pathogenic bacterium infectious to the host.

Notably, three β-Cas (MtCA1, MtCA2, and MtCA3) have been found in M. tuberculosis,
and their selective inhibition could lead to antitubercular activity, exploiting an innovative
antibacterial mechanism [46]. In this context, the inhibition of the α-class humans (h) CAs
must be avoided to prevent the onset of side effects.

The identification of selective chemotypes for bacterial and, specifically, mycobacterial
CA inhibition is one of the recently explored approaches for addressing the challenge of
multidrug resistance, which is increasingly pushing us ever closer to the risk of a post-
antibiotic era [47–49].

2. Results and Discussion
2.1. Design and Chemistry

β-CAs have rather narrow and flat active sites compared to the conical ones of the α-
CAs, with many residues nearby the Zn2+ ion (bound to 2 cysteines and 1 histidine) capable
of forming an extended H-bond network [50,51]. Therefore, zinc-binding chemotypes,
similar to sulfonamides, endowed with a planar geometry and the capability to form a
number of H-bonds, might be a weapon in the research of selective β-CA inhibitors. To
date, several compounds have been identified as effective inhibitors of the β-CAs from M.
tuberculosis, among which sulfonamides [52] and dithiocarbamates [53] demonstrated the
most promising effects, with no significant selectivity of action reported to date against
mycobacterial CAs over human isozymes.

The 2H-benzo[e][1,2,4]thiadiazin-3(4H)-one 1,1-dioxides 2a-2t (BTDs, Scheme 1) re-
sulted from a preceding drug design for the development of antitumor CAIs, based on
the hybridization of the scaffolds of two sweeteners, saccharin and acesulfame [54]. These
compounds meet the aforementioned criteria for a potent binding to β-CAs and were never
investigated earlier as inhibitors of bacterial CAs. Thus, they were re-prepared, according
to the synthetic pathways of Scheme 1, to screen their β-CAs inhibitory action. As shown
later in the article, potent and selective action against mycobacterial CAs was measured.



Int. J. Mol. Sci. 2024, 25, 2584 3 of 13

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 3 of 14 
 

 

shown later in the article, potent and selective action against mycobacterial CAs was meas-
ured. 

Briefly, the synthetic process involved the reaction of commercially available substi-
tuted anilines (1a-1n), N-methylanilines (1o,1p), and indoline (1q) with chlorosulfonyl iso-
cyanate (CSI) at a temperature of −40 °C, utilizing nitroethane or nitromethane as a sol-
vent. This reaction produced chlorosufamoyl urea intermediates βa-q. Subsequently, alu-
minum trichloride (AlCl3) was introduced, and the temperature was raised to 110 °C to 
facilitate a Friedel–Crafts-like core cyclization. The absence of a base and the maintenance 
of a very low temperature are crucial to preventing the aniline from reacting with the 
sulfamoyl portion of CSI. The choice between nitroethane and nitromethane is dictated by 
the need for a polar aprotic solvent that remains in a liquid state across a wide temperature 
range, from significantly below 0 °C to over 100 °C, without solidifying or boiling. At-
tempts to react markedly electron-poor anilines of the nitro-, sulfonamido-, or polyhalo-
substituted types were unsuccessful due to their low reactivity in both reaction steps. Fur-
thermore, the 5- and 7-methyl derivatives 2b and 2c underwent oxidation with potassium 
permanganate, yielding benzoic acids 2r and 2s, as depicted in Scheme 1. The 7-methoxy-
BTD underwent demethylation upon treatment with 1.0 M BBr3 in DCM, resulting in the 
production of alcohol 2t (Scheme 1). 

 
Scheme 1. Synthesis of 2H-benzo[e][1,2,4]thiadiazin-3(4H)-one 1,1-dioxides 2a−2t [54]. 

2.2. Carbonic Anhydrase Inhibition Assay 
BTDs 2a-2t were submitted to a stopped-flow CO2 hydrase kinetic assay [55] to eval-

uate the inhibitory profile against the mycobacterial β-CAs MtCA1, MtCA2, MtCA3 (Table 
1), in comparison to the inhibitory effect on hCA I and II, which were selected due to their 
abundance in the human organism and thus off-target in this study. 

As observed in Table 1, derivatives 2a-2q effectively inhibited the investigated CA 
isozymes with Ki values ranging from 15.1 nM to greater than 10,000 nM. Notably, the 
most inhibited isozymes were MtCA3 (Ki = 15.1–2250 nM), MtCA2 (Ki = 38.1–4480 nM), 
hCA II (Ki = 140–6780 nM), MtCA1 (Ki = 556–>10,000 nM), and hCA I (Ki = 547–>10,000 
nM), in descending order of potency. 

  

Scheme 1. Synthesis of 2H-benzo[e][1,2,4]thiadiazin-3(4H)-one 1,1-dioxides 2a-2t [54].

Briefly, the synthetic process involved the reaction of commercially available substi-
tuted anilines (1a-1n), N-methylanilines (1o,1p), and indoline (1q) with chlorosulfonyl
isocyanate (CSI) at a temperature of −40 ◦C, utilizing nitroethane or nitromethane as a
solvent. This reaction produced chlorosufamoyl urea intermediates βa-q. Subsequently,
aluminum trichloride (AlCl3) was introduced, and the temperature was raised to 110 ◦C to
facilitate a Friedel–Crafts-like core cyclization. The absence of a base and the maintenance
of a very low temperature are crucial to preventing the aniline from reacting with the
sulfamoyl portion of CSI. The choice between nitroethane and nitromethane is dictated by
the need for a polar aprotic solvent that remains in a liquid state across a wide temperature
range, from significantly below 0 ◦C to over 100 ◦C, without solidifying or boiling. Attempts
to react markedly electron-poor anilines of the nitro-, sulfonamido-, or polyhalo-substituted
types were unsuccessful due to their low reactivity in both reaction steps. Furthermore, the
5- and 7-methyl derivatives 2b and 2c underwent oxidation with potassium permanganate,
yielding benzoic acids 2r and 2s, as depicted in Scheme 1. The 7-methoxy-BTD underwent
demethylation upon treatment with 1.0 M BBr3 in DCM, resulting in the production of
alcohol 2t (Scheme 1).

2.2. Carbonic Anhydrase Inhibition Assay

BTDs 2a-2t were submitted to a stopped-flow CO2 hydrase kinetic assay [55] to
evaluate the inhibitory profile against the mycobacterial β-CAs MtCA1, MtCA2, MtCA3
(Table 1), in comparison to the inhibitory effect on hCA I and II, which were selected due to
their abundance in the human organism and thus off-target in this study.

As observed in Table 1, derivatives 2a-2q effectively inhibited the investigated CA
isozymes with Ki values ranging from 15.1 nM to greater than 10,000 nM. Notably, the most
inhibited isozymes were MtCA3 (Ki = 15.1–2250 nM), MtCA2 (Ki = 38.1–4480 nM), hCA II
(Ki = 140–6780 nM), MtCA1 (Ki = 556–>10,000 nM), and hCA I (Ki = 547–>10,000 nM), in
descending order of potency.

Specifically, the incorporation of a methyl group (2b-2d) at positions 5 and/or 7 on
the aromatic ring of the BTD scaffold variably enhances the inhibitory potency against
MtCAs (2b > 2c > 2d), while diminishing the activity against hCAs. Conversely, a general
weakening in inhibitory efficacy was noted for the 5,8- or 6,8-dimethyl substitutions (2e, 2f)
among all investigated isozymes.
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Table 1. Inhibition data of β-CAs from M. tuberculosis (MtCA1, MtCA2, MtCA3) and human CA
isozymes I and II with compounds 2a-2t and acetazolamide (AAZ) as a standard drug, by a stopped-
flow CO2 hydrase assay [55].
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The substitution with a fluorine atom at position 5 (2g) improves inhibition against
MtCA3 and weakly against MtCA1, whereas the 7-fluoro derivative 2h showed better Ki
values only against MtCA2 than the unsubstituted compound 2a.

The introduction of bulkier substituents (2i-2m, 2r-2t), such as a chlorine/bromine
atom or a methoxyl/carboxyl/hydroxyl group at positions 5 or 7, generally decreases
inhibition against all investigated CAs compared to 2a, except for the 5-Cl (2i) and 5-Br (2k)
substitutions, which enhance Ki values against MtCA1, and the 7-OH inclusion (2t), which
increases the MtCA-2 inhibition.

The 5,6-benzo condensation in the BTD scaffold (2n) enhances MtCA1 inhibition,
while its inhibitory profile decreases against all other investigated CAs.

Derivative 2o exhibits an increased inhibition profile against MtCA1 and 2, with a
decreased Ki value against hCAs compared to 2a, which was attributed to the presence of a
methyl group on the N4 atom. Moreover, the simultaneous introduction of 7-Cl (2p) or a
ethylene connection (2q) enhances activity exclusively against MtCA-1.

All compounds showed a more potent inhibition of hCA II than hCA I, except for
compounds 2f and 2t (Ki values in the micromolar range). The selectivity index of inhi-
bition of MtCAs over hCA II, as the main off-target and inhibited human isozyme, was
calculated and is reported in Table 2. Most BTDs exhibited a preferential action against
the hCA II compared to MtCA1 (SI < 1), with the exception of the N-substituted 2o-2q
and compounds 2s and 2t bearing hydrophilic substituents in position 7. In contrast, most
BTDs demonstrated selectivity against MtCA2 and 3 over hCA II, ranging from 1.1 to
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67. In detail, substituents appended at the 7 position of the scaffold promoted a higher
selectivity of action compared to analog derivatives bearing a substitution in 5. This trend
is even more marked for hCA II/MtCA3 (SI = 22.0–67.4) compared to hCA II/MtCA2
(SI = 11.8–51.8) selectivity. In fact, only a 5-substitution with a COOH moiety led to a SI
hCA II/MtCA2 > 5. Instead, a greater number of 5-substituents lead to significant hCA
II/MtCA2 SI (>5), such as a methyl, halogen, or carboxyl groups. It should also be noted
that the N-methyl substitution (2o) improves the MtCA2 and 3 selectivity over hCA II.

Table 2. Selective index (SI) for BTD compounds calculated as ratio between Ki against MtCAs and
hCA II, as the main off-target isozyme.
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Selectivity Index (SI)

Cmpd R R1
hCA

II/MtCA1
hCA

II/MtCA2
hCA

II/MtCA3

2a H H 0.1 2.2 5.2
2b 5-CH3 H 0.1 2.5 6.8
2c 7-CH3 H 0.8 21.1 47.1
2d 5,7-diCH3 H 0.8 20.0 50.6
2e 5,8-diCH3 H <0.2 0.9 1.4
2f 6,8-diCH3 H <0.3 0.7 1.3
2g 5-F H 0.1 2.2 8.6
2h 7-F H 0.3 12.6 22.0
2i 5-Cl H 0.5 3.2 15.5
2j 7-Cl H 0.5 17.0 28.7
2k 5-Br H 0.5 1.1 6.4
2l 7-Br H 0.8 11.8 26.2

2m 7-OCH3 H 0.7 12.6 32.5
2n 5,6-benzo H 0.5 0.5 4.0
2o H CH3 1.5 21.5 26.2
2p 7-Cl CH3 2.0 17.3 50.8
2q 5-CH2-CH2- 1.2 1.8 13.9
2r 5-COOH H 0.7 23.2 37.4
2s 7-COOH H 1.4 30.4 67.4
2t 7-OH H 1.3 51.8 66.3

AAZ - <0.1 1.3 0.1

2.3. In Silico Study

In silico studies were performed to thoroughly investigate the binding mode of BTDs
2a, 2c, 2d, 2h, and 2t within the active sites of the three β-Cas from M. tuberculosis. The aim
was to unveil the relationship between the structural features and the inhibitory profile of
the ligands. As the 3D-solved structure of MtCA3 is currently unavailable, we utilized the
homology model (HM) previously built in our previous investigations [56,57].

In general, among the dimeric MtCAs active site, distinct structural variations con-
tribute to a diverse binding mode of BTDs, explaining the different Ki values (Figure 1A–C).

Within the active sites of the three MtCAs, all docking solutions revealed the secondary
sulfonamide bound to the zinc ion with the deprotonated nitrogen atom (SO2N−) adopting
a tetrahedral geometry (Figure 1), consistent with the literature on the sulfonamides binding
mode in the Cas active sites [40].
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Figure 1. 2D-Schematic representation of the binding mode of BTDs within the (A) MtCA1,
(B) MtCA2, and (C) MtCA3 (HM) active site. The labels of amino acids from different chains
are colored differently (Chain A: black, Chain B: blue).

Furthermore, van der Waals (vdW) contacts with multiple hydrophobic residues play
a significant role in reinforcing the metal binding coordination. These residues include
M36(A), A59(A), G60(A), G92(A), M93(A), F96(A), M24(B), I73(B), L77(B), and L78(B) in
MtCA1; A75(A), G75(A), G108(A), A109(A), A112(A), Q42(B), and Y89(B) in MtCA2; and
Y603(A), L608(A), G609(A), A646(A), A647(A), M663(A), Q575(B), and F627(B) in MtCA3
(HM) (Figures 1–4). In MtCA1, the orientation of the BTD scaffold is influenced by the
steric hindrance of residues M93(A) and M24(B) (Figures 1A and 2). Conversely, in MtCA2
and MtCA3 (HM), the crucial factors are π-π stacking interactions with Y89(B) and F627(B),
respectively (Figures 1B,C, 3 and 4).
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Figure 2. Predicted binding mode of ligands (A) 2a (cyan), (B) 2c (orange), (C) 2d (green), (D) 2h
(purple) and (E) 2t (gold) within the MtCA1 active site (pdb 1YLK). H-bonds are represented as black
dashed lines, respectively. The labels of amino acids from different chains are colored differently
(Chain A: black, Chain B: blue).
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In the smaller active site of MtCA1, ligands 2a, 2c, 2d, 2h, and 2t exhibit a binding
mode characterized by hydrophobic contacts and shape complementarity, achieved through
distinct substituents on the aromatic ring (Figure 2). Substituents like hydrogens (2a),
methyl groups (2c, 2d), or fluorine atoms (2h) are well accommodated (Figure 2A–D).
Conversely, the tight cage lined by M93(A), T95(A), F96(A), M24(B), I73(B), L77(B), and
L78(B) prevents the 8-substitution or the introduction of bulky groups (e.g., -Cl, -Br and
-OCH3) or polar groups (e.g., -COOH and -OH (2t)) in position 5 or 7 (Figure 2E).

Within the MtCA2, the π-π stacking interaction between Y89(B) and the ligands
aromatic ring, coupled with the M93(B)/A109(B) mutation (MtCA1/MtCA2), places the
urea C=O of the BTD scaffold in H-bond distance with the backbone NH of G108(A)
(Figure 3). The hydroxyl group of Y89(B) prevents the introduction of bulky groups in
position 5 while allowing the 8-substitution with small groups. Additionally, the larger
active site permits the hosting of larger or polar groups in position 7 of the aromatic ring
(Figure 3B–E).

In the larger MtCA3 active site, the aromatic sidechain of F627(B) participates to a
π-π stacking contact with the benzene ring of the ligands scaffold, allowing the formation
of three H-bonds: one between the sulfonamide S=O and the backbone NH of G609(A),
and two involving the other S=O group with the sidechains OH and NH2 of Y603(B) and
Q575(B), respectively (Figure 4). The Y89(B)/F627(B) amino acid residues diversity between
MtCA2/MtCA3 may thus be the explanation of the more effective inhibition profile of
the 5-substituted ligands against the MtCA3 compared to the other MtCAs. Moreover,
the roomier active site of MtCA3 better accommodates bulkier or polar substituent in
position 7.
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Figure 4. Predicted binding mode of ligands (A) 2a (cyan), (B) 2c (orange), (C) 2d (green), (D) 2h
(purple), and (E) 2t (gold) within the MtCA3 (HM) active site. H-bonds and π-π stackings are
represented as black and cyan dashed lines, respectively. The labels of amino acids from different
chains are colored differently (Chain A: black, Chain B: blue).

Despite the stabilizing effect of the I73(B)/Y89(B)/F627(B) mutation through π-π
stacking within MtCA2 and MtCA3, it allows for the tolerance of substituents at position 8.
In silico studies suggest that position 6 is the most favorable for functionalizing the 2H-
BTD scaffold with larger pendants.

The ability of the BTD scaffold to establish strong interactions with MtCA3 > MtCA2
> MtCA1 elucidates the potent inhibition profile observed against MtCA3 and MtCA2
compared to MtCA1.

2.4. Tuberculostatic Activity Assay

Five of the most active compounds against MtCAs (2a, 2c, 2d, 2h, 2t) were selected to
evaluate their in vitro tuberculostatic activity towards three distinct strains with varying
susceptibility profiles to the first-line clinical drugs rifampicin and isoniazid. This evalu-
ation was conducted following a 28-day incubation period at 37 ◦C. The selected strains
included one susceptible to both rifampicin and isoniazid, one susceptible to rifampicin
and resistant to isoniazid, and one resistant to both rifampicin and isoniazid (Table 2).

In detail, while only compounds 2c, 2d, 2h and the standard AAZ were active at the
concentration of 1 µg/mL against the susceptible strain of M. tuberuculosis to rifampicin
and isoniazid, all tested derivatives showed to inhibit the growth of mycobacteria at the
increased concentration of 2 µg/mL. Except for 2t at a concentration of 1 µg/mL, all
compounds have completely inhibited the growth of the M. tuberculosis strains resistant
to isoniazid and susceptible to rifampicin. Remarkably, all tested substances have inhib-
ited the growth of the M. tuberculosis strain resistant to rifampicin and isoniazid at both
concentrations (Table 3).
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Table 3. The number of M. tuberculosis colonies/standard inoculum volume (0.2 mL) recovered from
the culture medium supplemented with different concentrations of the tested substances.

Strain Susceptible to Rifampicin
and Isoniazid Strain Resistant to Isoniazid Strain Resistant to Both

Rifampicin and Isoniazid

Cmpd 1 µg/mL 2 µg/mL 1 µg/mL 2 µg/mL 1 µg/mL 2 µg/mL

2a 30 0 0 0 0 0
2c 0 0 0 0 0 0
2d 0 0 0 0 0 0
2h 0 0 0 0 0 0
2t 30–100 0 30–100 0 0 0

MTZ 30–100 0 0 0 0 0
AAZ 0 0 0 0 0 0

3. Material and Methods
3.1. Chemistry

Materials, methods, and synthetic procedures were previously reported [53].

3.2. Carbonic Anhydrase CO2 Hydration Catalytic/Inhibition Assay and Ki Determination

A stopped-flow instrument from Applied Photophysics was utilized to assess the
inhibition of CA-catalyzed CO2 hydration activity [55]. Phenol red, present at a concen-
tration of 0.2 mM, served as an indicator and operated at the absorbance peak of 557 nm.
The assay employed 20 mM HEPES (pH 8.3) as a buffer and 20 mM Na2SO4 to maintain
constant ionic strength. The investigation focused on the initial rates of the CA-catalyzed
CO2 hydration reaction over a duration of 10–100 s. CO2 concentrations ranging from 1.7
to 17 mM were employed to determine kinetic parameters and inhibition constants. For
each inhibitor, a minimum of six traces of the initial 5–10% of the reaction were utilized to
determine the initial velocity. Uncatalyzed rates were determined in a similar manner and
subtracted from the overall observed rates. Inhibitor stock solutions (0.1 mM) were initially
prepared in distilled–deionized water, followed by subsequent dilutions up to 0.01 nM
with the assay buffer. To allow for the formation of the E-I complex, inhibitor and enzyme
solutions were preincubated together for 15 min at room temperature before the assay. The
inhibition constants were derived through nonlinear least-squares methods using PRISM
and the Cheng–Prusoff equation, as previously reported [51], representing the mean from
at least three different determinations. Enzyme concentrations fell within the range of 6
to 19 nM, and all CA isoforms used were recombinant and obtained in-house, as detailed
earlier [46].

3.3. In Silico Studies

The UniProt consortium was used to obtain the primary sequence of MtCA3. The
homology modelling procedure used the 3D solved structure of β-CA from Synechocystis
sp. PCC 6803 (PDB code 5SWC; resolution 1.45 Å) [58] as a template [56]. A large number
of models were generated using the Prime module of Schrödinger [59] and the SwissModel
platform [60]. These models were subjected to loop refinement and quality assessment
procedures [56]. The highest scoring structure of MtCA3 and the crystal structures of CA I
(PDB code 2NMX) [61], CA II (PDB code 3K34) [62], MtCA1 (PDB code 1YLK) [63], and
MtCA2 (PDB code 2A5V) [64], downloaded from the Protein Data Bank (RCSB.org) [65],
were prepared using the Protein Preparation module of the Maestro Schrödinger suite [60].
This involved the assignment of bond orders, the addition of hydrogens, the deletion of
water molecules and the optimization of H-bond networks. The structures were then
energy minimized to a Root Means Square Deviation (RMSD) of 0.30 using the Optimized
Potential for Liquid Simulation (OPLS4) force field [66,67]. The 3D ligand structures were
generated using Maestro [59]. The ionization states at pH 7.3 ± 1.0 were evaluated using
Epik [59]. Energy minimization was performed using the conjugate gradient method in
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Macromodel [59] with a maximum iteration number of 2500 and a convergence criterion
of 0.05 Kcal/mol/Å2. Docking studies were performed using the Glide program [59] in
Standard Precision (SP) mode, with docking grids centered on the centroid of the complexed
ligand. The resulting figures were generated using Chimera and Maestro [59,68].

3.4. Tuberculostatic Activity Assay

The tuberculostatic efficacy was evaluated against three different strains of M. tuber-
culosis, each exhibiting distinct susceptibility profiles—one susceptible to both rifampicin
and isoniazid, another susceptible to rifampicin but resistant to isoniazid, and a third
resistant to both rifampicin and isoniazid. The examined compounds were integrated
into Lowenstein Jensen (LJ) solid medium at concentrations of 1 and 2 µg/mL. The tubes
were positioned at a 45◦ angle in a thermostat set at 37 ◦C, ensuring the distribution of
the tested substances within the culture medium. After 48 h, the inoculum was seeded
onto the respective tubes, and the tubes were then incubated for 28 days. Simultaneously,
the inoculum was also seeded onto a control tube that lacked the tested substances. To
verify the sterility of the culture medium and the tested substances, unseeded samples
were kept in the thermostat at 37 ◦C and observed for 28 days to confirm the absence of any
growth or contamination. Following the 28-day incubation period, the colonies on media
supplemented with varying concentrations of the tested substance were counted, along
with colonies on the control tubes (one tube for each experiment). To ensure the validity of
the results, it was crucial that numerous but countable colonies developed on the control
tubes after 28 days of incubation. Result interpretation followed the absolute concentration
method, where the growth of <30 colonies was deemed susceptible, while >30 colonies
indicated resistance to the respective substance [69].

4. Conclusions

BTD-based CA inhibitors were investigated as novel anti-mycobacterial agents. The
BTD framework aligns with the criteria identified for effectively inhibiting β-class CA
isozymes. The three β-CAs (MtCA1, MtCA2, and MtCA3) encoded by M. tubercolisis play a
pivotal role for the pathogen growth and virulence, and inhibiting them has demonstrated
significant anti-tubercular effects. BTD derivatives 2a-q have proven to be potent inhibitors
of mycobacterial CAs, particularly MtCA2 and MtCA3, exhibiting Ki values in the low
nanomolar range (MtCA3, Ki = 15.1–2254 nM; MtCA2, Ki = 38.1–4482 nM). Notably, these
derivatives show a substantial selectivity ratio over human off-target CAs I and II. To better
understand the structure-activity relationship of these BTD CA inhibitors, a comprehensive
computational study was conducted. Crucially, the most effective MtCA inhibitors—2a, 2c,
2d, 2h, 2t, inhibited—the growth of M. tuberculosis strains resistant to both rifampicin and
isoniazid, standard drugs in Tuberculosis treatment. This underscores the potential of BTD
derivatives as promising candidates for the development of innovative anti-mycobacterial
agents, emphasizing their ability to selectively target specific CA isozymes crucial for the
survival of M. tuberculosis.
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