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Abstract: In the adult mammalian brain, neurons are produced from neural stem cells (NSCs) residing
in two niches—the subventricular zone (SVZ), which forms the lining of the lateral ventricles, and the
subgranular zone in the hippocampus. Epigenetic mechanisms contribute to maintaining distinct cell
fates by suppressing gene expression that is required for deciding alternate cell fates. Several histone
deacetylase (HDAC) inhibitors can affect adult neurogenesis in vivo. However, data regarding the
role of specific HDACs in cell fate decisions remain limited. Herein, we demonstrate that HDAC8
participates in the regulation of the proliferation and differentiation of NSCs/neural progenitor cells
(NPCs) in the adult mouse SVZ. Specific knockout of Hdac8 in NSCs/NPCs inhibited proliferation
and neural differentiation. Treatment with the selective HDAC8 inhibitor PCI-34051 reduced the
neurosphere size in cultures from the SVZ of adult mice. Further transcriptional datasets revealed that
HDAC8 inhibition in adult SVZ cells disturbs biological processes, transcription factor networks, and
key regulatory pathways. HDAC8 inhibition in adult SVZ neurospheres upregulated the cytokine-
mediated signaling and downregulated the cell cycle pathway. In conclusion, HDAC8 participates in
the regulation of in vivo proliferation and differentiation of NSCs/NPCs in the adult SVZ, which
provides insights into the underlying molecular mechanisms.

Keywords: adult neurogenesis; neural stem cells; histone deacetylase 8 (HDAC8); cytokine-mediated
signaling; subventricular zone

1. Introduction

Adult neurogenesis is the process of generating functional neurons from adult neural
stem cells (NSCs), which can differentiate into both neurons and glia that compose the
central nervous system and replicate through cell division [1].

NSCs are present in adults, and neurogenesis occurs throughout an individual’s life-
time. In the adult mammalian brain, NSCs are mainly present in limited locations; one of
the most important areas is the subventricular zone (SVZ). In the SVZ, neural stem cells (B
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cells) produce transient amplifying cells (C cells) that are intermediate neural progenitors.
These transient amplifying cells undergo repeated division in a short cell cycle and pro-
duce numerous immature neurons. Immature neurons (A cells) pass through the rostral
migratory stream within the astrocytes and migrate to the olfactory bulb to differentiate
and mature. Each stage of differentiation is controlled by changes in gene expression.

At each stage of neurogenesis, epigenetic modifications, such as histone deacetylation,
could provide a coordinated system for regulating gene expression. Histone deacetylation
is a common epigenetic modification of the chromatin associated with gene silencing,
resulting in the suppression of gene expression due to increased chromatin compression and
reduced accessibility to transcription factors. Mammalian histone deacetylases (HDACs)
comprise a superfamily of four classes based on domain organization [2,3]. HDAC1,
HDAC2, HDAC3, and HDAC8 are class I members that are ubiquitously expressed with
predominant nuclear localization.

The functions in adult neurogenesis of all class 1 HDACs, except for HDAC8, have
been reported [4–6]. However, HDAC8 expression in adult NSCs/neural progenitor cells
(NPCs) has not been fully addressed, and the specific role of HDAC8 in neurogenesis
remains elusive. HDAC8 expression has been detected using a serial analysis of gene
expression in brain tumor tissue. Moreover, increased expression of HDAC8 is associated
with poor outcomes in neuroblastoma [7,8]. Furthermore, inhibiting HDAC8 with selective
HDAC8 inhibitors or siRNA-mediated knockdown reduces cell proliferation in cultured
neuroblastoma cell lines and in vivo using xenograft mouse models [9]. These findings
suggest that HDAC8 regulates proliferation in the pathological brain. In the physiological
context, NSCs/NPCs can proliferate in the adult brain. In this study, we assessed the
possible regulatory role of HDAC8 in the physiological proliferation of NSCs/NPCs in the
adult brain.

2. Results
2.1. HDAC8 Expression in the Adult SVZ

To investigate the role of HDAC8 in adult neurogenesis, we first examined its ex-
pression pattern in the SVZ. HDAC8 was highly expressed in Nestin-positive neural
stem/progenitor cells (Figure 1a). The additional small pictures show the magnified im-
ages of the dorsolateral corner of SVZ. The cells in the SVZ are classified into three major
types [1], namely radial glia-like cells (GFAP-positive cells) [10], transient amplifying cells
(MASH1-positive cells) [11], and neuroblast cells (doublecortin (Dcx) [12–16]. Different
antibodies (anti-GFAP, anti-MASH1, and anti-Dcx) were used as co-labels with HDAC8
to detect the types of NSCs/NPCs (Figure 1b). These findings suggest the involvement of
HDAC8 in neurogenesis in the adult brain.

2.2. HDAC8 Deficiency Inhibits Adult Neurogenesis

To assess the function of HDAC8 in adult neurogenesis in vivo, Hdac8 was specifically
deleted in Nestin-positive neural stem/progenitor cells. Hdac8 flox/flox mice [17] were
bred with Nestin-CreERT2 mice [18] that express tamoxifen-inducible Cre recombinase
under the control of the Nestin promoter and enhancer. Figure 2a shows the timeline of
tamoxifen administration in adult Nestin-CreERT2; Hdac8 flox/flox mice. Specific deletion
of Hdac8 in the SVZ was confirmed by the loss of immunoreactivity for HDAC8 (Figure 2b).
We conducted immunofluorescence staining of the adult brain sections using antibodies
against neural stem/progenitor cells or neuroblast markers to investigate the effects of
Hdac8 deletion on SVZ cells.

We observed reduced expression of GFAP, Nestin, and DCX in tamoxifen-treated
Nestin CreERT2; Hdac8 flox/flox mice compared with that in Hdac8 flox/flox mice (Figure 2c,d).
In contrast, no significant differences were observed for MASH1. We did not detect the
HDAC8 expression in the MASH1-positive cells (Figure 2e). These observations suggest
that Hdac8 deletion reduces the number of NSCs/NPCs and inhibits adult neurogenesis in
the SVZ.
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Figure 1. Expression of HDAC8 in the adult mice SVZ. (a) The expression of HDAC8 (red) in the 
Nestin-positive cells (green) in the adult mice subventricular zone (SVZ). Nuclei were 
counterstained with DAPI (blue). The additional small pictures show the dorsolateral corner of SVZ. 
LV, lateral ventricle. (b) The immunofluorescence signal for HDAC8 (red) was detected in the cells 
co-immunostained with anti-GFAP, anti-MASH1, and anti-doublecortin (DCX) antibodies. The 
additional small pictures show the dorsolateral corner of SVZ. White arrowheads indicate the 
representative location of MASH1-positive cells in the SVZ co-immunostained with anti-MASH1 
and anti-HDAC8 antibodies. Scale bars = 100 µm in low magnification image (large panels) and 20 
µm in high magnification image (small panels). 

Figure 1. Expression of HDAC8 in the adult mice SVZ. (a) The expression of HDAC8 (red) in the
Nestin-positive cells (green) in the adult mice subventricular zone (SVZ). Nuclei were counterstained
with DAPI (blue). The additional small pictures show the dorsolateral corner of SVZ. LV, lateral ventri-
cle. (b) The immunofluorescence signal for HDAC8 (red) was detected in the cells co-immunostained
with anti-GFAP, anti-MASH1, and anti-doublecortin (DCX) antibodies. The additional small pic-
tures show the dorsolateral corner of SVZ. White arrowheads indicate the representative location of
MASH1-positive cells in the SVZ co-immunostained with anti-MASH1 and anti-HDAC8 antibodies.
Scale bars = 100 µm in low magnification image (large panels) and 20 µm in high magnification image
(small panels).
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Figure 2. Loss of HDAC8 reduces neurogenesis in adult mice SVZ. (a) Timeline of treatment with
tamoxifen. p.o.: per os. (b) Deletion of HDAC8 in the subventricular zone (SVZ) of tamoxifen-treated
Nestin-CreERT2; Hdac8 flox/flox adult mice. The coronal brain sections of the adult mice SVZ were
immunostained with an anti-HDAC8 antibody (red). LV: lateral ventricle. (c) The brain sections that
were immunostained with anti-GFAP, anti-Nestin, anti-MASH1, and anti-doublecortin (anti-DCX)
antibodies. (d) Graphs showing the percent areas of indicated cells normalized to the SVZ area of
tamoxifen-treated Hdac8 flox/flox or Nestin-CreERT2; Hdac8 flox/flox mice. GFAP, n = 5; Nestin, n = 3;
MASH1, n = 3; DCX, n = 5. * p < 0.05, Student’s t-test. (e) The images show the dorsolateral corner of
SVZ stained with MASH1 and HDAC8. White arrowheads indicate the representative location of
MASH1-positive cells in the SVZ co-immunostained with anti-MASH1 and anti-HDAC8 antibodies.
Scale bars = 100 µm (b,c) and 20 µm (e).
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2.3. Deletion of Hdac8 Suppresses the Proliferation of Adult NSCs/NPCs

We further investigated the effect of Hdac8 deletion on adult NSC proliferation. The
brain sections were immunohistochemically processed to analyze the expression of the cell
proliferation marker Ki67 [19]. The number of Ki67-positive cells decreased in the SVZ of
tamoxifen-treated Nestin CreERT2; Hdac8 flox/flox mice compared with that observed in
Hdac8 flox/flox mice (Figure 3a,b). These findings suggest that the deletion of Hdac8 inhibits
the proliferation of adult NSCs/NPCs.
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growth factors to produce multipotent clonal aggregates called neurospheres [20,21]. To 
investigate the cell-intrinsic functions of HDAC8, we further examined the role of HDAC8 
inhibition in cultured neurospheres prepared from the adult SVZ. Treating the SVZ cells 
with the selective HDAC8 inhibitor PCI-34051 reduced the diameter of neurospheres 
compared with vehicle-treated control cells (Figure 4). The negative effect of PCI-34051 on 
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To further assess NPC proliferation, we measured the EdU incorporation of neurospheres. 
EdU was administered 30 min before fixation of the neurospheres. The inhibition of 

Figure 3. Deletion of HDAC8 reduces the proliferation of adult neural stem cells in the SVZ. (a) Dis-
tribution of Ki67 (green) in the SVZ. (b) The numbers of Ki67-positive cells in the SVZ decreased in
the tamoxifen-treated Nestin-CreERT2; Hdac8 flox/flox mice compared with those observed in Hdac8
flox/flox mice. n = 4. * p < 0.05, Student’s t-test. Scale bar, 100 µm.

Cells isolated from the adult SVZ can proliferate in a medium containing specific
growth factors to produce multipotent clonal aggregates called neurospheres [20,21]. To
investigate the cell-intrinsic functions of HDAC8, we further examined the role of HDAC8
inhibition in cultured neurospheres prepared from the adult SVZ. Treating the SVZ cells
with the selective HDAC8 inhibitor PCI-34051 reduced the diameter of neurospheres
compared with vehicle-treated control cells (Figure 4). The negative effect of PCI-34051 on
the proliferation of neurospheres was detected in a dose-dependent manner (Figure 4c).
To further assess NPC proliferation, we measured the EdU incorporation of neurospheres.
EdU was administered 30 min before fixation of the neurospheres. The inhibition of HDAC8
resulted in a significant reduction in EdU incorporation (Figure 4d,e). These observations
suggest that HDAC8 participates in the regulation of the proliferation of adult SVZ cells.

2.4. Expression Analysis Reveals HDAC8 Inhibition Contributes to Inhibition of the Cell Cycle

HDAC8 is an epigenetic player that is linked to deregulated gene expression. To
characterize the transcriptomic features in response to HDAC8 inhibitor treatment in the
neurospheres derived from adult SVZs, we performed an RNA-seq analysis. We detected
differentially expressed genes (DEGs) from the RNA-seq dataset using RNAseqChef [22].
We found reliable in vitro datasets of cultured neurospheres, which were treated with
vehicle (Control) or 20 µM of HDAC8 inhibitors. Principal component analysis (PCA)
showed that the datasets from the Control or HDAC8 inhibitor were distinctly positioned
(Figure 5a). We detected DEGs in the HDAC8 inhibitor-treated group compared to the con-
trol group; HDAC8 inhibitor treatment upregulated 105 genes and downregulated 90 genes
(Figure 5b). To clarify the biological signaling pathway related to HDAC8 inhibition, we
performed enrichment analysis based on the KEGG gene set. The top-ranked pathways
related to the 105 upregulated genes were the cytokine–cytokine receptor interaction, nod-
like receptor signaling pathway, and chemokine signaling pathway (Figure 5c–e). Enriched
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terms included cytokine–cytokine receptor interaction and chemokine signaling pathway
and included genes such as Ccl and Cxcl (Figure 5f–h).
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Figure 4. Deletion of HDAC8 reduces the diameter of neurospheres in the SVZ. (a) Schematic
presentation of the preparation of SVZ neurospheres. (b) Cultured adult SVZ neurospheres in the
presence of a selective HDAC8 inhibitor, PCI-34051. Scale bars = 50 µm. (c) NSCs/NPCs produced
in adult SVZ were seeded and treated with PCI-34051 or vehicle control (DMSO), and the average
neurosphere diameters were assessed. n = 5, * p < 0.05, one-way ANOVA followed by Tukey’s
multiple comparisons test. (d) Representative confocal images of EdU+ cells in vehicle control
(DMSO) or HDAC8 inhibitor-treated neurospheres. EdU was administered 30 min before the fixation
of neurospheres. Nuclei were stained with Hoechst. Scale bars = 50 µm. (e) EdU incorporation into
the neurospheres was significantly reduced by treatment with HDAC8 inhibitors. n = 5. ** p < 0.01,
Student’s t-test.
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Enrichment analysis was performed based on the KEGG gene set. FDR < 0.05. (f–i) The genes 
involved in the top-ranked signaling pathways were indicated in the volcano plot (f). Normalized 
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reduces NSCs/NPCs and neuroblasts in the SVZ. 
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and dentate gyrus. Therefore, evaluation of the epigenetic mechanisms controlling 
various gene expression patterns is important to regulate neurogenesis in the adult brain 
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deletion of HDAC2, neurons derived from adult neurogenesis undergo cell death at a 
specific maturation stage, suggesting that HDAC2 plays a critical role in silencing the 

Figure 5. Inhibition of HDAC8 induces transcriptomic changes in neurospheres derived from adult
SVZ. (a) Transcriptome-based PCA of Control (vehicle treatment) and HDAC8 inhibitor-treated
neurospheres. (b) Gene expression profiles in Control (vehicle treatment) and HDAC8 inhibitor-
treated neurospheres were determined using RNA-seq and subjected to differentially expressed
gene (DEG) analysis using the RNAseqChef web tool. The results of the DEG analysis are shown
in an MA plot and heatmap. (c–e) Top-ranked signaling pathways were enriched in gene sets
altered by HDAC8 inhibitor treatment, including 105 upregulated genes and 90 downregulated
genes. Enrichment analysis was performed based on the KEGG gene set. FDR < 0.05. (f–i) The genes
involved in the top-ranked signaling pathways were indicated in the volcano plot (f). Normalized
expression changes of the representatives for upregulated (h) or downregulated (i) by HDAC8
inhibitor treatment. * p < 0.05, ** p < 0.01, Welch’s t-test. FDR, false discovery rate; PCA, Principal
component analysis.

We also analyzed downregulated genes in HDAC8 inhibitor-treated neurospheres
using enrichment analysis. Enrichment analysis showed that the 90 downregulated genes
in adult SVZ neurospheres after HDAC8 inhibition enriched the cell cycle pathway, such
as Cdk1 and Cdc20 (Figure 5f,g,i). These gene expression profiles suggest cell cycle arrest
following HDAC8 inhibitor treatment.

3. Discussion

In this study, we evaluated the role of HDAC8 in adult NSCs/NPCs using Nestin-
CreERT2 mice and demonstrated that the loss of HDAC8 in adult Nestin-positive cells
reduces NSCs/NPCs and neuroblasts in the SVZ.

During adult neurogenesis, NSCs and progenitors show various gene expression
patterns that are progressively altered as they commit to a neurogenic lineage in the SVZ
and dentate gyrus. Therefore, evaluation of the epigenetic mechanisms controlling various
gene expression patterns is important to regulate neurogenesis in the adult brain [23]. For
instance, in mice lacking the catalytic activity of HDAC2 or with a conditional deletion
of HDAC2, neurons derived from adult neurogenesis undergo cell death at a specific
maturation stage, suggesting that HDAC2 plays a critical role in silencing the transcripts
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related to cell death during neuronal differentiation, though the detailed downstream
signaling remains elusive [4].

Reports on HDAC8 expression in adult NSCs/NPCs are lacking. In this study, we
detected high HDAC8 expression in Nestin-positive cells in adult SVZ, suggesting the
role of HDAC8 in adult neurogenesis. Moreover, we showed that HDAC8 inhibition
caused a reduction in the size of SVZ neurospheres, suggesting that HDAC8 regulates the
proliferation of NSCs/NPCs in the adult mouse SVZ. In contrast, loss of Hdac8 did not
affect the number of MASH1-positive transit-amplifying cells, which underwent active
proliferation. However, Hdac8 deletion decreased DCX; this is possibly because of the
delayed commitment of MASH1-positive transit-amplifying cells to become DCX-positive
neuroblasts, which may result in countervailing reduced proliferation.

We also attempted to elucidate the molecular mechanism underlying the regulation
of the proliferation of adult NSCs/NPCs by HDAC8. HDAC8 shares low sequence sim-
ilarity with other class I HDACs and is most closely similar to HDAC3, with only 34%
identity [7]. Although HDAC8 differs from other class I HDACs in sequence identity, it
contains a deacetylase catalytic domain [24,25]. As with other HDACs, HDAC8 can induce
deacetylation of both histone [26,27] and nonhistone proteins [28–32] in vitro. Therefore,
HDAC8 may regulate adult neurogenesis through a mechanism mediated by nonhistone
substrates rather than epigenetic modification by histone deacetylation.

The HDAC8 inhibitor PCI-34051, developed through modification of a low molecular
weight hydroxamic acid scaffold, demonstrated promising potency and selectivity against
HDAC8 compared with other class I HDACs. PCI-34051 inhibits recombinant HDAC8 with
a Ki of 10 nM with >200-fold selectivity over the other HDACs [33,34]. To determine the
functional consequences in neurospheres treated with an HDAC8 inhibitor, we performed
RNA-seq, followed by enrichment analysis of the differentially expressed genes using
RNAseqChef, and detected upregulation of chemokines and downregulation of cell cycle-
related genes. Our findings indicated that PCI-34051 delayed cell proliferation. Further
studies, such as RNA-seq analysis siRNA-mediated knockdown of HDAC8 or knockout of
HDAC8, will help to address the precise effect of HDAC8-selective inhibition.

Causal variants of HDAC8 have been reported in individuals with Cornelia de Lange
Syndrome (CdLS) and in a family with X-linked intellectual disability [29,35–39]. In-
tellectual disability, well-defined facial features, and upper limb anomalies characterize
CdLS [40]. In addition to the variants in NIPBL, which is required for cohesin complex
loading onto chromatin, and cohesin core, its regulatory proteins have been reported as the
cause of CdLS, including HDAC8 [41]. The HDAC8 mutation in CdLS is associated with
HDAC8 dysfunction and results in increased acetylation of Smc3, one of the subunits of
the cohesin complex [29]. Therefore, deacetylation of Smc3 by HDAC8 might be associated
with the development of normal brain functions. It should be noted that the CdLS pheno-
types are governed by the developmental loss of HDAC8 functions. In our study, deletion
of HDAC8 in the adult stage also caused neurogenesis deficits, suggesting the potential
involvement of HDAC8 in maintaining neuronal function.

In conclusion, our findings indicated that the loss of HDAC8 affected physiological
neurogenesis, which could be useful in assessing the adverse effects of an HDAC8 inhibitor
that is being developed as a therapeutic drug and the physiological functions of HDAC8 in
the central nervous system. Our findings prompt us to investigate the potential applications
of PCI-34051 in diseases of the nervous system, such as neuroblastoma. Further studies
identifying the HDAC8 target would facilitate the demonstration of the effectiveness of
an HDAC-selective inhibitor in the clinical model. Structural specificities of HDAC8
have allowed for the design of selective inhibitors [42], and isotype-specific targeting
for HDAC8 could be an attractive strategy. Elucidating the physiological functions of
HDAC8 would help to understand mechanisms in neurological diseases and develop
pharmacological interventions.
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4. Materials and Methods
4.1. Experimental Animals

C57BL/6J mice obtained from Japan SLC, Inc. (Shizuoka, Japan) were bred and
maintained at the Institute of Experimental Animal Sciences, Osaka University Graduate
School of Medicine, Osaka, Japan. Conditional Hdac8 flox mice were provided by Dr. Eric
N. Olson (The University of Texas, Austin, TX, USA) [17]. Nestin-CreERT2 mice were
provided by Dr. Ryoichiro Kageyama and Dr. Itaru Imayoshi (Institute for Virus Research,
Kyoto University, Kyoto, Japan) [18].

To delete Hdac8 in adult Nestin-positive cells, tamoxifen (10 mg/35 g of mouse) was
orally administered in mice once a day for 4 sequential days at postnatal (P) weeks 8
and 12 [43].

4.2. Immunohistochemistry

The mice underwent transcardial perfusion with PBS, followed by 4% paraformalde-
hyde in phosphate buffer (0.1 M). Subsequently, the brains were dissected, postfixed in the
same fixative, immersed overnight in PBS containing 30% sucrose, embedded in Tissue-Tek
OCT, and frozen at −80 ◦C until further use. Brain sections were prepared using a cryostat
(20-µm thickness) and mounted on Matsunami adhesive-coated slides (Matsunami, Osaka,
Japan). Cryostat sections were incubated with blocking solution containing 5% BSA and
0.1% Triton X-100 in PBS for 1 h at room temperature, followed by overnight incubation at
4 ◦C with primary antibodies including anti-HDAC8 and DCX (Santa Cruz Biotechnology,
Inc., Santa Cruz, CA, USA), anti-Nestin (Merck Millipore, Burlington, MA, USA), anti-
GFAP (Sigma-Aldrich, St. Louis, MO, USA or Dako, Glostrup, Denmark), and anti-MASH1
and anti-Ki67 (BD Pharmingen, San Jose, CA, USA). For mouse primary antibody, Vector®

M.O.M.™ immunodetection Kit (Vector Laboratories, Burlingame, CA, USA) was used as
per the manufacturer’s protocol. Immunoreactivity was visualized using Alexa Flour 488-
or 568-conjugated secondary antibodies (Thermo Fischer Scientific, Rockford, IL, USA).
Coverslips were placed on the slides with mounting medium (Dako). Nuclei were stained
using 4′, 6-diamidino-2-phenylindole (DAPI). Images were captured using a laser scanning
confocal microscope (FV3000, Olympus, Tokyo, Japan).

4.3. Quantification of SVZ Cells

The number of cells in the SVZ was determined through serial section analysis. Im-
munohistochemistry was performed as described above. Every tenth coronal section
(20-µm thickness) along the rostral–caudal axis of the SVZ was analyzed. The percentage
of positive area indicated by antibody staining was measured using Image J software
64-bit (NIH, Bethesda, MD, USA). Each area was normalized to the SVZ area detected by
DAPI-staining of the same sections.

4.4. Neurosphere Culture

The neurospheres were cultured following a previously described procedure [44].
For each preparation, the mouse brains were dissected to isolate SVZ; the SVZ tissues
were minced in ice-cold HBSS containing glucose (30 mM), HEPES (2 mM), and NaHCO3
(26 mM). Digestion was performed in 0.05% Trypsin-EDTA for 20 min; the reaction was
terminated by adding an equal volume of trypsin inhibitor in DPBS (T6522, Sigma-Aldrich,
Darmstadt, Germany) and incubated for 20 min. The digested tissue was triturated to obtain
single cells using pipettes, and cells were pelleted at 200× g for 5 min. Cells were washed
three times in proliferation medium (Neural Stem Cell Basal Medium, SCM003, Merck
Milipore, Darmstadt, Germany), supplemented with B27 without vitamin A (12587010,
Thermo Fisher Scientific, MA, USA), GlutaMAX (35050061, Thermo Fisher Scientific, MA,
USA), Antibiotic-Antimycotic (15240062, Thermo Fisher Scientific, Waltham, MA, USA),
epidermal growth factor (EGF) (1 µg/mL) (E9644, Sigma-Aldrich, Germany), and basic
fibroblast growth factor (FGF2) (1 µg/mL) (100-18B, PeproTech, Rocky Hill, NJ, USA).
Cells were plated into a single well of a 24-well plate. Half of the proliferation medium
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was continuously changed every other day. The cells isolated from SVZ are positive for
several well-characterized NSC markers, such as Nestin and Sox2, and can proliferate, as
demonstrated using a BrdU incorporation assay.

4.5. Neurosphere Assay

Adult SVZ cells were seeded into 24-well culture plates at 1 × 105 cells/mL in prolif-
eration media treated with the selective HDAC8 inhibitor PCI-34051 (Cayman Chemical
Company, Ann Arbor, MI, USA) or vehicle control (Dimethyl sulfoxide, DMSO). Neuro-
spheres were allowed to develop for 7 days in an incubator with 5% CO2 in a humidified
atmosphere at 37 ◦C. The average neurosphere diameter was assessed in three 2 mm2

squares in each well.
To assess the proliferation of neurospheres derived from adult SVZs in vitro, neuro-

spheres were plated on chamber slide glasses, incubated for 30 min, and then exposed to
EdU (10 µM) for another 30 min at 37 ◦C, followed by fixation in 4% paraformaldehyde.
To detect incorporated EdU (Invitrogen, Waltham, MA, USA, E10187), we used a Click-
iT® EdU Imaging Kit (Thermo Fisher Scientific, MA, USA) following the manufacturer’s
instructions.

4.6. RNA Isolation and RNAseq Analysis

The RNA isolation was performed using a previously described method [45]. Briefly,
total RNA was isolated using Trizol (Invitrogen, MA, USA), and 5 µg of total RNA was
purified using the RNeasy Mini Kit (QIAGEN, Hilden, Germany). Furthermore, 100–200 ng
of mRNA was fragmented through hydrolysis and purified (RNAeasy Minelute Kit; QIA-
GEN, Germany). Library DNAs were prepared according to the Illumina TrueSeq protocol
using the Truseq Standard mRNA LT Sample Prep Kit (Illumina, San Diego, CA, USA) and
sequenced by Illumina NextSeq 500 (Illumina, CA, USA) using the Nextseq 500/550 High
Output v2.5 Kit (Illumina, CA, USA) to obtain single-end 75 bp reads. The resulting reads
were aligned to the mouse genome (mm10) using STAR ver.2.6.0a after trimming to remove
the adapter sequence and low-quality ends using Trim Galore! v0.5.0 (cutadapt v1.16). The
transcript abundance was determined using RSEM v1.3.1. The counts of gene-expression
profiles in those selected datasets were further analyzed through RNAseqChef web-based
transcriptome analysis [22]. Pathway Interaction Database was used for enrichment analy-
sis in RNAseqChef. The Z-scored normalized count is shown in the heatmaps (genefilter:
methods for filtering genes from high-throughput experiments. R package version 1.72.1.).

4.7. Statistical Analysis

Statistical analyses were performed using GraphPad Prism 7 (GraphPad Software,
San Diego, CA, USA). Quantitative data are expressed as the mean ± standard error of at
least three independent experiments. Differences between pairs of experimental groups
were analyzed using the Student’s t-test or one-way ANOVA, followed by Tukey’s multiple
comparisons test. Statistical significance was defined at values of p < 0.05.
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