
Citation: Lattau, S.S.J.; Borsch, L.-M.;

auf dem Brinke, K.; Klose, C.;

Vinhoven, L.; Nietert, M.; Fitzner, D.

Plasma Lipidomic Profiling Using

Mass Spectrometry for Multiple

Sclerosis Diagnosis and Disease

Activity Stratification (LipidMS). Int. J.

Mol. Sci. 2024, 25, 2483. https://

doi.org/10.3390/ijms25052483

Academic Editor: Michael C. Levin

Received: 16 January 2024

Revised: 2 February 2024

Accepted: 13 February 2024

Published: 20 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Plasma Lipidomic Profiling Using Mass Spectrometry for
Multiple Sclerosis Diagnosis and Disease Activity
Stratification (LipidMS)
Seyed Siyawasch Justus Lattau 1 , Lisa-Marie Borsch 1, Kristina auf dem Brinke 1, Christian Klose 2,
Liza Vinhoven 3 , Manuel Nietert 3 and Dirk Fitzner 1,*

1 Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany;
justus.lattau@med.uni-goettingen.de (S.S.J.L.); lisa-marie.borsch@med.uni-goettingen.de (L.-M.B.);
kristina.brinke@med.uni-goettingen.de (K.a.d.B.)

2 Lipotype GmbH, 01307 Dresden, Germany; klose@lipotype.com
3 Department of Medical Bioinformatics, University Medical Center Göttingen, 37075 Göttingen, Germany;

liza.vinhoven@med.uni-goettingen.de (L.V.); manuel.nietert@med.uni-goettingen.de (M.N.)
* Correspondence: dirk.fitzner@med.uni-goettingen.de

Abstract: This investigation explores the potential of plasma lipidomic signatures for aiding in
the diagnosis of Multiple Sclerosis (MS) and evaluating the clinical course and disease activity
of diseased patients. Plasma samples from 60 patients with MS (PwMS) were clinically stratified
to either a relapsing-remitting (RRMS) or a chronic progressive MS course and 60 age-matched
controls were analyzed using state-of-the-art direct infusion quantitative shotgun lipidomics. To
account for potential confounders, data were filtered for age and BMI correlations. The statistical
analysis employed supervised and unsupervised multivariate data analysis techniques, including
a principal component analysis (PCA), a partial least squares discriminant analysis (oPLS-DA)
and a random forest (RF). To determine whether the significant absolute differences in the lipid
subspecies have a relevant effect on the overall composition of the respective lipid classes, we
introduce a class composition visualization (CCV). We identified 670 lipids across 16 classes. PwMS
showed a significant increase in diacylglycerols (DAG), with DAG 16:0;0_18:1;0 being proven to
be the lipid with the highest predictive ability for MS as determined by RF. The alterations in the
phosphatidylethanolamines (PE) were mainly linked to RRMS while the alterations in the ether-
bound PEs (PE O-) were found in chronic progressive MS. The amount of CE species was reduced in
the CPMS cohort whereas TAG species were reduced in the RRMS patients, both lipid classes being
relevant in lipid storage. Combining the above mentioned data analyses, distinct lipidomic signatures
were isolated and shown to be correlated with clinical phenotypes. Our study suggests that specific
plasma lipid profiles are not merely associated with the diagnosis of MS but instead point toward
distinct clinical features in the individual patient paving the way for personalized therapy and an
enhanced understanding of MS pathology.

Keywords: multiple sclerosis; lipidmetabolism; lipidomics; biomarker

1. Introduction

Multiple sclerosis (MS) is one of the most common inflammatory demyelinating dis-
eases of the central nervous system (CNS). With its rising prevalence, MS is viewed as a
significant cause of neurological disability in adult life [1]. Previous metabolic studies in
patients with MS (PwMS) have demonstrated the relevance of serum lipid composition
not only as a potential diagnostic biomarker but also as a key to pathophysiological under-
standing [2]. Notably, postmortem brain tissue analyses from PwMS have also revealed
distinctive lipid alterations in normal-appearing white matter [3]. Subsequently, a lipidomic
study showed differences in the plasma of monozygotic twins discordant for MS [4]. These
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studies revealed alterations in the composition of the ether phosphatidylethanolamines
(PE O-) and ether phosphatidylcholines (PC O-) between PwMS and controls neglecting
individual disease courses. Therefore, it remains unclear if alterations in lipid profiles can
indicate clinical activity or states of the disease. The prediction and evaluation of disease
activity is crucial for tailoring individualized therapeutic approaches [5]. Thus, readily
available biomarkers are required not only to aid in the diagnosis and monitoring of disease
activity as well as treatment responses, but also to provide insight into pathophysiological
mechanisms [5].

In recent years, various methods with different performances have been proposed,
such as serum neurofilament [6,7], an assessment of the retinal nerve fiber layer [8], intrathe-
cal immunoglobulin M synthesis [9,10], serum glial fibrillary acid protein (GFAP) [11,12], a
kappa free light chains (KFLC) index and KFLC intrathecal fraction [13] as well as MRI-
based biomarkers [14]. Given the prominent destruction of the lipid-rich myelin sheath in
MS, the analysis of lipid composition has revealed itself as a promising approach [2,4,15,16].
Our study uses a state-of-the-art direct infusion (shotgun) nano-electrospray high-resolution
Orbitrap mass spectrometry [17,18] to analyze plasma samples from 120 participants, in-
cluding 30 patients with relapsing-remitting MS (RRMS), 30 patients with chronic progres-
sive disease courses of MS and an age-matched control group of 60 individuals.

2. Results
2.1. Lipid Class Variations across Cohorts

A mass spectrometry analysis of serum samples was performed for 120 individuals
and revealed 670 distinct lipids in 16 separate classes.

The dimensionality reduction analysis performed via PCA (Figure 1A) and LipidSpace
(Supplementary Figure S4) indicates a high similarity between the lipid patterns observed
among the four cohorts. To avoid the overrepresentation of lipids with high correlations
to age or BMI, a correlation analysis for age and BMI within the two control cohorts was
conducted (Supplementary Figure S6). Since lipids can be categorized into distinct lipid classes
according to their molecular features, the first subsequent analysis focused on investigating
whether lipid amounts differ within these classes and might aid in distinguishing cohorts.
The ANOVA analysis with a Tukey post hoc test showed significant changes in the cholesteryl
ester (CE), diacylglycerol (DAG), phosphatidylinositol (PI), sphingomyelin (SM), ceramide
(Cer), phosphatidylethanolamine (PE) and ether-linked phosphatidylethanolamine (PE O-)
classes (Figure 1B and Supplementary Table S3). Significant decreases in PE, PE-O, and PI
were detected in the two MS cohorts. A reversed phenomenon was observed for DAG, with
a significant increase in the RRMS and CPMS cohorts compared to the healthy cohort. The
SM and CE classes showed a uniform pattern of increase in CPMS and OND. In addition, we
performed a statistical evaluation of differences in the quantity of the individual fatty acid
chains based on the chain length in relation to the respective lipid class. A significant difference
between RRMS and CPMS was found only for the C22 chain of PC O- (Supplementary
Tables S4 and S5 and Supplementary Figure S11).

2.2. Comparative Analysis of Lipid Subspecies Variation in MS Cohorts

In the first step of the comparative analysis, we compared the combined cohorts of
healthy and OND (non-MS) with the RRMS and CPMS (MS). The result was visualized
using a volcano plot, modified by the weighting from a supervised machine oPLS-DA
(Supplementary Figure S7A) in addition to an ordinary Welch’s t-test. The quality of
the oPLS-DA was evaluated by using a test dataset, applying the model to predict the
class (Supplementary Figure S7B), and assessing the R2X and R2Y values (Supplementary
Figure S8A). A decrease in a subset of lipid species of the classes PC, PC O-, PE, PE O-,
and PI, in contrast to an increase in DAG and selected PC subspecies, was found in the MS
cohort (Figure 2). This statistical observation was supported by a heatmap with hierarchical
clustering (Supplementary Figure S5).
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Figure 1. (A) Principal Component Analysis (PCA) plot illustrating the lipid subspecies distribution 
from 120 participants. The variance explained by PC1 is 76.61% and PC2 is 13.79%. Ellipses represent 
the 95% confidence intervals for each cohort. (B) Bar chart illustrating the concentration [pmol] with 
SD for the 16 lipid classes. Statistical significance was determined by a one-way ANOVA, followed 
by the TUKEY-HSD: * = p-value < 0.05; ** = p-value < 0.01; *** = p-value < 0.001; **** = p-value < 0.0001 
(Supplementary Table S3). 
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Figure 1. (A) Principal Component Analysis (PCA) plot illustrating the lipid subspecies distribution
from 120 participants. The variance explained by PC1 is 76.61% and PC2 is 13.79%. Ellipses represent
the 95% confidence intervals for each cohort. (B) Bar chart illustrating the concentration [pmol] with
SD for the 16 lipid classes. Statistical significance was determined by a one-way ANOVA, followed by
the TUKEY-HSD: * = p-value < 0.05; ** = p-value < 0.01; *** = p-value < 0.001; **** = p-value < 0.0001
(Supplementary Table S3).
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Figure 2 Volcano plot of nonMS vs. MS 

Volcano plot showing the differences in lipid subspecies in subjects without MS (healthy and OND) vs. subjects with MS (RRMS 
and CPMS). Colors represent lipid class classifica5on. The size of the dots is determined by the VIP score from the compara5ve 
oPLS-DA (Supplement Figure 7A). Lipids marked with red x have a high correla5on with age and BMI (Supplement Figure 6). 
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Figure 2. Volcano plot showing the differences in lipid subspecies in subjects without MS (healthy and
OND) vs. subjects with MS (RRMS and CPMS). Colors represent lipid class classification. The size of
the dots is determined by the VIP score from the comparative oPLS-DA (Supplementary Figure S7A).
Lipids marked with red × have a high correlation with age and BMI (Supplementary Figure S6). The
horizontal dashed line indicates a p-value of 0.05 in the Welch’s t-test. The vertical dashed line indicates
a log2 fold change of 1. Only lipids with a p-value < 0.01 and a log2 fold change > 1.5 and no relevant
correlation with age and BMI were annotated.

Subsequently, cohorts were analyzed separately and evaluated in an equal manner.
Results are displayed in Figure 3. The age-matched direct comparison of the healthy
cohort with the RRMS course is shown in Figure 3A. The importance of the PC- and PE
subspecies composition in differentiating the two cohorts is supported by the VIPs of the
corresponding oPLS-DA (Figure 3B). The predictive power of this model is confirmed by
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the confusion matrix in Figure 3C. Figure 3D contrasts OND with CPMS and emphasizes
the alterations in PE O- subspecies. This finding is supported by the oPLS-DA, which
shows the discriminatory potential of lipid subspecies (Figure 3E). The predictive power of
this discrimination was tested on a holdout dataset. The result shows precise predictive
power (Figure 3F).

 
Figure 3 healthy vs. RRMS and OND vs. CPMS 

Volcano plot showing the differences in lipid subspecies in healthy subjects vs. pa5ents with RRMS (A) and subjects with OND 
vs. CPMS (D). Colors represent lipid class classifica5on. Lipids marked with red x have a high correla5on with age and BMI 
(Supplement Figure 6). The horizontal dashed line indicates a p-value of 0.05 in the Welch's t-test. The ver5cal dashed line 
indicates a log2 Fold-Change of 1. Only lipids with a p-value < 0.01 and a log2 Fold-Change> 1.5 and no relevant correla5on 
with age and BMI were annotated. The size of the dots is determined by the VIP score from the oPLS-DA (B; E). (B) Bar chart 
displaying the lipids with the top 30 VIP score with SD of oPLS-DA healthy vs RRMS (Supplement Figure 8). (E) Bar chart 
displaying the lipids with the top 30 VIP score with SD of oPLS-DA OND vs CPMS (Supplement Figure 8). Colors in (B) and (E) 
represent lipid class classifica5on. Lipids with a high correla5on with age and BMI are greyed out and annotated. Confusion 
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Figure 3. Volcano plot showing the differences in lipid subspecies in healthy subjects vs. patients
with RRMS (A) and subjects with OND vs. CPMS (D). Colors represent lipid class classification.
Lipids marked with red × have a high correlation with age and BMI (Supplementary Figure S6).
The horizontal dashed line indicates a p-value of 0.05 in the Welch’s t-test. The vertical dashed line
indicates a log2 fold change of 1. Only lipids with a p-value < 0.01 and a log2 fold change > 1.5 and
no relevant correlation with age and BMI were annotated. The size of the dots is determined by the
VIP score from the oPLS-DA (B,E). (B) Bar chart displaying the lipids with the top 30 VIP scores with
SD of oPLS-DA healthy vs. RRMS (Supplementary Figure S8). (E) Bar chart displaying the lipids
with the top 30 VIP scores with SD of oPLS-DA OND vs. CPMS (Supplementary Figure S8). Colors in
(B,E) represent lipid class classification. Lipids with a high correlation with age and BMI are greyed
out and annotated. Confusion matrix of the oPLS-DA of healthy vs. RRMS (C) and OND vs. CPMS
(F) on the 40% hold out test dataset (testing data) ensuring the predictive capability of the important
lipids provided by the oPLS-DA.
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The common pattern emerging from the pooled (Figure 2) and separated cohort anal-
ysis (Figure 3) of the two MS cohorts is characterized by a reduction in the PC, PE (more
prominent in RRMS, Figure 3A,B) and PE O- (more prominent in CPMS, Figure 3D,E) and
an elevation in the DAG, which is more pronounced in RRMS but observed in both RRMS
and CPMS (Figure 3A,B). Notably, there are some overlapping lipid species, such as DAG
16:0;0_18:1;0 and DAG 18:0;0_18:1;0 with a large log2 fold change (log2FC) and low p-value
(Figure 3A,D). A Venn diagram (Figure 4A) visualizes the overlap of the significantly
altered lipids from the comparison in Figures 2 and 3A,C, as well as the RF data detailed
in Figure 5A. The overlap between the RRMS and CPMS cohorts shows an intersection of
67 lipids (42% of all significant changes in RRMS and 52% of all significant changes in
CPMS). This points toward the existence of shared alterations of the plasma lipid composi-
tion in both, RRMS and CPMS patients, possibly indicating distinct plasma lipid profiles in
PwMS. Furthermore, the link between significant differences in the lipid composition and
clinically defined cohorts of RRMS and CPMS, as shown by a notable number of distinct
lipid species altered, becomes apparent in the Venn diagram (Figure 4A). Using the Venn
diagram, the significantly altered lipids were assigned to each cohort (RRMS, CPMS and
MS cohort) and termed ‘cohort-specific lipid signatures’ or ‘profiles’ (Figure 4B–E).

2.3. Random Forest Validates Lipid Pattern for MS Diagnosis

To further validate the patterns discovered by the volcano plot and oPLS-DA
(Figures 2 and 3A,C) and explore the predictive capability, we employed an RF model to
classify MS and non-MS samples. RF, as a non-linear machine learning technique, offers the
ability to capture complex patterns that linear methods, like oPLS-DA, might not fully elu-
cidate [19]. Therefore, previous studies in lipidomics have shown that it is advisable to use
multiple machine learning approaches [19–21]. To generate a more parsimonious model,
lipids with high correlations to BMI and age were removed and a multicollinearity filter
was applied to further eliminate lipids with substantial inter-correlations. The model was
trained on 60% of the data, tested via a 5-fold cross-validation and predicted the remaining
40% of the data. After 20 iterations, the model achieved an area under the curve (AUC) of 1
in the ROC for discriminating between MS and non-MS samples (Supplementary Figure S9).
Therefore, across all iterations, the model correctly classified all 24 MS patients (Figure 5B).
However, these findings, while encouraging, warrant caution due to potential overfitting
and the need for further validation with a larger, independent cohort. Interestingly, 25 out
of the 30 most important lipids from the RF (Figure 5A) were revealed to be also signifi-
cantly altered in the volcano/oPLS-DA approach, proving that the patterns presented here
(Figure 4B–E) possess high specificity and sensitivity across 120 participants and thereby
accurately reflect a distinct plasma lipid profile in PwMS. This demonstrates the predictive
power of a lipid pattern as a diagnostic tool.

To determine whether the cohort-specific lipid signatures (Figure 4B–E) have a relevant
effect on the overall composition of their lipid class, we introduce the class composition
visualization (CCV). In this approach, we calculated the total quantity of the lipid classes in
each of the four cohorts and visualized the cohort-specific lipid signatures (Figure 4B–E)
with respect to the corresponding lipid class to evaluate the influence of the lipid profile on
the class composition (Figure 5C).



Int. J. Mol. Sci. 2024, 25, 2483 7 of 18

CE 14:0;0
CE 14:1;0
CE 16:0;0
CE 17:1;0
CE 18:0;0
CE 18:1;0
CE 20:5;0
CE 22:5;0
CE 24:1;0
CE 24:2;0
Cer 40:0;2
Cer 40:1;2
Cer 40:2;2
Cer 42:1;2
Chol
DAG 14:0;0_18:1;0
LPC 22:6;0
LPE 20:1;0
PC 16:0;0_16:1;0
PC 16:0;0_18:1;0
PC 17:0;0_18:3;0
PC 17:0;0_20:5;0
PC 18:0;0_18:1;0
PC 18:2;0_19:1;0
PC 20:3;0_20:3;0
PC O−16:0;0/20:5;0
PC O−16:0;0/22:4;0
PC O−16:0;0/22:6;0
PC O−18:1;0/20:5;0
PC O−18:1;0/22:5;0
PC O−18:1;0/22:6;0
PE 16:0;0_22:4;0
PE O−16:0;0/18:2;0
PE O−16:0;0/22:4;0
PE O−16:0;0/22:5;0
PE O−16:1;0/20:5;0
PE O−16:1;0/22:5;0
PE O−16:2;0/18:0;0
PE O−17:1;0/20:4;0
PE O−18:0;0/18:2;0
PE O−18:0;0/20:4;0
PE O−18:0;0/22:5;0
PE O−18:1;0/18:1;0
PE O−18:1;0/18:2;0
PE O−18:1;0/22:4;0
PE O−18:2;0/18:0;0
PE O−18:2;0/18:1;0
PE O−18:2;0/18:2;0
PE O−18:2;0/20:5;0
PE O−18:2;0/22:5;0
PE O−18:2;0/22:6;0
PI 16:0;0_22:5;0
SM 32:1;2
SM 34:2;2
SM 36:1;2
TAG 40:1;0
TAG 49:1;0
TAG 51:1;0
TAG 53:1;0
TAG 56:1;0
TAG 56:2;0

−0
.05
−0
.02
5 0

0.0
25
0.0
5

Difference in [pmol]

CE 17:0;0
CE 18:2;0
CE 19:3;0
CE 20:2;0

DAG 16:0;0_16:1;0
DAG 16:0;0_17:0;0
DAG 18:1;0_18:1;0
DAG 18:1;0_18:2;0
DAG 18:2;0_20:3;0

LPC 16:0;0
LPE 16:0;0
LPE 18:1;0
LPE 20:4;0

PC 14:0;0_17:0;0
PC 14:0;0_18:1;0
PC 14:0;0_18:2;0
PC 15:0;0_18:1;0
PC 15:0;0_20:3;0
PC 15:0;0_20:4;0
PC 15:0;0_22:6;0
PC 16:0;0_16:0;0
PC 16:0;0_17:1;0
PC 16:0;0_18:3;0
PC 16:0;0_20:0;0
PC 16:0;0_20:2;0
PC 16:0;0_22:6;0
PC 16:0;0_24:5;0
PC 16:1;0_18:1;0
PC 17:0;0_20:2;0
PC 18:0;0_18:2;0
PC 18:0;0_18:3;0
PC 18:1;0_18:3;0
PC 18:1;0_20:2;0
PC 18:1;0_20:3;0
PC 18:1;0_22:4;0
PC 18:1;0_22:6;0
PC 18:2;0_18:3;0
PC 18:2;0_20:3;0
PC 18:2;0_20:4;0
PC 20:1;0_20:4;0
PC 20:2;0_20:4;0

PC O−16:0;0/18:3;0
PC O−16:0;0/20:2;0
PC O−17:0;0/15:0;0
PC O−17:0;0/20:5;0
PC O−17:1;0/20:4;0
PC O−17:2;0/17:1;0
PC O−18:0;0/14:0;0
PC O−18:2;0/20:4;0
PE 16:0;0_18:2;0
PE 16:0;0_22:6;0
PE 17:0;0_18:2;0
PE 18:0;0_18:2;0
PE 18:0;0_20:1;0
PE 18:0;0_20:3;0
PE 18:0;0_20:4;0
PE 18:0;0_20:5;0
PE 18:1;0_18:1;0
PE 18:1;0_18:2;0
PE 18:1;0_18:3;0
PE 18:1;0_20:4;0

PE O−18:1;0/18:3;0
PE O−18:1;0/22:5;0
PI 16:0;0_20:2;0
PI 16:0;0_20:3;0
PI 18:0;0_18:1;0
PI 18:0;0_20:3;0
PI 18:0;0_20:4;0
PI 18:0;0_22:6;0
PI 18:1;0_18:1;0

SM 32:2;2
TAG 38:0;0
TAG 49:3;0
TAG 51:3;0
TAG 51:4;0
TAG 52:4;0
TAG 52:5;0
TAG 53:4;0
TAG 53:5;0
TAG 54:4;0
TAG 54:5;0
TAG 54:6;0
TAG 54:7;0
TAG 54:8;0
TAG 56:4;0
TAG 56:8;0
TAG 58:10;0
TAG 58:4;0
TAG 58:7;0
TAG 58:8;0
TAG 58:9;0

−0
.05
−0
.02
5 0

0.0
25
0.0
5

Difference in [pmol]

CE 23:2;0
Cer 42:2;2

DAG 16:0;0_18:1;0
DAG 18:0;0_18:1;0
DAG 18:1;0_18:3;0
PC 14:0;0_18:0;0
PC 14:0;0_20:3;0
PC 15:0;0_15:0;0
PC 15:0;0_17:0;0
PC 15:0;0_18:0;0
PC 16:0;0_19:1;0
PC 16:0;0_19:2;0
PC 16:1;0_16:1;0
PC 16:1;0_17:0;0
PC 16:1;0_20:3;0
PC 16:1;0_20:4;0
PC 17:0;0_18:1;0
PC 17:0;0_20:6;0
PC 17:0;0_22:6;0
PC 17:1;0_18:0;0
PC 17:1;0_18:1;0
PC 17:1;0_20:4;0
PC 18:0;0_18:0;0
PC 18:0;0_20:2;0
PC 18:1;0_20:1;0
PC 18:1;0_20:5;0
PC 18:1;0_22:5;0
PC 20:0;0_20:4;0
PC 20:3;0_20:4;0

PC O−16:0;0/22:5;0
PC O−16:1;0/16:1;0
PC O−16:1;0/22:4;0
PC O−16:1;0/22:5;0
PC O−16:2;0/18:1;0
PC O−17:0;0/19:2;0
PC O−17:1;0/17:0;0
PC O−17:2;0/17:0;0
PC O−18:0;0/18:3;0
PC O−18:0;0/20:5;0
PC O−18:0;0/20:6;0
PC O−18:0;0/22:6;0
PC O−18:1;0/16:1;0
PC O−18:1;0/22:4;0
PC O−18:2;0/20:3;0
PE 16:0;0_20:3;0
PE 16:0;0_22:5;0
PE 16:1;0_18:1;0
PE 18:0;0_18:3;0
PE 18:0;0_20:2;0
PE 18:0;0_22:4;0
PE 18:0;0_22:5;0
PE 18:0;0_22:6;0
PE 18:1;0_20:3;0

PE O−16:1;0/18:2;0
PE O−16:1;0/22:4;0
PE O−16:1;0/22:6;0
PE O−18:1;0/22:6;0
PE O−18:2;0/16:0;0
PI 16:0;0_18:1;0
PI 16:1;0_18:0;0
PI 16:1;0_18:1;0
PI 18:0;0_22:4;0
PI 18:0;0_22:5;0
PI 18:1;0_20:3;0
PI 18:1;0_20:4;0

SM 36:2;2
TAG 58:6;0

CE 23:2;0
Cer 42:2;2

DAG 16:0;0_18:1;0
DAG 18:0;0_18:1;0
DAG 18:1;0_18:3;0
PC 14:0;0_18:0;0
PC 14:0;0_20:3;0
PC 15:0;0_15:0;0
PC 15:0;0_17:0;0
PC 15:0;0_18:0;0
PC 16:0;0_19:1;0
PC 16:0;0_19:2;0
PC 16:1;0_16:1;0
PC 16:1;0_17:0;0
PC 16:1;0_20:3;0
PC 16:1;0_20:4;0
PC 17:0;0_18:1;0
PC 17:0;0_20:6;0
PC 17:0;0_22:6;0
PC 17:1;0_18:0;0
PC 17:1;0_18:1;0
PC 17:1;0_20:4;0
PC 18:0;0_18:0;0
PC 18:0;0_20:2;0
PC 18:1;0_20:1;0
PC 18:1;0_20:5;0
PC 18:1;0_22:5;0
PC 20:0;0_20:4;0
PC 20:3;0_20:4;0

PC O−16:0;0/22:5;0
PC O−16:1;0/16:1;0
PC O−16:1;0/22:4;0
PC O−16:1;0/22:5;0
PC O−16:2;0/18:1;0
PC O−17:0;0/19:2;0
PC O−17:1;0/17:0;0
PC O−17:2;0/17:0;0
PC O−18:0;0/18:3;0
PC O−18:0;0/20:5;0
PC O−18:0;0/20:6;0
PC O−18:0;0/22:6;0
PC O−18:1;0/16:1;0
PC O−18:1;0/22:4;0
PC O−18:2;0/20:3;0
PE 16:0;0_20:3;0
PE 16:0;0_22:5;0
PE 16:1;0_18:1;0
PE 18:0;0_18:3;0
PE 18:0;0_20:2;0
PE 18:0;0_22:4;0
PE 18:0;0_22:5;0
PE 18:0;0_22:6;0
PE 18:1;0_20:3;0

PE O−16:1;0/18:2;0
PE O−16:1;0/22:4;0
PE O−16:1;0/22:6;0
PE O−18:1;0/22:6;0
PE O−18:2;0/16:0;0
PI 16:0;0_18:1;0
PI 16:1;0_18:0;0
PI 16:1;0_18:1;0
PI 18:0;0_22:4;0
PI 18:0;0_22:5;0
PI 18:1;0_20:3;0
PI 18:1;0_20:4;0

SM 36:2;2
TAG 58:6;0

−0
.05
−0
.02
5 0

0.0
25
0.0
5

Difference in [pmol]

healthy vs RRMS
(n = 30 vs 30)

Figure 3A

OND vs CPMS
(n = 30 vs 30)

Figure 3D

Random Forest
Figure 5A

non-MS vs MS
Figure 2

higher in
CPMS

higher in
RRMS

higher in
RRMS

91 lipids

A

B

C

E

61 lipids

67 lipids

D

higher in
CPMS

Figure 4. Cohort-Specific Significantly Altered Lipids. (A) Venn-Diagram illustrating the overlaps
in the significantly altered lipids across three comparative analyses using oPLS-DA and Volcano:
“healthy vs. RRMS (Figure 3A)”, “non-MS vs. MS (Figure 2)” and “OND vs. CPMS (Figure 3D)” and
the Random Forest machine learning classification “non-MS vs. MS (Figure 5A)”. By analyzing the
overlaps presented in the Venn diagram, it becomes evident which lipid alterations are specific to
individual cohorts. This overlap-based approach enables a precise identification of cohort-specific
lipidomic signatures. The individual lipids of these signatures are shown in (B–E). (B) Represents
the signature for the RRMS cohort. (C,D) Illustrate the common overlap of lipids that are altered
regardless of MS progression. (E) Represents the signature for the CPMS cohort. The horizontal bar
plots detail the absolute difference amount within the range of −0.05 to 0.05 pmol (mean differences
beyond this range truncated) along with their 95% confidence intervals.
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Figure 5. Random forest and class composition visualization. (A) Shows the top 30 lipids considered
most discriminative by the random forest model when comparing (healthy and OND vs. RRMS
and CPMS), ranked by their mean decrease in accuracy. Notably, DAG 16:0;0_18:1;0 emerges as the
most discriminative lipid. The predictive ability of the model was measured using a separate test
dataset, as shown in (B). To determine whether the marked absolute differences in lipid subspecies
shown in Figure 4B–E significantly influence the overall composition of the associated lipid class,
we calculated the total class quantity in each cohort and visualized the significantly altered lipids
based on their cohort specificity determined by Figure 4A. This approach is illustrated as a class
composition visualization in (C).

2.4. Divergent Trends between Ether and Non-Ether Variants

In detail, the most frequent changes were detected in the PC species (Supplementary
Figure S10), which comprise up to 25 to 30% of all significant changes. Aside from an
increase in PC 18:0;0_18:0;0 in the MS profile (Figure 4B,C) and a slight increase in PC
17:0;0_18:3;0 in the CPMS profile (Figure 4D), there was a marked reduction most dominant
in the RRMS cohort (Figure 4B). Notably, the 24 significant lipids altered in both RRMS and
CPMS made up less than 1% of the total abundance of PC in all four cohorts (Figure 5C). In
contrast, the PC subspecies attributed to RRMS or CPMS accounted for approximately 20%
of the total mass (Figure 5C).

The second most common characteristic of the here-presented MS profile is a decrease
in the PC O- subspecies (Figures 4B,C and S10). These changes also account for only up
to 8% of the total class abundance of the MS profile (Figure 5C). This places a significant
focus on changes within the subspecies presented here. The analysis of the acyl-chains
shows a significant difference in the abundance of C22 sn2-FA between CPMS and RRMS
(Supplementary Figure S11). A notable feature is seen in the RRMS variant exhibiting an
increase in 3 PC O- subspecies (Figure 4B).

In contrast, considering the PE class, we found changes affecting about 80% of the
class’s total mass (Figure 5C). About 2/3 of these changes are attributed to the RRMS course.
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Moreover, PE ranks in the top three classes with the most significant changes across all
comparisons (Supplementary Figure S10). Thus, changes in PE subspecies were highly
weighted by the oPLS-DA to discriminate between healthy and RRMS (Figure 3B).

In the CPMS cohort, the ether-bound variant of PE (PE O-) held a unique position. This
is based on the frequency (Figure 4E) and influence on the overall abundance (Figure 5C),
compared to alterations observed in the RRMS cohort (Figures 4B and 5C).

Despite the low abundance of PI compared to the other lipid classes (e.g., PC:PI
(1:0.025)) reductions in PI subspecies were considered relevant in defining the MS pattern
by the oPLS-DA (Supplementary Figure S7A) and RF (Figure 5A). This is due to the fact that
about 80% of the total mass of PI were altered in the RRMS and CPMS cohorts (Figure 5C).
A measure of 2/3 of this alteration was attributed to the RRMS cohort profile (Figure 5C).

DAG was the only lipid class that showed a significant increase in both MS variants
compared to the healthy control (Figure 1B). DAG 16:0;0_18:1;0 was detectable exclusively
in the two MS cohorts among all 120 participants, and DAG 18:1;0_18:1;0 was detectable in
all RRMS and CPMS patients and only three healthy individuals. Thus, DAG 18:1;0_18:1;0
was significantly higher in both RRMS and CPMS compared to the corresponding controls.
Therefore, these lipids were classified as excellent predictors by the machine learning
algorithms (Figure 5A). The cohort-specific profiles also showed a reduction in DAG
18:2;0_20:3:0, DAG 18:1;0_18:2;0 and DAG 14:0;0_18:1;0 in the MS cohorts (Figure 4B–E),
thus emphasizing that the DAG class is highly modulated in PwMS (Figure 5C).

2.5. Composition of Storage Lipids, in Particular TAG and CE Differs Amongst RRMS and
CPMS Cohorts

In the cohort-specific lipid signatures of RRMS and CPMS, there was only one sig-
nificantly altered lipid overlapping in each of the TAG and CE classes (Figure 4B,C). In
the CPMS cohort, significantly altered CE species account for about 60% of the total CE
lipid mass, whereas in RRMS cohort the corresponding significantly altered CE species
represent around 14% of the total CE lipid mass (Figure 5C). Contrarily, for TAGs in the
RRMS course, the 20 significantly altered lipids (Figure 4B) comprise about 5–10% of
the total mass whereas the corresponding altered TAGs in the CPMS course represent
less than 1% of the total mass (Figure 5C). However, as the RF (Figure 5A) and oPLS-
DA (Figures 3B,E and S7A) demonstrate, the lipid species of both lipid classes have low
predictability as diagnostic biomarkers.

In the Cer class, 95% of the total mass undergoes alteration in PwMS. Of these changes,
approximately two-thirds can be ascribed to the CPMS course. This significant shift is
driven by four ceramide species–Cer 40:0;2, Cer 40:1;2, Cer 40:2;2, and Cer 42:1;2–showing
a decline.

After considering the course-related lipid profiles, we proceeded to explore differences
in disease activity. For this purpose, a subgroup analysis by activity within the RRMS and
CPMS cohorts was performed. Using the aforementioned selection procedure, we were
able to detect significantly altered lipids (Figure 6A). Three of these lipids were remarkable
not only for achieving statistical significance but also for their substantial log2FC—upper
left quadrant of Figure 6A. Comparing all significantly altered lipids of this analysis with
the significantly altered lipids from the RRMS and CPMS specific lipid profiles (Figure 6B),
20 lipids emerged as potential activity markers (Figure 6C).
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Figure 6. Differences in lipid compositions in inactive MS vs. active MS. (A) Volcano plot showing
the differences in lipid subspecies in patients with inactive MS vs. patients with active MS. Colors
represent lipid class classification. Lipids marked with red × have a high correlation with age
and BMI (Supplementary Figure S6). The horizontal dashed line indicates a p-value of 0.05 using
the Welch’s t-test. The vertical dashed line indicates a log2 fold change of 1. Only lipids with a
p-value < 0.0001 and no relevant correlation with age and BMI were annotated; (B) comparing the
overlaps of significantly altered lipids from the prior comparative analyses of “healthy vs. RRMS
(Figure 3A)” and “OND vs. CPMS (Figure 3D)” to “inactive MS vs. active MS (A)”. We identified
20 lipids that are significantly altered only in patients with active MS. (C) Illustrates these significantly
altered lipids by presenting the differences in pmol with SD.

3. Discussion

In this study, we used quantitative shotgun lipidomics to identify a panel of altered
lipids in 60 patients with MS compared to age-matched control groups. Based on additional
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clinical data as well as multivariate data analysis and machine learning, we were able
to isolate distinct lipid profiles associated with either a relapsing-remitting or a chronic
progressive course as well as a shared lipidomic pattern related to the diagnosis of MS in
general, independent of additional clinical features. The common pattern mainly consists
of a reduction in a subset of the PC, PC O- and PE lipid species as well as an increase in
the DAG species (Figure 4C,D). This pattern was validated by an RF machine learning
algorithm, demonstrating high sensitivity and specificity across all 120 participants, as illus-
trated by an AUC of 1 in the ROC curve (Supplementary Figure S9). Prior studies in various
smaller cohorts, including a cohort of monozygotic twins discordant for MS, support our
findings [2,4,15]. Our diagnostic precision was driven by the DAG species 16:0;0_18:1;0,
present only in PwMS (Figure 5A). It is therefore inevitable that our RF model is prone
to overfitting; however, DAG species in general appear to be of relevance in the plasma
lipid composition of PwMS, as demonstrated in previous studies as well [2]. Regarding
the course-specific profiles, our results highlight that PE alterations are predominantly
associated with RRMS (Figure 3A,B), whereas PE O- alterations are more characteristic of
CPMS (Figure 3D,E). Furthermore, as demonstrated by the CCV we established, alterations
in the CE and Cer subspecies compositions are present predominantly in the CPMS cohort
(Figure 5C). In addition, we provide insight into possible lipidomic changes in patients
with a higher clinical activity (Figure 6A–C).

3.1. DAG Elevation as a Hallmark in MS Diagnosis

In general, a significant increase in the total DAG abundance (Figure 1B) and in DAG
subspecies is a remarkable feature of PwMS and proves to be a parameter independent
not only of the course of the disease but also of possible confounders such as age and BMI
(Figure 3A,D and Figure 5A). A previous study, predominantly involving patients with
a relapsing-remitting course, also found elevated DAG subspecies to be correlated with
MS [2]. However, primary progressive MS seems to be an exception due to a contrary
correlation that was observed [15]. This is in line with the fact that our CPMS cohort
predominantly consisted of secondary progressive MS patients. Interestingly, in a small
comparison of newly diagnosed PwMS with a healthy cohort, the pattern of increased
DAG was also found in the cerebrospinal fluid [22,23]. This suggests that the alterations
in DAG presented in our dataset might arise from pathological processes within the
CNS. The synthesis of DAG is significantly influenced by phosphatidic acid phosphatase,
which catalyzes the dephosphorylation of phosphatidic acid to diacylglycerol [24] and
diacylglycerol O-acyltransferases by the transfer of an acyl group to diacylglycerol [25]. The
regulation of dephosphorylation, which itself is regulated by mTOR [26] and in cross talk
with TREM2 [27], as well as the transfer of the acyl-chain [28] have been shown to be altered
in MS and might be one potential link between the lipid metabolism and pathways of
immunoregulation in PwMS. In addition, it can be hypothesized that the increased myelin
turnover and release during demyelinating processes in the CNS [29,30] is reflected by
lipid debris from myelin being transferred to storage lipids such as DAG and subsequently
released into the plasma.

3.2. Impaired Ether-Bound Lipids in MS Progression

We were able to identify an extensive subset of PE lipid species mainly altered in
patients with RRMS, whereas a higher proportion of PE O- species were reduced in pa-
tients with a chronic progressive course of the disease (Figure 3A,B,D,E and Figure 5C).
Ether lipids are a unique class of glycerophospholipids. An alkyl chain is attached to the
sn-1 position by an ether bond. Plasmalogens have an additional cis double bond next
to the ether linkage. The mass spectroscopy setting used in our study does not allow
the specification of these double bonds. However, due to their high portion in the total
phospholipid mass (about 20% in human cell membranes), it is reasonable to assume that
the ether lipids measured represent plasmalogens in a relevant fraction, particularly in the
CNS [31,32]. A reduction in the PE O- in plasma is already known in other neurodegenera-
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tive diseases such as Alzheimer’s disease [33]. However, the causality is still unknown, as
demonstrated by unsuccessful intervention studies [34]. Recently, the new assignment of
the rate-determining enzyme (FAR1) of ether lipid biosynthesis to lipid droplets (LD) [32]
links the synthesis of ether lipids to the remyelination of MS plaques [27]. Focusing on
the signaling pathways in remyelination, the impairment of the liver X receptor (LXR)
accompanied by alterations in ether lipid synthesis is prominent [30,35], thus pointing
toward a potential role of ether lipids in processes related to remyelination.

So far, limited data on the comparison of normal-appearing white matter tissue of
patients with primary progressive or secondary progressive MS has shown a reduction in
putative plasmalogens, not further differentiated, in secondary progressive MS [3].

An analysis of the non-ether bound variants of PE species showed a significant re-
duction considering the total lipid class in both MS courses compared to the controls
(Figure 5C), consistent with previous studies [2]. In contrast to the ether-bound variant,
these changes in PE subspecies can be attributed to patients with a relapsing-remittent
disease course as shown by the CCV (Figure 5C). The significantly altered lipids represent
the typical distribution of polyunsaturated fatty acids in the sn2 position. Considering
the cleavage products of PE, previous experiments with EAE mice demonstrated the re-
quirement of LPE (1-18:1) for the activation of pathogenic Th17 cells [36]. In our study, we
can attribute the significant change of this specific LPE to the RRMS course (Figure 4B).
However, this change was measured under therapy with predominantly highly active
substances that are known to reduce Th17 cell numbers [37]. Thus, the therapeutic effect as
a potential confounder should be considered in this regard.

3.3. Cholesterol Esters and Triacylglycerols as Indicators of Clinical Features

Interestingly, we were also able to demonstrate differences in the composition of CE
and TAG species in correlation with different courses of the disease. These lipid classes
are relevant as storage lipids in the human lipid metabolism. We detected a significant
reduction in CE species in the CPMS cohort (Figures 4E and 5C) in contrast to a prominent
reduction in TAG species in the RRMS course (Figures 4B and 5C). Aware of the potential
influence of aging on the lipidomic changes observed in CPMS, we have implemented
strategies to mitigate this. First, we used an age-matched control group (OND) without
a significant age difference. In addition, we applied a correlation filter for aging effects,
mostly selecting PE O- species (Supplementary Figure S6). Changes in approximately 3%
of the total amount of CE and Cer species, which are significantly altered in the CPMS
cohort, have been associated with aging by Hornburg et al. [38]. The changes shown here
are well above 3% of the total mass and thus suggest a CPMS-specific profile (Figure 5C).

Cholesterol metabolism has been shown to be of importance for various aspects of
MS pathophysiology leading from its influence on neuroinflammation in the demyelina-
tion [39,40], remyelination [29,30] as well as the neurodegeneration associated with the
disease [41]. In the context of LDs, storage lipids, such as TAG, appear to be modulating
neuroinflammation and, in particular, microglial activity [39,40],which is thought to be a
pivotal factor in the pathophysiological processes involved in the chronic progression and
diffuse white matter pathology in PwMS. It is therefore of interest that lipid profile changes
regarding CE and TAG species are associated with distinct clinical features and courses
of the disease, making these lipid patterns (Figure 4B,E) valuable potential candidates as
biomarkers to assess individual states of the disease.

While previous studies have emphasized significant changes in Cer and SM due to
their relative high proportion in myelin [2,15,42], our analysis reveals only minor changes
in comparison to age-matched controls (Figures 1B and 5C). This suggests that a fraction of
Cer and SM alterations might be related to aging effects. However, it should be noted that
the reported changes in Cer exceed the age-related changes described in the literature [38].
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3.4. MS Lipidomic Patterns—A Unique Signature with Overlaps to Other Diseases

Despite our identification of disease-course-specific lipid profiles in the plasma, the
origin of these patterns remains elusive. From our observations, several hypotheses re-
garding this issue can be drawn. Changes in the plasma lipid composition in patients
may be associated with the activation of the peripheral and/or central immune system or
might reflect alterations in CNS lipid composition due to the damage of lipid-rich myelin
sheaths. Intriguingly, it is plausible that both processes coexist. Given the uncertain origins
of the lipidomic profiles, examining the pattern identified in this study alongside those of
plasma lipidomics with a similar depth of resolution of other diseases could provide clarity.
Comparing our findings to altered plasma lipid profiles in a degenerative neurological
disease like Parkinson’s disease reveals a slightly different pattern, i.e., a decrease in TAG
as well as an increase in PE and DAG [43]. Motoneuron diseases like amyotrophic lateral
sclerosis and primary lateral sclerosis show, in contrast to our findings, an increase in
CE subspecies (e.g., CE 24:5 and CE 24:2), Cer subspecies, DAG and TAG; commonly a
reduction in PC and PC O- is found [21]. This reinforces our assumption that the patterns
described in Figure 4B–E are distinct from other neurodegenerative processes.

Considering inflammatory states, a transient decrease in lipid subspecies abundances
consisting of TAG, LPC and PE O- was found to correlate with an elevation in c-reactive
protein and neutrophils during respiratory infections [38]. In the case of inflammatory
diseases such as rheumatoid arthritis, various reductions in lysophosphatidyls, PC, and PC
O- have been found. Most strikingly, no increase in DAG or changes in PE, PE O-, CE or
Cer were mentioned [44,45].

Similar to these findings, we observed a reduction in the TAG, PE O-, PC, and PC
O- subspecies. Yet, in addition, we noted a decrease in the CE, Cer, PC, PC O-, and PI
subspecies, accompanied by an increase in DAG.

In contrast to our profiles, Lauber et al. determined a decrease in DAG and an increase
in PI, PC, and TAG in patients with a high risk for cardiovascular events [46]. However, DAG
18:1;0_18:3;0, considered a marker for individuals at highest risk for cardiovascular diseases, is
structurally related to DAG 16:0;0_18:1;0, which showed the highest predictivity in our study
(Figure 5A). Moreover, the reductions in CE, PE and PE O- (Figure 4B–E) were also associated
with cardiovascular diseases. These comparisons reveal a unique signature of MS and its
specific courses, with overlap to other inflammatory and degenerative diseases.

We have identified a distinct lipid signature associated with the diagnosis of PwMS.
Furthermore, we were able to distinguish different lipidomic profiles indicating distinct
clinical disease courses. The main characteristic of these profiles is a reduction in most
lipid subspecies. Only DAG shows a significant increase regardless of the disease course.
Additionally, our study points toward the potential of lipidomic signatures in assessing
the disease activity of inflammatory demyelinating CNS diseases. Our study has several
limitations. Although our investigation of 120 participants is more comprehensive than
prior lipidomic studies in MS [4,15,42], it is still below the typical size for biomarker
studies [38,47]. Moreover, only 13 patients of our study were classified as active, indicating
that they had clinical activity in the 12 months prior to sampling. Therefore, the lipids
shown in Figure 6 provide only a first insight calling for more comprehensive and possibly
prospective studies. Finally, the DMT was not taken into account as a confounding factor
due to the limited sample size.

Further studies recruiting larger cohorts are needed to confirm and to specify the
promising results of our study in the context of previous results [2,4,15]. Plasma as well
as CSF lipid profiles might pave way to a better understanding of individual states of the
disease in MS, thus facilitating tailored therapeutic approaches in patients suffering from
the disease.
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4. Materials and Methods
4.1. Study Cohorts

Patients were recruited during a routine follow-up visit at the Centre for Multiple
Sclerosis at University Medical Centre Göttingen. Sixty of the patients who fulfilled
the 2017 McDonald criteria for MS were enrolled, with participants evenly divided into
two groups: 30 with a course of RRMS and 30 with a course of chronic progressive MS.
Chronic progression was defined by the accumulation of neurological deficits that occur
continuously and mainly independent of relapse activity. In the context of this study,
‘activity’ refers to the occurrence of clinical relapses in the 12 months prior to sampling [48].
Patients with a predominantly progressive variant, both with and without additional
relapses, constitute the chronic progressive MS (CPMS) cohort of our study. Activity was
further used to stratify the two MS cohorts into active MS and inactive MS subgroups.

Current disease-modifying therapies (DMTs) are listed in the Supplementary Materials
(Supplementary Table S6). Disease duration denotes the interval from diagnosis to the mo-
ment of plasma collection. Concurrently with sample acquisition, the Expanded Disability
Status Scale (EDSS) was documented. Collection took place between March and June 2021.
Controls consisted of healthy students or employees of the clinic. These healthy controls
were not diagnosed with any medical conditions and were not taking any medications at
the time of the study. To ensure age comparability, we also included 30 patients from our
neurological outpatient clinic. These patients attended routine appointments during the
same period and had neurological diseases without central nervous system involvement
(OND).

In accordance with epidemiology, the CPMS cohort was older, with an average age of
56 years compared to 28 years in the RRMS cohort, as well as experiencing a significantly
longer disease duration (Table 1 and Supplementary Table S1).

Table 1. Cohort Description—Demographics and Clinical Variables.

Parameter Healthy RRMS CPMS OND

n 30 30 30 30
Age [mean ± SD] 23.6 ± 2.3 27.5 ± 4.3 55.7 ± 13 52.8 ± 10.3
BMI [mean ± SD] 22.8 ± 2.7 25.6 ± 7.5 24.8 ± 4.9 27.9 ± 6.1

Sex [M/F] 12/18 10/20 11/19 10/20
EDSS at Sampling

[mean ± SD] - 2.5 ± 1.6 5.3 ± 1.2 -

Disease duration,
yrs. [mean ± SD] - 3.6 ± 3.5 18.7 ± 12.4 -

F = female; M = male; SD = standard deviation.

The active MS subgroup was predominantly composed of patients from the RRMS
cohort (85%) and reported shorter disease durations compared with the inactive subgroup
(Table 2 and Supplementary Table S2).

Table 2. Subgroup Description—Demographics and Clinical Variables.

Parameter Active MS Inactive MS

n 13 47
Age [mean ± SD] 30.1 ± 10.7 44.8 ± 17.3
BMI [mean ± SD] 24.9 ± 6.3 25.3 ± 6.3

Sex [M/F] 5/8 16/31
EDSS at Sampling [mean ± SD] 2.9 ± 1.8 4.2 ± 1.9

Disease duration, yrs. [mean ± SD] 3.3 ± 5 13.3 ± 12.2
F = female; M = male; SD = standard deviation.
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4.2. Ethics Approval and Informed Consent Statement

This study was conducted in accordance with the Declaration of Helsinki, and approved
by the Ethics Committee of the University Medical Center Göttingen under application
number 09/10/10, with the final endorsement provided on 6 March 2014. All participating
patients were fully informed about the nature and extent of the data collected and provided
written consent for the pseudonymized processing and publication of their data.

4.3. Lipidomics

Blood was drawn in the morning before therapeutic interventions and plasma was
stored at −80 ◦C within 30 min of collection.

Prior to analysis, samples were thawed at 4 ◦C. The shotgun nano-electrospray high-
resolution Orbitrap mass spectrometry was performed by Lipotype GmbH (Dresden, Ger-
many) as described in [18]. A total of 670 lipids, characterized according to the LipidMaps
nomenclature, were identified in this study.

4.4. Statistics

We developed an automated statistical platform for the analysis of our lipidomic
datasets. As a first step, we performed data imputation and normalization procedures.
In addition, filtering based on age or BMI correlation was applied. We employed both
traditional statistical methods, such as the Welch’s t-test, as well as unsupervised and
supervised multivariate data analyses, such as PCA and oPLS-DA. To validate patterns
from the volcano plot and oPLS-DA and assess predictive capability, we used a machine
learning random forest algorithm. A detailed description of the analysis can be found in
the Supplementary Materials (Supplementary Methods and Supplementary Figures S1–S3).

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ijms25052483/s1. References [49,50] are cited in Supplementary Materials.
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