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Abstract: SARS-CoV-2 amino acid variants that contribute to an increased transmissibility or to
host immune system escape are likely to increase in frequency due to positive selection and may be
identified using different methods, such as codeML, FEL, FUBAR, and MEME. Nevertheless, when
using different methods, the results do not always agree. The sampling scheme used in different
studies may partially explain the differences that are found, but there is also the possibility that some
of the identified positively selected amino acid sites are false positives. This is especially important in
the context of very large-scale projects where hundreds of analyses have been performed for the same
protein-coding gene. To account for these issues, in this work, we have identified positively selected
amino acid sites in SARS-CoV-2 and 15 other coronavirus species, using both codeML and FUBAR,
and compared the location of such sites in the different species. Moreover, we also compared our
results to those that are available in the COV2Var database and the frequency of the 10 most frequent
variants and predicted protein location to identify those sites that are supported by multiple lines of
evidence. Amino acid changes observed at these sites should always be of concern. The information
reported for SARS-CoV-2 can also be used to identify variants of concern in other coronaviruses.

Keywords: SARS-CoV-2; coronaviruses; positively selected amino acid sites

1. Introduction

Firstly identified in patients with the common cold [1], coronaviruses (family Coron-
aviridae) are able to infect both humans and animals [2]. Of the 46 species in the Coronaviridae
family, 7 can infect humans, namely, the α-coronaviruses HCoV-229E and HCoV-NL63 and
the β-coronaviruses HCoV-HKU1, HCoV-OC43, severe acute respiratory syndrome coron-
avirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS), and severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [3]. HCoVs are responsible for
a considerable percentage of yearly common colds [4]. The ones that cause respiratory
syndromes became epidemics, with the most recent one, SARS-CoV-2, turning into a
pandemic [5].

Coronaviruses are characterized by their large positive-sense RNA genomes that en-
code three types of proteins: structural, non-structural, and accessory [6]. The structural
proteins are the spike (S), nucleocapsid (N), membrane (M), and envelope (E). Out of the
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structural proteins, the most abundant is the M protein [7]. It presents an N-terminal
ectodomain, a transmembrane domain composed of three helices, and a C-terminal en-
dodomain [8]. This protein is crucial for both nucleocapsid inclusion into the virion and
for S protein recruitment [9,10]. The S protein is the one responsible for cell tropism and
the host range by mediating the fusion of both membranes, the host’s and viral’s [11]. It
is present in a homotrimeric form at the viral surface, with each protomer having two
subunits, S1 and S2. The former comprises the apex, including the N-terminal domain
(NTD) and the C-terminal domain (CTD), with both of them being able to function as
the receptor-binding domain (RBD). The S1-NTD usually binds to sialic acid or to host
receptor proteins, while the S1-CTD binds to a variety of protein receptors to induce cell
entry [12,13]. The S2 is anchored to the viral membrane and coordinates membrane fu-
sion [11,14]. The nucleocapsid (N) protein has three domains, an N-terminal domain,
an RNA-binding domain, and a C-terminal domain. It forms homodimers, because the
monomers are unstable [15]. Furthermore, while the C-terminal domain is essential for
RNA binding, the N-terminal domain is involved in the inhibition of interferon β (IFN-β),
a signaling protein that is released in virus-infected cells causing nearby cells to strengthen
their antiviral defenses [16,17]. The E protein is the smallest and least well characterized of
the four major structural proteins. It may contribute to the host’s cytokine dysregulation
leading to disease [18]. Due to their high degree of conservation, structural genes can be
recognized even in a distantly related coronavirus [19].

The degree of conservation of non-structural proteins is much lower than that for
structural proteins [19]. Therefore, orthologous genes (i.e., genes that have a shared
ancestry but, due to speciation events, diverged) are not always easy to recognize in
different coronavirus genomes [20]. The SARS-CoV-2 genome encodes 16 non-structural
proteins [21]. NSP1 inhibits host translation and degrades mRNAs from the host [22].
Furthermore, two regions located at the C-terminal region of this protein are involved
in inhibiting IFN-β and thus antiviral responses [22]. NSP2 binds to prohibitins 1 and
2 [23]; however, its exact functions remain unknown. NSP3 is the largest membrane-bound
protein and is composed of several domains, including the papain-like protease domain,
responsible for the cleavage of NSP1-3 and a nucleic acid-binding domain. It also acts
as a scaffold to form the replication–transcription complex by associating with both host
proteins and other non-structural proteins [24,25]. NSP4 has four transmembrane domains.
This protein is believed to be involved in anchoring the viral replication–transcription
complex in association with NSP3 and NSP6 [26,27]. The main protease, NSP5, active only
as a dimer, processes the viral polyproteins to release mature NSP4-16 proteins [28]. The
NSP6 of SARS-CoV-2 is a transmembrane protein that is associated with the generation of
autophagosomes from the endoplasmic reticulum of the host [29]. NSP7 and -8 form hollow
cylindrical hexadecameric complexes, with dimer conformations, with a charge distribution
such that the phosphate backbone of nucleic acids can pass through in the absence of
electrostatic repulsion [30,31]. Additionally, the NSP7-8 heterodimer helps stabilize the
NSP12 (RNA-dependent RNA polymerase), with NSP8 also aiding in the stabilization of
the template RNA. Thus, in the presence of the NSP7-8, the NSP12 affinity to RNA and
its activity are greatly enhanced [32]. NSP9 forms dimers that bind to ssRNA and is also
involved in viral replication [33]. NSP10 is essential for both NSP14 and NSP16 function,
forming the mRNA cap methylation complex [34]. The exoribonuclease, NSP14, takes part
in the replication–transcription complex (RTC) and is critical for the proofreading process.
Nevertheless, the catalytic region for the exoribonuclease collapses in the absence of NSP10.
NSP10 is also critical for the function of NSP16, which catalyzes the 5’-methyl capping of
the viral mRNA. Indeed, NSP10 is mandatory for NSP16 activity [35]. NSP13 (helicase)
plays a role in the unwinding of double-stranded RNA or DNA (dsRNA/DNA) [36]. It
also interacts with the NSP7-8-12 complex, two copies on the opposing side of the RNA-
binding site [37]. Furthermore, it has been reported that overexpression of the NSP14
protein is linked with the disruption of the levels of IFN-β [38]. NSP15 is a uridine-



Int. J. Mol. Sci. 2024, 25, 2428 3 of 21

specific endoribonuclease highly conserved in coronaviruses, that interferes with the innate
immune response, acting as an inhibitor of the interferon response [39,40].

Nine accessory proteins (ORFs 3a, 3b, 6, 7a, 7b, 8, 9a, 9b, and 10) that have no homology
with other groups of viruses are also encoded by SARS-CoV-2. The accessory genes can be
located between structural protein-encoding genes or within them, such as ORFs 9a and 9b,
located within the nucleocapsid gene [41].

The origin of Coronaviridae capable of infecting humans is still debated, but it is
believed that they originated in animals, with α-coronavirus having originated in bats and
β-coronavirus in rodents [42,43]. However, the findings of close relatives in other groups
of species hints to a more complex evolutionary history of these viruses prior to human
transmission [44].

As expected for a virus that just jumped the species barrier, at the beginning of the
pandemic, the SARS-CoV-2 S protein was ill adapted to its human receptor, the angiotensin-
converting enzyme 2 (ACE2; [45]). The mutations that first appeared in the SARS-CoV-2 S
protein are predicted to have increased the binding affinity to the human ACE2 receptor,
and inferred binding affinity can be used as a predictor of transmissibility [45]. Moreover,
mutations that are predicted to lead to a better S/ACE2 fit have increased in frequency
in the population due to positive selection, because the strains harboring such mutations
leave, on average, more descendants than those not harboring such mutations [45]. This
can be inferred by looking, in each codon, at the ratio of nonsynonymous substitutions
per nonsynonymous site (dN) divided by the ratio of synonymous substitutions per syn-
onymous site (dS), because, under purifying selection, this ratio is always below one.
Purifying selection (the removal of deleterious mutations) must occur with high frequency
in functional genes so as to preserve function [46]. It should be noted, however, that not all
coronaviruses use the ACE2 receptor for cell entry. For instance, only three out of the seven
coronaviruses capable of infecting humans use the ACE2 receptor [47–49]. Moreover, unlike
the β-coronaviruses SARS-CoV and SARS-CoV-2 that use a single large receptor-binding
motif (RBM) at the S protein to bind the receptor, the α-coronavirus HCoV-NL63 makes
use of different RBMs [50]. Efforts to predict the ability to use this receptor have also
been made. The S protein hydrophobic pattern described by Carvalho and Alves [51],
YGFY, was able to perform this distinction, although with some exceptions. Nevertheless,
another S amino acid pattern described in Soares, Vieira, and Vieira [45], CYX(6)YX(3)T[ˆV]
in positions 488-501 of SARS-CoV-2’s RBM, was able to distinguish, with no exceptions,
the β-coronaviruses that recognize ACE2, from those that do not have this ability. Fur-
thermore, those that use ACE2 share S protein structural similarities. Even though the
RBD of SARS-CoV-2 is located at the S1-CTD, its S1-NTD is capable of interacting with
other coreceptors, such as AXL, CLEC4G, LDLRAD3, and TMEM30A, in order to ease the
viral entry [52,53].

Being able to predict which amino acid sites, genome-wide, when mutated give an
advantage to the coronavirus harboring such mutation is thus important for health policy
decision makers. For instance, the Centers for Disease Control and Prevention (CDC)
created a four-level classification system based on perceived potential threat. From lowest
to highest, these classifications are: Variant Being Monitored (VBM), of Interest (VOI), of
Concern (VOC), and of High Consequence (VOHC) [54]. To be considered a variant, one or
more amino acid mutations are needed to differentiate it from the wild type, as well as from
other variants. Furthermore, genetically related variants that had a common ancestor form
a lineage. In cases where the genetic material between two variants is combined, we are in
the presence of a recombinant [54], which is a major source of diversity in HCoVs [55–58].
Nevertheless, due to small viral effective population sizes (a consequence of the frequent
bottlenecks and intense purifying selection), viruses present low levels of diversity within
populations. Differentiation among viral populations is, however, common and correlations
with geographical and temporal outbreaks have been observed [59,60].

Positively selected amino acid sites (PSSs), those likely harboring the amino acid
variants responsible for increased transmissibility or to host immune system escape and
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that thus give an advantage to the strains harboring the positively selected amino acid
variants over the others not harboring such variants, have been detected from the very start
of the SARS-CoV-2 pandemic that started in 2019. For instance, when using FUBAR [61]
and 86 SARS-CoV-2 full-length genome sequences, the latest isolated on 1 March 2020 [62],
evidence for diversifying selection was obtained at four amino acid sites, located in four
genes (nsp1, nsp3, nsp6, and ORF3a). Many such studies followed, using different sampling
strategies and positive detection algorithms, such as codeML [63], MEME [64], and FEL [65],
and recently, the results of a large-scale analysis, using more than 13 million genomes and
three positive selection detection algorithms (FUBAR, MEME, and FEL [66]) have been
provided in the COV2var database (https://biomedbdc.wchscu.cn/COV2Var/, accessed
on 5 December 2023 [66]). These authors looked at all the mutations with a frequency
greater than 1% in at least 1 of the 2735 viral lineages and that occur at least twice within
that specific lineage, as well as all mutations occurring in at least 2 lineages. These results
must, however, be interpreted with caution, because not all PSSs are identified using the
three positive selection detection algorithms used and because the same gene has been
surveyed multiple times in different lineages, which may result in the detection of false-
positive PSSs. Moreover, by looking at variation within SARS-CoV-2 lineages only, the
selective value of the amino acid variants that are used to define lineages may not have
been considered, unless such amino acid variants are present in lineages that appeared
by recombination between two different lineages that differ at that amino acid position.
The combination of this information with that of GISAID [67], where the lineage-defining
mutations can be found, and the SARS2-Mutant database [68], where the frequency of the
top 10 mutations for each gene is listed, facilitates the interpretation of the results.

Here, we have performed a SARS-CoV-2 genome-wide study, using a more classical
approach, using both FUBAR [61] and codeML [63] algorithms, and compared our results
with those present in the COV2Var database. PSSs that are not listed as such in the COV2Var
database have been here identified, and amino acid sites listed as PSSs in the COV2Var
database are not here identified as PSSs. Therefore, in order to get further support for
those PSSs that were not identified by both studies, we have also inferred the PSSs in
15 non-SARS-CoV-2 coronaviruses to determine which PSSs are located in regions where
PSSs are usually detected. Moreover, we have also considered the location of the PSSs on
protein structures to determine whether PSSs are located on the predicted protein interfaces.
The frequency of the minor allele has also been taken into account when trying to address
the nature of the discrepancies. In total, 199 PSSs have been identified as being supported
by multiple sources of evidence, highlighting and narrowing the regions for which amino
acid variation should raise concern. Hence, this helps with a quicker assessment of risk of
newly formed variants by entities such as the CDC, as positive selection is likely associated
with features such as higher transmissibility or immune escape. The rationale here used
can be applied to other coronavirus species that affect human health or species that are
exploited by humans.

2. Results
2.1. PSS Inferences in SARS-CoV-2

For SARS-CoV-2, only PSSs inferred using both FUBAR [61] and codeML [63], using
100 randomly chosen sets of 30 sequences each (consisting of 6 sequences from each year,
from 2019 to 2023), and that are identified in more than 5% of the runs are reported.
Therefore, very rare positively selected amino acid variants may have been missed. For the
S protein, 52 PSSs have been identified (Supplementary Figures S1 and S2) that correspond
to 4.1% of the S protein size. The 52 PSSs are located on the following SARS-CoV-2 domains:
44 (9.9% of the size of the region) in the S1, and of these, 17 in the NTD and 22 in the RBD;
and 8 (1.4% of the size of the region) in the S2, of which 1 in the HR1 and 2 in the TM and
CP. The observation that most PSSs map to the S1 subunit is not surprising because this
is a region that is responsible for the binding to the host receptor and that is recognized
by antibodies [11]. All 52 SARS-CoV-2 PSSs are listed in the GISAID database, meaning
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that they have achieved a frequency higher than 2% in at least one month since their
appearance. Moreover, 42.3% of the amino acid sites listed in GISAID for the S protein
have been inferred to be a PSS. When considering only the RBD or the NTD, 64.7% and
31.5% of the sites listed in GISAID have been inferred to be PSSs, respectively.

For the SARS-CoV-2 M protein, 15 (corresponding to 6.8% of the protein size) PSSs have
been identified, while for the N protein, 17 (corresponding to 4.1% of the protein size) PSSs
were found (Supplementary Figures S1 and S2). For the E protein, only one (corresponding
to 1.3% of the protein size) PSS was identified (Supplementary Figures S1 and S2). For
NSP2, NSP3, and NSP7, no PSSs were identified, while for the other non-structural proteins,
between 1 (NSP6) and 10 (NSP1) PSSs were identified (Supplementary Figures S1 and S2).
Relative to the protein size, NSP9 is, however, the one with the highest number of PSSs
(6.2% of the protein size).

For the accessory proteins, 10, 1, 4, 5, 1, and 2 PSSs were identified for ORF3a, ORF6,
ORF7a, ORF7b, ORF8, and ORF10, respectively (Supplementary Figures S1 and S2). Rela-
tive to the protein size, this corresponds to between 0.8% (ORF8) and 11.6% (ORF7b) of all
the amino acids.

The results here obtained are compared with those in the COV2Var database (http:
//biomedbdc.wchscu.cn/COV2Var/index/, accessed on 5 December 2023) [66], where the
selective value of all the mutations that occur at least twice within a given lineage and have
a frequency greater than 1%, or that occur in more than one lineage, have been analyzed,
using a total of 2735 viral lineages. The most important features of this database when
considering amino acid polymorphism only are summarized in Table 1. For the structural
proteins, between 26.6% and 55.1% of the amino acid sites are variable (the average is
36.9%, and the standard deviation 13.1%), while for the non-structural proteins, between
23.7% and 53.9% of the amino acid sites are variable (the average is 35.2%, and the standard
deviation 8.9%). For accessory proteins, between 50.8% and 71.9% of the amino acid sites
are variable (the average is 64.8% and the standard deviation 7.6%). The higher average for
the accessory proteins than for the structural and non-structural genes reflects the smaller
degree of conservation of the former when comparing different coronavirus species (see
the Introduction).

Depending on the methodology used (FEL or FUBAR), for the structural proteins, on
average, between 28.3% (PSS-FEL) and 62.0% (PSS-FUBAR) of the varying amino acid sites
are identified as being PSSs (Table 1). For the non-structural proteins, on average, it varies
between 20.0% and 45.2%, while for the accessory proteins, on average, it varies between
24.2% and 54.6%. FUBAR has a tendency to identify more PSSs per gene than FEL (Sign
test; p < 0.00001) but not more than MEME (Sign test; p > 0.05). Moreover, MEME also
has a tendency to identify more PSSs per gene than FEL (Sign test; p < 0.00001) (Table 1).
If considering as true PSSs only those identified by all three methods, when using the
FEL approach, only 85 out of the 988 PSSs would be false positives (Table 1—PSS-FEL
and PSS-3). This is surprising because FUBAR has been reported to have better power
than FEL and a very low false-positive rate [61]. Even when looking at PSSs identified
by all three methodologies in the S protein (173, Table 1, PSS-3), the number of PSSs is
high when comparing with the recently published literature. For instance, Tang et al. [69],
using codeML models M7 and M8 (accepting only those sites with a BEB score larger than
0.95 as a PSS) and 50 randomly chosen SARS-CoV-2 genomes, identified only 12 PSSs
at the S protein. The difference between the two numbers is partially explained by the
size of the sequence dataset, because the 50 randomly chosen genome sequences used by
Tang et al. [69] only represent a fraction of all the amino acid polymorphisms assayed in
the COV2Var database. Nevertheless, even when comparing with the 52 PSSs identified
by us, using multiple medium-sized datasets, where all the years from 2019 to 2023 are
equally represented to avoid a bias toward the years where the sequencing effort was
heavier, the two numbers are still very different (173 vs. 52). If we consider, however, as
true PSSs only those PSSs that were identified in more than 5% of the lineages where they
could be assayed, the discrepancy is not so large any longer (70 vs. 52). From this point

http://biomedbdc.wchscu.cn/COV2Var/index/
http://biomedbdc.wchscu.cn/COV2Var/index/


Int. J. Mol. Sci. 2024, 25, 2428 6 of 21

onwards, only such PSSs will be considered (this dataset from this point onwards is named
COV2Var-int-5%) (Table 1).

Table 1. Summary of the data present in the COV2Var database regarding amino acid variation
and PSSs. Values within brackets are percentages. In the case of variable amino acid sites (VAASs,
mutations with a frequency greater than 0.01 in at least one of the 2735 viral lineages and that occur
at least twice within that specific lineage, or that are present in at least two different lineages) using
the length of the protein, and in the remaining cases using the number of VAASs.

Protein Length VAAS PSS-FEL PSS-FUBAR PSS-MEME PSS-3 #PSS-3-5%

S 1273 481 (37.8) 181 (37.6) 327 (68.0) 352 (73.2) 173 (36.0) 70 (14.6)
E 75 21 (28.0) 1 (4.8) 12 (57.1) 4 (19.0) 1 (4.8) 0 (0.0)
M 222 59 (26.6) 14 (23.7) 30 (50.8) 29 (49.2) 12 (20.3) 4 (6.8)
N 419 231 (55.1) 109 (47.2) 166 (71.9) 179 (77.5) 104 (45.0) 45 (19.5)

NSP1 180 97 (53.9) 43 (44.3) 69 (71.1) 65 (67.0) 33 (34.0) 10 (10.3)
NSP2 638 341 (53.4) 92 (27.0) 183 (53.7) 197 (57.8) 86 (25.2) 46 (13.5)
NSP3 1945 801 (41.2) 138 (17.2) 325 (40.6) 398 (49.7) 118 (14.7) 42 (5.2)
NSP4 500 159 (31.8) 31 (19.5) 74 (46.5) 83 (52.2) 30 (18.9) 15 (9.4)
NSP5 306 83 (27.1) 19 (22.9) 37 (44.6) 42 (50.6) 16 (19.3) 8 (9.6)
NSP6 290 120 (41.4) 24 (20.0) 58 (48.3) 56 (46.7) 24 (20.0) 12 (10.0)
NSP7 83 28 (33.7) 4 (14.3) 9 (32.1) 9 (32.1) 3 (10.7) 0 (0.0)
NSP8 198 60 (30.3) 7 (11.7) 22 (36.7) 13 (21.7) 5 (8.3) 3 (5.0)
NSP9 113 36 (31.9) 8 (22.2) 16 (44.4) 8 (22.2) 5 (13.9) 2 (5.6)

NSP10 139 33 (23.7) 3 (9.1) 13 (39.4) 7 (21.2) 2 (6.1) 1 (3.0)
NSP12 932 256 (27.5) 34 (13.3) 100 (39.1) 94 (36.7) 30 (11.7) 16 (6.3)
NSP13 601 186 (30.9) 42 (22.6) 87 (46.8) 81 (43.5) 36 (19.4) 17 (9.1)
NSP14 527 181 (34.3) 46 (25.4) 91 (50.3) 85 (47.0) 42 (23.2) 18 (9.9)
NSP15 346 125 (36.1) 17 (13.6) 52 (41.6) 55 (44.0) 14 (11.2) 7 (5.6)
NSP16 298 90 (30.2) 15 (16.7) 39 (43.3) 58 (64.4) 15 (16.7) 9 (10.0)
Orf3a 275 183 (66.5) 89 (48.6) 135 (73.8) 144 (78.7) 86 (47.0) 33 (12.0)
Orf6 61 31 (50.8) 7 (22.6) 14 (45.2) 22 (71.0) 6 (19.4) 0 (0.0)

Orf7a 121 86 (71.1) 29 (33.7) 51 (59.3) 82 (95.3) 29 (33.7) 10 (8.3)
Orf7b 43 28 (65.1) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)
Orf8 121 87 (71.9) 35 (40.2) 53 (60.9) 72 (82.8) 33 (37.9) 13 (10.7)

Orf10 38 24 (63.2) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)
TOTAL 3827 988 (25.8) 1963 (51.3) 2135 (55.8) 903 (23.6) 381 (10.0)

#PSS-3-5%—PSSs that are identified by all three methods, in 5% or more of the analyses that could be performed,
and for which the minor variant is above 1% frequency.

The comparison of the PSSs identified by us with those from the COV2Var-int-5%
dataset revealed a partial overlap only (Figure 1). It is clear that our PSS list is not a subset
of those present in the COV2Var-int-5% dataset, because 66 PSSs were only identified by us.
In principle, such a discrepancy can be partially explained by the experimental design used
to produce the results shown in the COV2Var database. Indeed, Feng et al. [66] only looked
at PSSs within viral lineages. Therefore, the selective value of lineage-defining amino acid
mutations may not have been assayed, unless they were present as well as polymorphisms
within other lineages. This seems to be the case, for instance, of the mutation in site 614 at
the S protein.

We also looked at the SARS2-Mutant webpage (http://sars2mutant.com/index; [68])
to obtain the top 10 most frequent mutation sites for all the SARS-CoV-2 proteins analyzed.
For the structural proteins S, M, and N, 8, 5, and 7 out of their respective top 10 were here
inferred as being under positive selection, while for non-structural and accessory proteins,
less than 5 PSSs are among the top 10 most frequent mutation sites (Supplementary Table S1).
It should be noted, however, that for NSP7, NSP8, NSP9, and NSP10 the frequency of the
top 10 most frequent variants is always below 1%, and that for NSP1, NSP15, ORF6, and
ORF7b there is only 1 variant with a frequency higher than 1%.

http://sars2mutant.com/index
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identified by each one of the methods used (FEL (blue), FUBAR (red), and MEME (green)), and those
here identified (this work (yellow)), for the structural (S-E), non-structural (nsp1-16), and accessory
(ORF3a-ORF10) proteins of SARS-CoV-2.
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2.2. PSS Inferences in Non-SARS-CoV-2 Coronaviruses

Under the hypothesis that all coronavirus species are under similar selection pressures,
independently of using or not the ACE2 receptor for cell entry, further evidence for the
selective value of the amino acid changes observed in SARS-CoV-2 may be obtained, by
identifying the regions where PSSs are located in non-SARS-CoV-2 coronaviruses, using
either FUBAR or codeML. In this case, we use less stringent criteria than in our SARS-CoV-2
analyses (only PSSs identified by both FUBAR and codeML were considered) because for
73.3% of the coronavirus species here analyzed, 60 or fewer sequences were available.

The PSSs were detected in every non-SARS-CoV-2 species analyzed (15 in total),
although 4 species contributed with more than 50% of the total number of PSSs (Figure 2).
This is not unexpected, because, if the available sequences are representative of only a
specific stage of the evolution of a given coronavirus, they will show only a small fraction
of all the mutations that were once involved in the adaptation to the host.
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Figure 2. Pie chart showing the contribution (in percentage) of each species to PSSs identified in
non-SARS-CoV-2 species.

There are 13 PSSs that are identified in more than one species (Table 2), located in both
structural and non-structural proteins, showing that, indeed, different coronavirus species
are under, at least, partially similar selection pressures.

Table 2. PSSs identified in more than one non-SARS-CoV-2 coronavirus.

Protein Datasets SARS-CoV-2 Positions

S
PEDV–Betacoronavirus1 75

PEDV–Alphacoronavirus1 Gap 97-98

M

Unknown Bat-CoV–Bat-CoV-HKU9–
Bat-CoV-HKU10 4

Bat-CoV-HKU2–Bat-CoV-HKU9–
Bat-CoV-HKU10–Alphacoronavirus1 3

Bat-CoV-HKU2–Bat-CoV-HKU10 6

N
Porcine-CoV-HKU15–Bat-CoV-HKU9 62

Alphacoronavirus1–hCoV-HKU1 91
hCoV-HKU1–Murine-CoV 289

ORF1ab

NSP3
hCoV-HKU1–hCoV-NL63 112

Murine-CoV–PEDV 162
Murine-CoV–Betacoronavirus1 1234

NSP6 Murine-CoV–PEDV 138

NSP12 MERS-CoV–PEDV 9
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The total number of different PSSs is 326. Of these, 140 (42.9%) were identified in
structural proteins, 139 (42.6%) in non-structural proteins, and 47 (14.4%) in accessory
proteins. However, the distribution of these PSSs is non-uniform across the datasets,
ranging from 4 in Rhinolophus Bat-COV-HKU2 to 54 in Murine-CoV.

FUBAR inferred 271 PSSs and codeML 106 that correspond to 260 (FUBAR) and
101 (codeML) different amino acid positions in the multispecies protein sequence align-
ments (Files S1−S4; Table 3). Of these, 35 (33% of the PSSs inferred by codeML) were
identified by both codeML and FUBAR.

Table 3. PSSs identified in non-SARS-CoV-2 coronavirus. PSS Common represents sites identified
by both methods. Homologs in SARS-CoV-2 (the PSSs that can be aligned with the SARS-CoV-2
sequences) are shown in brackets. NA—not available.

Protein PSS-FUBAR PSS-codeML PSS Common

Structural

S 50 (35) 51 (37) 15 (13)
M 12 (8) 13 (7) 4 (4)
N 25 (18) 11 (9) 4 (4)
E 1 (1) NA NA

Non-Structural

nsp1 8 (4) 4 (1) 2 (1)
nsp2 15 (14) 2 (2) NA
nsp3 58 (52) 8 (6) 4 (3)
nsp4 5 (5) 2 (2) 1 (1)
nsp5 3 (3) NA NA
nsp6 7 (7) NA NA
nsp7 1 (1) NA NA
nsp8 3 (3) NA NA
nsp9 NA NA NA
nsp10 1 (1) NA NA
nsp12 9 (6) 2 (2) 1 (1)
nsp13 1 (1) 1 (1) NA
nsp14 2 (2) NA NA
nsp15 9 (8) 2 (2) 2 (2)
nsp16 6 (5) NA NA

Accessory 44 5 2

TOTAL 260 (174) 101 (69) 35 (29)

Across all the datasets, FUBAR was only unable to detect PSSs in NSP9, while codeML
failed to detect PSSs in the E protein as well as in eight non-structural proteins (NSP5, NSP6,
NSP7, NSP8, NSP9, NSP10, NSP14, and NSP16). Nevertheless, both methods identified
the same protein-encoding genes as being of interest, namely, the structural proteins S, M
(having very similar results; 50 and 51, 12 and 13, for FUBAR and codeML, respectively)
and N (25 and 11 PSSs for FUBAR and codeML, respectively), and NSP3 (58 and 8 PSSs
for FUBAR and codeML, respectively). Additionally, FUBAR indicates NSP2 as being of
interest, with 15 PSSs; however, codeML only detected 2 (Table 3). The accessory genes
could not be compared across species due to the lack of conservation.

When aligning the sequences of the orthologous genes of non-SARS-CoV-2 species
and those of SARS-CoV-2, because very divergent species are being compared, only 77.1%
(215 out of 279 PSSs) of the PSSs identified in non-SARS-CoV-2 species correspond to
non-gapped sites in the corresponding SARS-CoV-2 sequences.

There were 59 S protein PSSs, identified in 13 out of the 15 non-SARS-CoV-2 species
analyzed, that mapped on the following SARS-CoV-2 domains: 43 in the S1, and of these,
24 in the NTD and 12 in the RBD; and 16 in the S2, of which 1 in the HR1 and 2 in the TM
and CP (Supplementary Figures S1 and S2). The observation that most PSSs map to the S1
subunit is not surprising because, as stated above, this is the region that is responsible for
the binding to the hosts receptor and that is recognized by antibodies [11]. Therefore, 4.6%
of all the amino acid sites are PSSs (2.8% if considering only FUBAR and 2.9% if considering
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only codeML). This number increases to 5.4% when considering only the RBD and NTD
regions (3.6% if considering only FUBAR and 3.1% if considering only codeML) and 8.2%
(4.8% if considering only FUBAR and 5.8% if considering only codeML), respectively.

GISAID (https://gisaid.org/ assessed on 24 October 2023) reports 123 (9.7%) SARS-CoV-2
S protein amino acid variants that reached a frequency higher than 2% in any given month. The
majority (103 out of 123) of such sites are, as expected, located at the S1 subunit of the protein. In
total, 8 (6.5%) of these sites (positions 12, 67, 80, 145, 371, 373, 460, and 677) are present in the list
of 59 predicted PSSs, based on data for other coronavirus species. Furthermore, 15 other sites
directly flank the PSSs here described. Given the difficulty in aligning with confidence highly
divergent species, we count those amino acid sites as a correct prediction as well, rising to 18.7%
the number of sites present in the list of 59 predicted PSSs, based on data for other coronavirus
species. If our criteria are further relaxed, by using a three-amino-acid window flanking each
PSS, 50 out of the 123 amino acid variant sites (40.7%) are present in the list of 59 predicted PSSs,
based on data for other coronavirus species (Supplementary Figure S2).

It is conceivable that some of the amino acid sites listed in GISAID have increased
in frequency due to hitchhiking with a positively selected mutation. Therefore, we also
compared this data with the 52 PSSs identified in the SARS-CoV-2 S protein (see above).
Of the GISAID sites here identified as being PSSs, using a three-amino-acid window
around the PSSs, 42.3% (22 out of 52) of the SARS-CoV-2 S protein PSSs could have been
predicted using data from other coronaviruses. Therefore, the power to predict PSSs in
the SARS-CoV-2 S protein increased only slightly (from 40.7% to 42.3%) when restricting
the GISAID amino acid sites list to less than half (42.3%) its original size. This observation
implies that many amino acid sites present in the GISAID list, for which we could not find
evidence that they are PSSs in SARS-CoV-2, can be predicted from data on PSSs from other
coronaviruses. This suggests that, despite the lack of evidence, those amino acid sites may
also be PSSs.

When looking at the SARS-CoV-2 S RBD, 64.7% (22 out of 34) of the GISAID sites
located in that domain have been inferred to be under positive selection. Of these, using a
three-amino-acid window around the PSSs, 40.9% (9 out of 22) could have been predicted
by looking at data on other coronavirus species. Also, for the NTD, only 31.5% (17 out of
54) of the GISAID sites in that domain were found to be under positive selection; however,
58.8% (10 out of 17) of these could have been predicted by looking at PSS data on other
coronaviruses (Table 4).

Table 4. Distribution of GISAID sites and SARS-CoV-2 PSSs in the spike protein and the respective
number of sites predicted by using data from PSSs of other coronaviruses, when considering a
three-amino-acid window. Values in brackets are percentages.

# of Sites (%)

GISAID list 123
Located in RBD 34 (27.6)
Located in NTD 54 (43.9)

SARS-CoV-2 PSSs 52
GISAID sites 52 (100)

Predicted by CoVs PSSs 22 (42.3)

Located in RBD 22
Predicted by CoVs PSSs 9 (40,9)

Located in NTD 17
Predicted by CoVs PSSs 10 (58.8)

Of the 11 PSSs at the M protein, coming from 10 out of the 15 non-SARS-CoV-2 species
analyzed, 7 (63.6%) mapped to the ectodomain of the M SARS-CoV-2 protein. This is
surprising because this region is only 19 amino acids long. In the SARS-CoV-2 M sequence
data (Figure 1), 15 amino acid sites were inferred to be PSSs. These are mainly located in the

https://gisaid.org/
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C-terminal domain (5) and ectodomain (4), reinforcing the notion that the M ectodomain is
a frequent target of positive selection. In total, 8 out of the 15 SARS-CoV-2 M PSSs (53.3%)
could have been predicted, by using data on non-SARS-CoV-2 PSS data, when using a
three-amino-acid window around the PSSs (Supplementary Figure S2).

In the case of the N protein, 32 PSSs were found in 12 species of coronaviruses;
however, only 23 PSSs from 10 species have homologs in SARS-CoV-2: 2 of them in the
N-tail, 6 in the NTD and C-tail, 4 in the linker and 5 in the CTD region, and 6 elsewhere.
When looking at SARS-CoV-2 data (see above), 17 PSSs were found in this protein, of which
8 (47.1%) could have been predicted by looking at PSS data on other coronaviruses, when
using a three-amino-acid window around the PSSs (Supplementary Figure S2).

Data on non-SARS-CoV-2 non-structural genes can be used to predict 2, 1, and 1
SARS-CoV-2 PSSs at NSP1, NSP8, and NSP15, respectively (Supplementary Figure S2),
showing that the nature of PSSs located on different coronavirus species seems to be
very different.

We also used the SARS2-Mutant webpage (http://sars2mutant.com/index, accessed
on 5 December 2023 [68]) to determine if, for each protein, the 10 most frequent SARS-CoV-2
amino acid variants show signs of positive selection. For the structural proteins S, M, and
N, 8, 5, and 7 out of their respective top 10 have been here inferred as being under positive
selection, while for the E gene none were found as being positively selected. For the S,
M, and N genes, we could have predicted 50.0%, 53.3%, and 47.1%, respectively, of the
top 10 amino acid variants, by looking at PSS data on other coronaviruses, when using
a three-amino-acid window around the PSSs. For non-structural proteins, 15 out of 140
(10.7%) of the top 10 amino acid variants could have been predicted by looking at PSS data
on other coronaviruses.

Orthologies could not be established for the accessory genes; however, it should be
noted that PSSs were found at these genes (Table 3).

2.3. PSS Location on Protein Structures

The location of the PSSs in the COV2Var-int-5% list, SARS-CoV-2 (this work), the top
10 amino acid variants, and the predictions on where SARS-CoV-2 PSSs are located based
on data for other coronaviruses, on the predicted protein structures for every SARS-CoV-2
monomer is shown in Figure 3. It is clear that there is only a partial overlap between the
different datasets, and here, we consider that an overlap between two or more of these
datasets can be taken as strong evidence for a true PSS (see Supplementary Table S2 for
the list of the sites falling into this category). It should be noted, however, that there are
amino acid sites identified as PSSs in this work or in the COV2Var database that did not fit
the criteria for inclusion in this list but that are located very close to other amino acid sites
that were included in this list. As such, they may be also true PSSs. The distribution of the
amino acid sites for which there is strong supporting evidence for being a PSS is clearly not
random, suggesting that they may have an impact on the protein function. For instance,
they may be located at the protein interface with other host and coronavirus proteins. The
distribution of sites on the S homotrimer (the functional protein complex; Figure 4) strongly
suggests that this is the case, with the majority of sites located at the S protein-binding
regions with the ACE2 and neutralizing antibody N-612-014, as well as at the interface
between S monomers. For the SARS-CoV-2 RTC, many PSSs are also located at the interface
between non-structural proteins (Figure 5).

http://sars2mutant.com/index
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Figure 3. PSS location on SARS-CoV-2 protein monomers. For each protein, from top to bottom:
PSSs present in the COV2Var-int-5% list (in blue are PSSs, in gray are variable amino acid sites; no
information is available for the E and NSP7 proteins), PSSs identified in this work (green—identified
in this work and in the COV2Var-int-5% list; orange—identified in this work and in at least one other
method in the COV2Var-int-5%; and red—only identified in this work; there are no PSSs for NSP2,
NSP3, and NSP7), the top 10 variants (pink if it has a frequency over 5%, cyan otherwise; there is no
information for ORF10), and regions identified as hot PSS regions in non-SARS-CoV-2 species (dark
red). For NSP9, as well as for accessory proteins, there is no information for the latter.
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Figure 4. (A) Location of PSSs (labeled in red) supported by more than one type of evidence in the
SARS-CoV-2 S homotrimer protein structure (PDB accession number 7DF4). Each monomer is shown
in a different color. The PDB accession numbers of the docking partners of the S protein are shown
above the respective structure (PDB accession numbers 7S0D and 7DF4). (B) Consurf projection of
the S trimer as in the Consurf Database and its respective color code [70]. The PDB accession number
7DF4 was used as the query.
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Figure 5. (A) Location of PSSs (labeled in red) supported by more than one type of evidence in the
SARS-CoV-2 RTC (PDB accession number 7EGQ). NSP7, NSP8, NSP9, NSP10, NSP12, NSP13, and
NSP14 are labeled in yellow, violet, beige, brown, green, pink, and white, respectively. (B) Consurf
projection of the replicase complex dimer as in the Consurf Database [70]. The PDB accession number
7EGQ was used as the query.
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3. Discussion

Amino acid variants that contribute to an increased transmissibility or to host immune
system escape are of special concern. Because the coronavirus lineages showing such
amino acid variants are likely to increase in frequency due to positive selection, they can
be likely identified using different methods, such as FEL, MEME, FUBAR, and codeML.
Nevertheless, the results of the use of different methods do not always agree, raising the
issue of whether some of the identified PSSs are false positives. This is especially important
in the context of very large scale projects where hundreds of analyses may be performed
for the same protein-coding gene. In this case, some sort of correction must be performed
to account for the multiple tests being performed. When a large number of sequences is
available, as is the case for SARS-CoV-2, the sampling scheme may also have an impact
on which PSSs are identified. For instance, the results reported in the COV2Var database
were obtained by looking at variation within SARS-CoV-2 lineages only. Therefore, the
selective value of the amino acid variants that are used to define lineages may not have
been considered, unless such amino acid variants are present in lineages that appeared
by recombination between two different lineages that differ at that amino acid position.
Because of these issues, several lines of evidence must be considered in order to identify
true PSSs only.

In this work, we have identified PSSs using both FUBAR [61] and codeML [63] and
100 randomly chosen sets of 30 sequences (each consisting of 6 sequences from each year,
from 2019 to 2023). Because, for each gene, 100 independent tests are being performed, only
those PSSs that are identified in more than 5% of the runs are trusted. Moreover, only PSSs
that are identified by both FUBAR and codeML are considered true PSSs. The comparison
of our results with those available in the COV2Var database, even when considering only
those sites for which the minor amino acid variant has a frequency equal or greater than
1%, and considering as true PSSs only those sites that were identified in at least 5% of
the tests performed for a given gene and method, and that were identified by all three
methods used (FEL, MEME, and FUBAR), revealed a partial overlap only. Therefore, these
results were reevaluated by adding extra layers of information on the location of PSSs on
the protein structures and on PSSs identified in other coronaviruses. Indeed, PSSs that
were not identified in all the analyses but that are located in the same protein region where
PSSs have been identified in all analyses are likely to be true, especially if they are located
in regions known to interact with other proteins. Moreover, if a given region has been
identified as harboring PSSs in non-SARS-CoV-2 species, they are also more likely to be
true PSSs. Despite the difficulties of aligning highly divergent sequences of different sizes,
13 PSSs were identified in more than one non-SARS-CoV-2 species in the same place in
the alignment. It should be noted that in some cases the same PSS has been identified
in species from different subgenera. If, in order to account for the uncertainties in the
alignment, our criteria for a PSS match in SARS-CoV-2 sequences is relaxed to include a
three-amino-acid region flanking the PSS, this number increases to 41. This implies that,
despite the high degree of divergence of the species being compared, they are under similar
selective pressures and that adaptation occurs through the involvement of a relatively small
number of protein regions. This information is also interpreted having taken into account
the frequency of the top 10 amino acid variants for each gene using the SARS2-Mutant [68]
database. Indeed, very rare variants may not have been identified as PSSs when using
our sampling scheme, simply because they were not present in the sample. It should be
noted that we are not implying that the PSSs identified in some sampling schemes, when
using some methods only, and that are located in protein regions not identified as usually
under positive selection are necessarily false positives but simply that at present they are
not as well supported as the others for which several layers of information support them as
true PSSs.

Data on non-SARS-CoV-2 coronaviruses suggest that all genes, with the exception of
nsp9, a gene involved in viral replication and binding to ssRNA [33], may be the subject of
positive selection. Nevertheless, here, we found no evidence for PSSs in SARS-CoV-2 NSP2,
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NSP3, NSP7, NSP12, and NSP15. The different coronaviruses may be, however, at different
stages of adaptation to the host, and maybe not all genes are equally important at all stages
of adaptation. Although sample size is certainly important, this hypothesis may also help
explain the very different number of PSSs identified in non-SARS-CoV-2 coronaviruses.
Indeed, it may be difficult to infer PSSs when using only sequences that are representative
of the later stages of the evolution of a given coronavirus, because such sequences show
only a small fraction of all the amino acid variants that contributed to adaptation to the
host. The sequence data that are now available for SARS-CoV-2, covering all steps of its
evolution, are thus highly valuable when trying to predict regions and amino acid variants
of interest in coronavirus species.

The gene with the highest number of well-supported PSSs (54) is the S gene, which is
responsible for cell tropism and host range, because it mediates the fusion of the host’s and
viral’s membranes [11], and thus, as expected, is one of the main targets of positive selection.

The N-terminal domain of the N protein is involved in the inhibition of IFN-β, a
signaling protein that is released in virus-infected cells causing nearby cells to strengthen
their antiviral defenses [16,17], and this may be the reason why a large number of well-
supported PSSs (32 sites) have also been identified in the gene coding for the N protein.
NSP1, NSP13, and NSP15 are also known to inhibit IFN-β [22,38,71], but the number of
well-supported PSSs that are inferred for these genes is low.

The nsp3 gene is also often a target of positive selection, with 10 well-supported PSSs.
NSP3 acts as a scaffold to form the replication–transcription complex by associating with
both host proteins and other non-structural proteins [24,25]. Because it interacts with host
proteins, it may be a likely selection target.

NSP2, encoded by the second non-structural gene showing most PSSs, binds to pro-
hibitins 1 and 2 [23]. Prohibitins may play a role in the internalization of multiple viruses
because they have been identified as the receptors of the Chikungunya [72] and Dengue [73]
viruses. The role of prohibitins is, however, unknown in SARS-CoV-2.

Among the accessory proteins, for ORF3a only, a significant number of PSSs have been
identified as being well supported (sites).

In conclusion, the integration of different types of analyses, using different coronavirus
species, sampling schemes and positive selection detection algorithms, and protein location
information, allows the identification of a set of well-supported PSSs in SARS-CoV-2 (199
in total) and identifies protein regions where any amino acid variation is of concern. A
similar rationale may be used to identify regions of concern in any other coronavirus for
which a large number of sequences is available.

4. Materials and Methods
4.1. The Sequence Data for SARS-CoV-2

The nucleotide sequence data for SARS-CoV-2 was downloaded from BV-BRC (https:
//www.bv-brc.org/, accessed on 1 December 2023) for every structural gene and ORF1ab
and the accessory genes. In order to identify the different genes encoded by ORF1ab, a
tblastx was performed using, as the query, nucleotide sequences from the SARS-CoV-2
reference genome (NC_045512.2). At most, 10.000 randomly chosen nucleotide sequences
representing different amino acid sequences were retrieved for every gene, from complete
genomes, for the years 2020–2023.

Given the computational limitation of codeML regarding the number of sequences
times sequence size that it can process, and the amount of SARS-CoV-2 data available,
for each coding region, 100 random datasets consisting of six sequences from each year,
from 2019 to 2023, were created using SEDA [74]. Only non-redundant sequences, without
ambiguous positions and that are a multiple of three were used. The Docker images
available for these programs at the pegi3s Bioinformatic Docker Images project (https:
//pegi3s.github.io/dockerfiles/, accessed on 12 June 2023 [75]) were used.

https://www.bv-brc.org/
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4.2. Sequence Data for Non-SARS-CoV-2 Coronavirus

For 15 non-SARS-CoV-2 Coronaviridae species, all the available nucleotide coding
sequences coming from complete genomes were downloaded from BV-BRC (https://www.
bv-brc.org/, accessed on 1 December 2023; see Table 5). Using SEDA [74], each coding
sequence dataset was filtered for complete sequences, without ambiguous positions or
in-frame stop codons, and that are different at the amino acid level. At this point, only
datasets having more than four sequences remaining were analyzed. In order to detect
PSSs, using the Auto-PSS-Genome pipeline [76], sequences coming from the same genome
were collected into the same file.

Table 5. The genome datasets retrieved for non-SARS-CoV-2 Coronaviridae from the BV-BRC
database.

Datasets Genus Size (Number of Input Files)

Bat-CoV-HKU10 αCoV 8
Rhinolophus-Bat-COV-HKU2 αCoV 8
Pipistrellus-Bat-CoV-HKU5 βCoV 9
Rousettus-Bat-CoV-HKU9 βCoV 10

Tylonycteris-Bat-CoV-HKU4 βCoV 10
Unknown-Bat-CoV αCoV 19

Murine-CoV βCoV 29
Human-CoV-HKU1 βCoV 38
Human-CoV-229E αCoV 44
Human-CoV-NL63 αCoV 58

Porcine-CoV-HKU15 δCoV 60
Alphacoronavirus-1 αCoV 118

MERS-CoV βCoV 219
Betacoronaviruses-1 βCoV 310

Porcine-epidemic-diarrhea-virus (PEDV) αCoV 690
α-coronaviruses 945
β-coronaviruses 625
δ-coronaviruses 60

4.3. PSS Detection

For SARS-CoV-2, for each coding gene, 100 files with 30 sequences each, 6 from each
year (2019–2023), were used as input in the Integrated Positively Selected Sites Analyses
(IPSSA) pipeline that can be used to automatically identify positively selected amino acid
sites (PSSs) using three different methods, namely, codeML, omegaMap, and FUBAR [76].
In this work, only the codeML and FUBAR algorithms were used. Briefly, for each dataset,
all the available nucleotide sequences were translated and aligned using MUSCLE [77] and
the corresponding nucleotide alignment was obtained and analyzed using codeML (models
M1a, M2a, M7, and M8 [78]) and FUBAR [61] to infer the PSSs. Bayesian phylogenetic
inferences were performed, using MrBayes [79], to obtain the phylogenetic tree that is
required by these methods. Only alignment positions with a support value above 3 were
used. Two independent runs of 1,000,000 generations with four chains each (one cold
and three heated chains) and a burn-in of 25% were used. The implemented model of the
sequence evolution was the GTR, allowing for among-site rate variation and a proportion
of invariable sites. The third codon positions were allowed to have a gamma distribution
shape parameter that was different from that for the first and second codon positions. Trees
were sampled every 100th generation. The Docker image available for IPSSA (version 1.2.3)
at the pegi3S Bioinformatics Docker Images Project (https://pegi3s.github.io/dockerfiles/,
accessed on 12 June 2023 [75]) was used.

The nucleotide coding datasets for 15 non-SARS-CoV-2 Coronaviridae species were
analyzed using the Auto-PSS-Genome pipeline [76]. Briefly, in the first Auto-PSS-Genome
step, orthologous genes are identified using a two-way blast approach. Then, after filtering
the sequences to keep only those that are a multiple of three, and do not show open reading
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frame shifts or ambiguous nucleotide positions, a maximum of 1000 randomly chosen
sequences are aligned using Clustalř [80] and PSS-inferred using FUBAR [61]. Running
times are in the order of minutes, even for a large number of sequences. For genes where no
evidence for positive selection is found, the maximum number of sequences that codeML
can handle (it depends on the protein size) is randomly chosen from the filtered dataset
(see above), aligned using Clustalř [80], and PSS-inferred using the much slower codeML
M1a and M2a models [78]. FastTree [81,82] is used to infer the phylogenetic trees that are
required by codeML [78] and FUBAR [61]. A list of genes where suggestive evidence for
PSSs is found is then obtained and analyzed using the IPSSA pipeline as described above.
A Docker image is available for the Auto-PSS-Genome (version 1.9.0) pipeline at the pegi3S
Bioinformatics Docker Images Project (https://pegi3s.github.io/dockerfiles/, accessed on
12 June 2023) [75]).

The results of these analyses, using two different methods of PSS detection (FUBAR [61]
and codeML [63]), are publicly available at the B+ database (http://bpositive.i3s.up.pt/,
accessed on 1 January 2024).

4.4. Orthologous Gene Identification

In order to identify orthologous positions in sequences coming from different coron-
avirus species, first, using BLAST [83], the sequence orthologies were established. Then,
using a reference sequence from each species and gene, the sequences were aligned using
Clustalř [80]. Docker images are available for these applications at the pegi3S Bioinfor-
matics Docker Images Project (https://pegi3s.github.io/dockerfiles/, (accessed on 12 June
2023) [75]). The protein alignments used in this work are provided as supplementary
material (Supplementary Files 1).

4.5. Mapping of PSS on Protein Structure Prediction

The protein 3D models were retrieved from the ColabFold [84] or from the PDB
database and PSS-mapped using PyMOL [85].

Supplementary Materials: The following supporting information can be downloaded at: https:
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