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Abstract: The (pro)renin receptor ((P)RR), a versatile protein found in various organs, including the
kidney, is implicated in cardiometabolic conditions like diabetes, hypertension, and dyslipidemia,
potentially contributing to organ damage. Importantly, changes in (pro)renin/(P)RR system localiza-
tion during renal injury, a critical information base, remain unexplored. This study investigates the
expression and topographic localization of the full length (FL)-(P)RR, its ligands (renin and prorenin),
and its target cyclooxygenase-2 and found that they are upregulated in three distinct animal models
of renal injury. The protein expression of these targets, initially confined to specific tubular renal
cell types in control animals, increases in renal injury models, extending to glomerular cells. (P)RR
gene expression correlates with protein changes in a genetic model of focal and segmental glomeru-
losclerosis. However, in diabetic and high-fat-fed mice, (P)RR mRNA levels contradict FL-(P)RR
immunoreactivity. Research on diabetic mice kidneys and human podocytes exposed to diabetic glu-
cose levels suggests that this inconsistency may result from disrupted intracellular (P)RR processing,
likely due to increased Munc18-1 interacting protein 3. It follows that changes in FL-(P)RR cellular
content mechanisms are specific to renal disease etiology, emphasizing the need for consideration in
future studies exploring this receptor’s involvement in renal damage of different origins.

Keywords: cyclooxygenase 2; diabetic nephropathy; hyperglycemia; Milan normotensive rats; soluble
prorenin receptor; podocytes

1. Introduction

The (Pro)renin receptor, (P)RR for short, is characterized by a singular transmembrane
protein capable of binding renin and prorenin (the proenzyme precursor of renin) with
the same affinity [1]. Research on (P)RR suggests that its increased expression contributes
to cardiometabolic diseases, including diabetes, hypertension, and dyslipidemia, and
associated organ damage [2].

The activity of (P)RR has been associated with the non-proteolytic activation of
prorenin, leading to localized activation of the renin angiotensin system (RAS) and initia-
tion of RAS-dependent and independent signaling pathways [3]. In fact, (P)RR activation
can directly upregulate profibrotic gene expression via activation of the mitogen-activated
protein kinase–extracellular signal-regulated kinase 1/2 pathway and stimulate the expres-
sion of pro-inflammatory genes through modulation of cyclooxygenase-2 (COX-2), a key
mediator of inflammatory pathways [4]. As a result, the binding of (pro)renin to (P)RR can
trigger pro-inflammatory and fibrogenic responses regardless of angiotensin II generation.
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This indicates an autonomous and additional function of (P)RR in the progression of renal
injury, especially in diabetic nephropathy (DN). In fact, elevated plasma prorenin levels
have been observed in diabetic patients, correlating with DN and sometimes occurring
before the onset of microalbuminuria [5–8]. All together, these findings have spurred
interest in the potential involvement of (P)RR in diabetic kidney disease, but also in renal
injury stemming from other cardiometabolic abnormalities [2]. In DN, changes in renal
levels of full-length (FL)-(P)RR and circulating levels of its soluble form [s(P)RR] have been
suggested to play a pathogenic role. However, due to inconsistent findings [9–12], the
in vivo pathological significance of the (P)RR system, especially as a component of RAS,
remains a topic of ongoing debate.

This debate aside, the fundamental mechanisms that regulate (P)RR expression and
post-translational processing remain inadequately understood. More importantly, the
alterations in tissue/cellular localization of this receptor during renal injury, and their
consistency across renal diseases of various origins, are not well elucidated.

The aim of this study is to analyze the expression and topographic localization of
FL-(P)RR, along with its ligands renin and prorenin, and its target COX-2 [4], in the kidneys
of two mouse models of metabolic disorders (diabetes and metabolic syndrome) and
a rat model of classic focal segmental glomerulosclerosis (FSGS), with the rat being of
the Milan normotensive strain (MNS) [13–15]. Due to inconsistencies between the gene
expression of (P)RR and protein levels of FL-(P)RR in the kidneys of the mouse models of
metabolic disorders, especially in diabetic (Diab) mice, we conducted an investigation into
the expression of enzymatic and adapter proteins involved in the intracellular processing of
FL-(P)RR in both diabetic kidneys and podocytes cultured in high glucose (HG) conditions.
Finally, we analyzed the impact of these expression changes on FL-(P)RR cell distribution
and the secretion of s(P)RR by podocytes.

2. Results
2.1. Kidney Specimens and Renal Structural and Functional Features of the Experimental
Rodent Models

The kidney specimens analyzed in this study were obtained from our biobank of
formalin fixed and paraffin embedded (FFPE) tissues sourced from rodent models utilized
in previous studies conducted by our research group. The kidney tissue from three experi-
mental models of renal damage were analyzed: (1) 129/Sv mice rendered diabetic with
streptozotocin and coeval non diabetic controls, followed for 16 weeks [16]; (2) C57BL/6J
mice fed a high fat diet containing 60% of total calories from fat for 16 weeks, and co-
eval controls fed a normal fat diet (NFD) containing 10% of total calories from fat [17];
(3) MNS rats aged two and nine months, which develop age-dependent focal and segmental
glomerulosclerosis starting from the third/fourth month of life [18]. Progenitor Wistar (WS)
rats of the same age were used as controls [14]. In MNS rats, an upregulated synthesis of
thromboxane A2 within the glomeruli, which is known to be orchestrated by the sequential
action of COX enzymes [19], is a significant factor in the progression of kidney disease [20].

As previously shown [14,16,17], all three experimental models exhibit renal structural
and functional abnormalities, albeit to varying degrees (Table 1).

Diabetic (Diab) and HFD-fed mice (HFD) presented with diffuse glomerulosclerosis
with minimal focal glomerulosclerosis and a lack of obvious tubular damage. The glomeru-
lar sclerosis index score (GSI) was significantly increased in both Diab and HFD-fed mice
compared to their respective controls, but Diab mice showed twice the glomerulosclerosis
score of HFD mice. Similarly, total proteinuria was increased in both groups, but Diab mice
showed values more than double those of HFD mice [16,17]. There were no differences
between the two strains of control mice (129/Sv and C57BL/6J) for any structural or func-
tional parameter [16,17]. At two months of age, no structural or functional damage was
evident in the MNS rats as compared with age-matched WS control rats. However, by the
age of nine months, renal lesions in MNS rats were notably more pronounced compared
to mouse models. This included extensive segmental or global glomerulosclerosis in ap-
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proximately half of the glomeruli, along with widespread interstitial fibrosis and tubular
damage. Consistently, proteinuria was increased by approximately 30 times in MNS rats
compared to WS rats [14], which is several-fold higher than in Diab and HFD mice [16,17].

No significant differences in the basal expression levels of the various targets under
investigation were observed between the control groups of mice (C57BL/6J and 129/Sv).
Therefore, to simplify the presentation of results and avoid redundancies, only data from
C57BL/6J mice will be shown as control (Ctr) for both the Diab and HFD groups.

Table 1. Metabolic and renal structural and functional features of the three experimental rodent models.

Diab Mice
(4 Months of Diabetes) [16]

HFD-Fed Mice
(4 Months of Fatty Diet) [17]

MNS Rats
(9 Months Old) [14]

Metabolic
phenotype

severe hyperglycemia, insulinopenia
(type 1 diabetes), body weight

reduction, normal blood pressure

mild hyperglycemia, overweight,
hyperinsulinemia, dyslipidemia,

normal blood pressure

normal blood glucose, normal
body weight, normal blood

pressure

Renal
lesions

moderate diffuse glomerulosclerosis,
increased GSI (↑↑), no tubular

damage

mild diffuse glomerulosclerosis,
increased GSI (↑), no tubular damage

severe segmental or global
glomerulosclerosis, interstitial
fibrosis, and tubular damage

Proteinuria 5 times than the control 1.7 times than the control 30 times than the control

Diab = diabetic; HFD = high fat diet; MNS = Milan normotensive strain; GSI = glomerular sclerosis index;
↑↑ = moderate increase; ↑ = mild increase.

2.2. Immunostaining for FL-(P)RR

In Ctr mice, positive staining for FL-(P)RR is predominantly limited to the collecting
duct and a few cells in the distal nephron segments near the glomeruli. In contrast, cortical
staining for FL-(P)RR is increased in HFD and, particularly, Diab mice (Figure 1A), with
a diffuse and intense positivity observed in cells of the distal convoluted tubules (DCT)
(Figure 1A,B).
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Figure 1. Immunostaining for full length-(pro)renin receptor (FL-(P)RR). Immunohistochemical 
(IHC) detection of FL-(P)RR and relative quantification of staining in renal specimens from control 
(Ctr), diabetic (Diab), and high fat diet (HFD) mice (A), and characteristics of the staining pattern in 
kidneys of Diab mice (B). IHC detection of FL-PRR, quantification, and immunostaining pattern in 
Wistar (WS) and Milan normotensive strain (MNS) rats at two and 9 months of age (C). Higher 
magnification images of IHC for FL-PRR in kidneys of Diab mice and 9-month-old MNS rats, coun-
terstained or not with PAS, are shown in panels B and C, respectively. Bars represent mean ± SD 
and each dot in A and C represents an individual animal. Arrows indicate positive cells in the tub-
ular compartment, while arrowheads indicate glomerular cells with morphological features and 
topographical localization characteristic of podocytes. DCT, distal convoluted tubule; A, arteriole; 
CD, collecting duct; P, podocyte; M, mesangial cell; E, endothelial cell. Post hoc multiple compari-
son: *** p < 0.001, ** p < 0.01, * p < 0.05. 

Strong positive staining also appeared in glomerular cells of Diab and, to a lesser 
extent, HFD mice, particularly in cells exhibiting the morphological features and topo-
graphical localization characteristic of podocytes, and in endothelial cells lining the walls 
of small kidney arterioles (Figure 1B). Generally, the pattern of positivity for FL-(P)RR was 
mainly cytoplasmic/membranous, although occasionally strong perinuclear positivity 
was also noted. In tubular epithelial cells and collecting duct cells, it almost exclusively 
involved the apical membrane (Figure 1B). 

In WS rats, the staining pattern for FL-(P)RR was similar to that observed in CTR 
mice, both at two and nine months of age. In contrast, MNS rats showed increased cortical 
staining for FL-(P)RR compared to WS controls at two months of age, before any signs of 
renal damage could be observed [14,18]. This staining became more pronounced at nine 
months, especially at the glomerular level, primarily affecting podocytes, although other 
glomerular cell types were not spared (Figure 1C). 

2.3. Immunostaining for (Pro)renin (Total Renin) 
We subsequently conducted IHC for renin using a polyclonal antibody that specifi-

cally recognizes mature renin. We optimized a standard protocol involving antigen re-

Figure 1. Immunostaining for full length-(pro)renin receptor (FL-(P)RR). Immunohistochemical
(IHC) detection of FL-(P)RR and relative quantification of staining in renal specimens from control
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(Ctr), diabetic (Diab), and high fat diet (HFD) mice (A), and characteristics of the staining pattern
in kidneys of Diab mice (B). IHC detection of FL-PRR, quantification, and immunostaining pattern
in Wistar (WS) and Milan normotensive strain (MNS) rats at two and 9 months of age (C). Higher
magnification images of IHC for FL-PRR in kidneys of Diab mice and 9-month-old MNS rats,
counterstained or not with PAS, are shown in panels (B) and (C), respectively. Bars represent
mean ± SD and each dot in (A,C) represents an individual animal. Arrows indicate positive cells in
the tubular compartment, while arrowheads indicate glomerular cells with morphological features
and topographical localization characteristic of podocytes. DCT, distal convoluted tubule; A, arteriole;
CD, collecting duct; P, podocyte; M, mesangial cell; E, endothelial cell. Post hoc multiple comparison:
*** p < 0.001, ** p < 0.01, * p < 0.05.

Strong positive staining also appeared in glomerular cells of Diab and, to a lesser extent,
HFD mice, particularly in cells exhibiting the morphological features and topographical
localization characteristic of podocytes, and in endothelial cells lining the walls of small
kidney arterioles (Figure 1B). Generally, the pattern of positivity for FL-(P)RR was mainly
cytoplasmic/membranous, although occasionally strong perinuclear positivity was also
noted. In tubular epithelial cells and collecting duct cells, it almost exclusively involved
the apical membrane (Figure 1B).

In WS rats, the staining pattern for FL-(P)RR was similar to that observed in CTR
mice, both at two and nine months of age. In contrast, MNS rats showed increased cortical
staining for FL-(P)RR compared to WS controls at two months of age, before any signs of
renal damage could be observed [14,18]. This staining became more pronounced at nine
months, especially at the glomerular level, primarily affecting podocytes, although other
glomerular cell types were not spared (Figure 1C).

2.3. Immunostaining for (Pro)renin (Total Renin)

We subsequently conducted IHC for renin using a polyclonal antibody that specifically
recognizes mature renin. We optimized a standard protocol involving antigen retrieval,
followed by primary and secondary antibody reactions, to achieve robust and selective de-
tection of juxtaglomerular cells. When employing this protocol, we observed no significant
differences between the rodent groups, except for a minor, non-significant increase in HFD
mice (Figure 2A).

Since the antibody used does not recognize prorenin, we hypothesized that it might
also not recognize non-proteolytically activated prorenin that originates from binding to
(P)RR. Consequently, we conducted renin IHC on sequential sections of the same kidney
blocks after trypsin activation of prorenin to detect total renin (i.e., renin and prorenin),
mirroring the method employed for determining overall plasma renin activity [21]. Pre-
treatment with trypsin resulted in a significant increase in cortical staining in Diab mice
and, to a lesser extent, in HFD mice, while no additional positivity was observed in Ctr
mice (Figure 2B). In addition, IHC staining for FL-(P)RR on sequential sections revealed
a virtually identical pattern of staining for FL-(P)RR and total renin at both tubular and
glomerular levels (Figure 2C). Total renin immunostaining was also increased in MNS rats
compared to WS controls as early as two months of age, exhibiting a pattern identical to that
observed in Diab mice (Figure 2D). In contrast to WS controls, where positive staining was
limited to the juxtaglomerular cells, total renin positivity was observed in distal nephron
segments and glomerular cells of MNS rats, particularly at nine months of age.
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Figure 2. Immunostaining for (pro)renin (total renin). Immunohistochemical (IHC) detection of renin
without (A) and after (B) pretreatment with trypsin in sequential sections, and relative quantification
of staining in renal specimens from control (Ctr), diabetic (Diab), and high fat diet (HFD) mice. The
IHC detection of full length-(pro)renin receptor (FL-(P)RR) in a sequential section of the same kidney
specimens, as depicted in panel B, reveals co-localization with total renin positivity at both tubular
and glomerular levels (C). IHC detection of total renin and relative quantification of staining in renal
specimens of Wistar (WS) and Milan normotensive strain (MNS) rats at two and 9 months of age (D).
Bars represent mean ± SD and each dot in (A,B,D) represents an individual animal. Arrows indicate
positive staining within juxtaglomerular areas, while arrowheads indicate glomerular cells with
morphological features and topographical localization characteristic of podocytes. G, glomerulus.
Post hoc multiple comparison: *** p < 0.001, ** p < 0.01, * p < 0.05.

2.4. Immunostaining for COX-2

As the binding of (P)RR upregulates COX-2 in kidney tissue [4,22], and glucose
promotes COX-2 expression via (P)RR activity [23], we assessed COX-2 protein content via
IHC. In Ctr mice, COX-2 immunostaining was limited to the cells lining the wall of the
distal tubule where it contacts the glomerulus, corresponding to the region of the macula
densa (Figure 3A).

In contrast, a pattern of increased immunostaining, also involving the glomeruli and
similar to that of FL-(P)RR, was observed in both Diab and HFD mice, with the former
showing the greatest increase. Similar to the findings in mice, COX-2 immunostaining
was also higher in MNS rats at two and, particularly, nine months of age, compared to the
age-matched WS rats (Figure 3B).
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Figure 3. Immunostaining for cyclooxygenase-2 (COX-2). Immunohistochemical detection of COX-2
and relative quantification of staining in renal specimens from control (Ctr), diabetic (Diab), and high
fat diet (HFD) mice (A), and in Wistar (WS) and Milan normotensive (MNS) rats at two and 9 months
of age (B). Bars represent mean ± SD and each dot in (A,B) represents an individual animal. Arrows
indicate positive staining of macula densa cells, while arrowheads indicate glomerular cells with
morphological features and topographical localization characteristic of podocytes. G, glomerulus.
Post hoc multiple comparison: *** p < 0.001, * p < 0.05.

2.5. mRNA Levels of (P)RR and Factors Involved in Its Intracellular Processing

The mRNA levels of PRR in HFD and, particularly, Diab mice showed opposite be-
havior with respect to immunoreactivity, being reduced compared to Ctr mice. Conversely,
the gene expression of (P)RR was consistent with protein findings in MNS rats, as it was
significantly upregulated in both age groups compared to coeval WS rats (Figure 4A).

To investigate the potential mechanism contributing to the disparity between mRNA
and protein changes in Diab and HFD mice, as well as between the mouse models and
the rodent model of renal damage, we analyzed the mRNA expression of site-1 protease
(S1P) and furin, the primary proteases involved in the intracellular cleavage of FL-PRR
and the formation of sPRR [24,25]. RT-PCR analysis did not reveal any differences in
gene expression of the proteases in any of the three rodent models (Figure 4B,C). We also
assessed the gene expression of Munc18-1 interacting protein 3 (Mint3), an adapter protein
involved in the regulation of furin activity [26], and found increased mRNA levels in Diab
mice and, to a lesser extent, HFD mice, but not in MNS rats, compared to the respective
controls (Figure 4D).

2.6. Impact of Elevated Glucose Concentration on (P)RR Expression and Intracellular Processing
in Podocytes

HG induced a change in the staining pattern of FL-(P)RR immunofluorescence in
podocytes, shifting from primarily perinuclear localization to a more diffuse cytoplasmic
immunostaining (Figure 5A).

If performed without cell membrane permeabilization using Triton X-100 pretreatment,
the immunostaining revealed accentuation on the plasma membrane in podocytes treated
with HG (Figure 5B). In contrast, (P)RR gene expression was decreased in podocytes cul-
tured in HG conditions compared to podocytes cultured in normal glucose (NG) conditions
(Figure 5C). As observed in the kidneys of Diab mice, HG levels did not modify the mRNA
levels of the proteases furin and S1P, but induced an upregulation of the adapter protein
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Mint3 (Figure 5D–F). In parallel with these molecular changes and the modified cellular
distribution of FL-(P)RR, HG induced a reduction in the formation and secretion of soluble
(s)PRR. This was evidenced by a notable decrease in its levels within the culture medium
(Figure 5G).
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Figure 4. Gene expression of (pro)renin receptor ((P)RR) and associated factors governing its intra-
cellular processing. (P)RR (A), furin (B), site-1 protease (S1P) (C), and Munc18-1 interacting protein
3 (Mint3) (D) mRNA levels in kidneys from control (Ctr), diabetic (Diab), and high fat diet (HFD)
mice, and in Wistar (WS) and Milan normotensive strain (MNS) rats at 2 and 9 months of age. Bars
represent mean ± SD and each dot in (A–D) represents an individual animal. Post hoc multiple
comparison: *** p < 0.001, ** p < 0.01, * p < 0.05.
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cultured in HG conditions compared to podocytes cultured in normal glucose (NG) condi-
tions (Figure 5C). As observed in the kidneys of Diab mice, HG levels did not modify the 
mRNA levels of the proteases furin and S1P, but induced an upregulation of the adapter 
protein Mint3 (Figure 5D–F). In parallel with these molecular changes and the modified cel-
lular distribution of FL-(P)RR, HG induced a reduction in the formation and secretion of 
soluble (s)PRR. This was evidenced by a notable decrease in its levels within the culture 
medium (Figure 5G). 
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This study illustrates alterations in the expression and topographic localization of 
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renal damage linked to glucose and/or lipid dysmetabolism, and in rats with age-related 
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Figure 5. Impact of HG on immunofluorescence (IF) staining and mRNA levels of (pro)renin receptor
((P)RR), gene expression of associated factors governing its intracellular processing, and soluble
(s)(P)RR levels in the culture medium of podocytes. IF staining for full length (FL)-(P)RR with (A) and
without (B) pretreatment with triton X-100, and mRNA levels of (P)RR (C), furin (D), site-1 protease
(S1P) (E), and Munc18-1 interacting protein 3 (Mint3) (F), as well as s(P)RR levels in the culture
medium (G) of podocytes exposed to high glucose (HG, 20 mM) vs. normal glucose (NG, 5.5 mM)
for 72 h. Bars represent the mean ± SD, and each dot represents the mean of two (C–F) or three
(G) individual technical replicates for each experimental condition. Post hoc multiple comparison:
*** p < 0.001, ** p < 0.01.

3. Discussion

This study illustrates alterations in the expression and topographic localization of
(P)RR in the kidneys of three distinct animal models of renal injury. In mice exhibiting
renal damage linked to glucose and/or lipid dysmetabolism, and in rats with age-related
FSGS, the rise in positivity for FL-(P)RR is concomitant with an increase in its ligands,
predominantly prorenin, and one of the primary targets of the FL-(P)RR signaling path-
way, the inducible enzyme COX-2 [4,22]. The expression of FL-(P)RR, (pro)renin, and
COX-2, which is limited to a specific type of specialized cells in the nephron and its vascu-
lature in control animals, involves a broader range of cells in the tubular and glomerular
compartments, including podocytes, in the damaged kidneys of all rodent models. As
an accessory subunit of the vacuolar H+-ATPase, (P)RR is essential for maintaining nor-
mal podocyte structure and function [27]. However, its upregulation in podocytes has
been suggested to play a role in the pathogenesis of diabetic glomerulopathy and IgA
nephropathy, impacting their structure and function through the activation of various
intracellular signaling pathways [3,28–30]. In addition, recent studies have demonstrated
that the binding of recombinant (pro)renin to the (P)RR increases profibrotic factors through
a COX-2-mediated mechanism in collecting duct cells [31]. There are, however, conflicting
opinions regarding the involvement of the PRR system in the hyperactivation of the local
RAS in the kidney [9–12], which plays a role in renal damage associated with diabetes and
metabolic syndrome [32,33]. Nevertheless, other homeostatic systems affecting intrarenal
RAS activity, such as the copeptin-vasopressin axis, may contribute to the elevation of renin
levels, thereby promoting the progression of renal damage, especially in diabetes [34].
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Given the design of the present study, which was primarily aimed at assessing changes
in expression and localization of FL-(P)RR in different experimental models, our data cannot
establish a causal role of (P)RR in renal damage in any of the investigated experimental
models. However, overall, the obtained data provide new and valuable insights that
should be taken into consideration when investigating the role of this receptor in renal
pathologies, especially those associated with cardiometabolic diseases, as well as in renal
damage associated with aging or spontaneous forms of FSGS.

Firstly, in MNS rats, these alterations, namely the upregulation of FL-(P)RR, total renin,
and COX-2 protein, precede tissue damage, implying their involvement in the pathogenesis
of renal injury. Notably, in this genetic model of FSGS, the progression of kidney disease
has been linked to elevated glomerular production of thromboxane A2, a major product of
COX enzymes derived from arachidonic acid [20,35].

Secondly, the observation that renin immunostaining is evident in tubular and glomeru-
lar compartments only after pretreatment of tissue sections with trypsin indicates that a
significant portion of the enzyme exists in its precursor form, namely prorenin. Further-
more, the co-localization of total renin with FL-(P)RR immunostaining, along with the
upregulation of COX-2 in glomerular and tubular cells, suggests that prorenin undergoes
non-proteolytic activation through receptor binding. In any case, it can be inferred that
(P)RR receptor signaling is triggered by the binding of its ligands.

Thirdly, while inconsistent with the observed increase in immunostaining, the down-
regulation of (P)RR gene expression in Diab and HFD-fed mice is consistent with the
demonstration of a negative feedback loop, wherein elevated (pro)renin levels suppress
(P)RR expression [36]. On one hand, this suggests that the upregulation of gene expression
of (P)RR in MNS rats may indicate a disruption in the negative feedback loop in the signal-
ing of (P)RR, serving as a critical factor in the development of renal injury in this genetic
model of FSGS. On the other hand, it raises the question of why and how the FL-(P)RR
protein is upregulated in the kidneys of Diab and HFD-fed mice. This inquiry prompted us
to delve into and investigate potential alterations in the intracellular processing of (P)RR.
Previous studies conducted on podocytes have shown that during transit to the plasma
membrane, the majority of the FL-(P)RR undergoes cleavage via sequential processing
by S1P and the proconvertase furin [24,37]. We found no differences in the expression of
S1P and furin. However, in Diab/HFD mice, an increase in the gene expression of Mint3
was observed, contrasting with MNS rats, where no such elevation was identified. Mint3
functions as an adapter protein involved in the signaling and trafficking of membrane
proteins. Notably, Mint3 was demonstrated to bind furin and enhance its localization in the
trans-Golgi network. Furthermore, the downregulation of Mint3 expression led to elevated
furin activity on the cell surface and an enhanced distribution within endosomes [26].

The fourth valuable insight is derived from our in vitro data. As observed in the
kidneys of Diab and HFD mice, Mint3 was also upregulated in podocytes cultured under
HG conditions, and this upregulation was associated with an increase in cellular FL-(P)RR.
It has previously been shown that, under physiological conditions, the majority of FL-
(P)RR is primarily situated intracellularly within the Golgi apparatus and endoplasmic
reticulum in podocytes. Of this, only a small fraction retains the intact transmembrane
and cytoplasmic regions necessary for localization in the membrane, where it is present
in a dimeric, non-covalently bound form [24,37]. The majority of FL-(P)RR undergoes
cleavage to produce s(P)RR during transit to the membrane, and this cleaved form is
subsequently secreted. Additionally, a transmembrane peptide structurally and functionally
related to the V-ATPase subunit M8.9, coded by the ATP6ap2 gene, is formed [24,37]. Our
observations suggest that hyperglycemia may disrupt the intracellular processing of FL-
(P)RR by modulating the gene expression of Mint3, thereby favoring the FL form of the
receptor. Of greater significance is the finding that these molecular changes induced by
HG were also accompanied by a decreased secretion of s(P)RR by podocytes. This aligns
with previous findings indicating significantly lower levels of s(P)RR in diabetic patients
compared to nondiabetic patients with chronic kidney disease [38]. Moreover, in a mouse
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model of metabolic syndrome similar to the one examined in our study, the administration
of s(P)RR demonstrated beneficial effects on hyperglycemia, insulin resistance, steatosis,
and renal complications [39]. The role of MInt3 in DN has not been studied yet. This adapter
protein is primarily investigated in cancer, where it is recognized for enhancing aerobic ATP
production through the stabilization of hypoxia-inducible factor (HIF)-1α [40,41]. Notably,
it has been demonstrated that, apart from hypoxia, elevated glucose levels also induce
HIF-1α activity in inflammatory, vascular, and renal cells. This phenomenon has been
linked to the pathogenesis of diabetic complications, including DN [42–45]. There is no
available data on the impact of Mint3 on S1P.

In addition to the aforementioned limitation related to the experimental design that
prevents inferring causal relationships, other limitations include the absence of information
regarding circulating parameters associated with RAS activity. Furthermore, there is a
lack of investigation into the PRR signaling pathways implicated in renal damage and a
failure to conduct an in-depth exploration into the molecular mechanisms involved in the
regulation of FL-PRR protein levels. Nevertheless, several molecular pathways have been
implicated in the damage associated with (P)RR activation [3,28–31], and the molecular
mechanisms that regulate renal cellular levels of FL-(P)RR appear to be specific to the
pathogenic models of renal damage. These mechanisms deserve dedicated investigation,
which goes beyond the scope of this study.

4. Materials and Methods
4.1. Immunohistochemical and Morphometric Analysis of Renal Sections

Sections of 4 µm thickness were subjected to microwave treatment (five cycles of 3 min
each at 900 W) in citrate buffer pH 6.0. Endogenous peroxidase activity was quenched
by incubating sections in 0.3% H2O2 in PBS for 5 min. To prevent nonspecific binding,
blocking was performed using Protein Block, Serum-Free (Agilent Dako, Carpinteria, CA,
USA). For the detection of (P)RR in mice specimens, sections were incubated overnight
at 4 ◦C with a rabbit polyclonal anti-ATP6AP2 antibody (Sigma-Aldrich, St. Louis, MO,
USA, #HPA003156, 1:75), an antibody from the Prestige Antibodies® series developed
and extensively validated by the Human Protein Atlas. In the case of rat specimens, the
Anti-Renin receptor antibody #ab64957 (Abcam, Cambridge, UK, 1:100) was utilized. Both
antibodies recognize the full length (FL) form of the receptor (FL-(P)RR). However, while
the #HPA003156 antibody demonstrated excellent results in detecting FL-(P)RR in both
mouse tissue specimens and human podocytes (see below), the performance of the #ab64957
antibody surpassed that of #HPA003156 when employed for rat tissue specimens.

Immunohistochemistry (IHC) for mature renin in mouse and rat specimens was
performed by incubating sections overnight at 4 ◦C with a Renin Polyclonal Antibody
(Thermo Fisher Scientific, Waltham, MA, USA, #PA5-102432) at a concentration of 5 µg/mL.
Two sequential sections of each mouse specimen were stained: one without pretreatment
with trypsin to detect only mature renin, and the other after proteolytic trypsin activation
of prorenin by incubating sections for 20 min on ice with 0.1% trypsin, to detect total
renin (mature renin plus prorenin). Another sequential section was stained for FL-(P)RR to
analyze co-localization with total renin. For the detection of COX-2, mouse and rat sections
were incubated overnight at 4 ◦C with a rabbit polyclonal anti-COX-2 antibody (Novus
Biologicals, Centennial, CO, USA, #NB 100-689, 1:100).

For all three antigens, the primary antibody incubation was followed by incubation
with the corresponding secondary biotinylated goat anti-rabbit IgG (Agilent Dako, #E0432,
1:400) for 1 h at RT. Specificity was confirmed by substituting the primary antibodies with
non-immune serum. Positive staining was evaluated in 20 randomly chosen fields of the
renal cortex at a final magnification of 400X for mouse specimens and 250X for rat specimens,
utilizing the interactive image analyzer Image-Pro Premier 9.2 (Immagini&Computer,
Milan, Italy). The results were presented as the mean percentage of the area occupied by
the specific stain in these fields. Finally, to facilitate the topographical identification of
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the glomerular cell type positive for FL-(P)RR, some sections were counterstained with
periodic acid-Schiff (PAS) to highlight basement membranes and the mesangial area.

4.2. RT-PCR

The mRNA levels of (P)RR, furin, site-1 protease (S1P), and Munc18-1 interacting
protein 3 (Mint 3) were evaluated through RT-PCR employing TaqMan gene expression
assays (Applied Biosystems, Carlsbad, CA, USA, #4331182; see Table 2).

Table 2. TaqMan Gene Expression assays.

Target Assay
Human Mouse Rat

ATP6AP2 Hs00997145_m1 Mm00510396_m1 Rn01430719_m1
Furin Hs00159829_m1 Mm00440646_m1 Rn00570970_m1

MBTPS1 Hs00921626_m1 Mm00490600_m1 Rn00585707_m1
Mint3 Hs01114376_m1 Mm00444450_m1 Rn00582358_m1
ACTB Hs99999903_m1 Mm02619580_m1 Rn00667869_m1

ATP6AP2 = ATPase H+ transporting accessory protein 2; MBTPS1 = Membrane-bound transcription site-1 protease;
Mint3 = Munc18-1 interacting protein 3; ACTB = Actin Beta.

The purification of total RNA from FFPE tissues was carried out utilizing the RNeasy
FFPE Kit (Qiagen, Milan, Italy), following the manufacturer’s instructions. Subsequently,
reverse transcription was performed using the High Capacity cDNA Reverse Transcription
kit (Thermo Fisher Scientific). The StepOne™ Real-Time PCR System (Thermo Fisher
Scientific) was utilized for quantifying the relative gene expression levels and analyzing
the data. Gene expressions were determined using the ∆∆Ct method and normalized to
the control (β-actin expression).

4.3. Cell Culture and Treatment

The Human kidney-derived podocyte cell line PODO/TERT256 (Evercyte GmbH,
Vienna, Austria, CHT-033-0256) was utilized in this study. PODO/TERT256 cells can be
cultured extensively without limitations, all while preserving the physiological characteris-
tics of primary cells. This encompasses sustained expression of cell type-specific markers
and functions. The cells were cultured at 37 ◦C in a 95% air–5% CO2 environment using
100 mm2 cell culture dishes pre-coated with human collagen I. They were fed with the
recommended ready-to-use medium, PodoUp3 (Evercyte, MHT-033-3), supplemented with
10% fetal bovine serum, penicillin (100 U/mL), and streptomycin (100 mg/mL). Cells
were grown under normal glucose conditions (NG, 5.5 mM) or high glucose conditions
(HG, 20 mM) for 72 h. To assess mycoplasma contamination in the cell cultures, Real-Time
(RT)-PCR was performed fortnightly using the MycoSPY Kit (Biontex, München, Germany).

4.4. Immunofluorescence Staining for FL-(P)RR in Cultured Human Podocytes

Protein expression and cell distribution of FL-(P)RR in cultured podocytes were as-
sessed through immunofluorescence (IF) analysis. Cells were fixed in 4% paraformaldehyde.
Subsequently, a subset of cells for each condition underwent pretreatment with triton X-100
to enhance antibody penetration, while another subset remained untreated to preserve cell
membrane integrity. Following this, cells were blocked with 10% normal goat serum for
30 min at room temperature (RT). The cells were then incubated overnight at 4 ◦C with the
#HPA003156 antibody (Sigma, 1:75). This was followed by a 1 h incubation at RT with a
fluorochrome-conjugated secondary antibody (Goat anti-rabbit IgG AlexaFluor Plus 488,
Thermo Fisher Scientific, #A32731, 1:500). Nuclei were counterstained with Hoechst 33342
(Thermo Fisher Scientific, #3570, 1:2000). IF images were captured using a 40x/0.55 Ph1
objective on a Zeiss Axiovert 200 M fluorescence microscope equipped with an Axiocam
503 color camera, controlled by ZEN 2.0 (blue edition) software (Zeiss, Milan, Italy).
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4.5. Enzyme-Linked Immunosorbent Assay (ELISA) for s(P)RR

The cellular supernatant was collected subsequent to the treatment of human podocytes
with NG or HG. The concentrations of s(P)RR were quantified using the Soluble (Pro)renin
Receptor Assay kit from IBL (Immuno-Biological Laboratories Co., Ltd., Minneapolis, MN,
USA, #27782), following the manufacturer’s instructions.

4.6. Statistical Analysis

The number of biological (i.e., independent experiments) or technical replicates is
indicated in figure legends. Results are presented as mean ± SD. Unpaired Student’s t-tests
with no assumption of equal variance were employed for comparisons between two groups.
One-way ANOVA, followed by Tukey’s posttest for multiple comparisons, was used for
comparisons involving more than two groups. A p-value < 0.05 was considered statistically
significant. All statistical analyses were conducted on raw data using GraphPad Prism
version 8.00 for Windows (GraphPad Software, San Diego, CA, USA).

5. Conclusions

In conclusion, immunostaining for renal FL-(P)RR, (pro)renin, and COX-2 is increased
in metabolic and genetic rodent models of renal injury. However, the molecular mechanisms
underlying changes in the cellular content of FL-(P)RR are specific to the etiology of renal
disease. This observation can serve as a starting point for a more comprehensive exploration
into the pathogenic role of the (pro)renin/(P)RR system and drug development for tailored
treatments targeting specific renal diseases and cardiometabolic disorders.
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