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Abstract: Platelets assume a pivotal role in the pathogenesis of cardiovascular diseases (CVDs),
emphasizing their significance in disease progression. Consequently, addressing CVDs necessitates a
targeted approach focused on mitigating platelet activation. Eugenol, predominantly derived from
clove oil, is recognized for its antibacterial, anticancer, and anti-inflammatory properties, render-
ing it a valuable medicinal agent. This investigation delves into the intricate mechanisms through
which eugenol influences human platelets. At a low concentration of 2 µM, eugenol demonstrates
inhibition of collagen and arachidonic acid (AA)-induced platelet aggregation. Notably, thrombin
and U46619 remain unaffected by eugenol. Its modulatory effects extend to ATP release, P-selectin
expression, and intracellular calcium levels ([Ca2+]i). Eugenol significantly inhibits various sig-
naling cascades, including phospholipase Cγ2 (PLCγ2)/protein kinase C (PKC), phosphoinositide
3-kinase/Akt/glycogen synthase kinase-3β, mitogen-activated protein kinases, and cytosolic phos-
pholipase A2 (cPLA2)/thromboxane A2 (TxA2) formation induced by collagen. Eugenol selectively
inhibited cPLA2/TxA2 phosphorylation induced by AA, not affecting p38 MAPK. In ADP-treated
mice, eugenol reduced occluded lung vessels by platelet thrombi without extending bleeding time.
In conclusion, eugenol exerts a potent inhibitory effect on platelet activation, achieved through the in-
hibition of the PLCγ2–PKC and cPLA2-TxA2 cascade, consequently suppressing platelet aggregation.
These findings underscore the potential therapeutic applications of eugenol in CVDs.

Keywords: eugenol; PLCγ2–PKC; cPLA2/TxA2; MAPK; human platelets; pulmonary thrombosis;
PI3K/Akt/GSK-3β

1. Introduction

Cardiovascular diseases (CVDs) are a major global health challenge and a leading
cause of mortality. Central to CVD pathogenesis is arterial thrombosis, serving as the
primary initiator. Platelets, crucial for hemostasis, contribute to vascular injury recov-
ery. However, hyperactivated platelets, influenced by various pathophysiological factors,
lead to complications in arterial thrombosis. This sequence significantly contributes to
atherosclerosis, thrombosis, coronary heart disease, stroke, and myocardial infarction [1].
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Platelets, derived from megakaryocytes [2], typically remain quiescent under nor-
mal conditions but become activated during intraluminal thrombosis. Activation in-
volves processes like adherence and aggregation, triggered when a blood vessel is injured.
Platelets lack spontaneous aggregation in circulation without vascular damage. Upon
injury, platelets adhere to the disrupted vascular surface, releasing biologically active
substances and aggregating [3]. Collagen plays a pivotal role in platelet adhesion and
activation through interactions with collagen receptors. This cascade results in the release
of adenosine diphosphate (ADP) and the synthesis of thromboxane A2 (TxA2).

Eugenol (C10H12O2), a phenylpropanoid illustrated in Figure 1A, represents an aro-
matic compound within the phenol group. It is derived from the natural essential oils of
plants, prominently found in cloves (Syzygium aromaticum), boasting a rich historical tradi-
tion of use. Acknowledged for its diverse pharmacological activities, including analgesic,
anti-inflammatory, antioxidant, vasodilation, and potential anticancer effects [4]. Widely
employed as a painkiller and anesthetic in dental practice, eugenol has been observed
to inhibit voltage-gated sodium channels in dental neuron studies [5,6]. Notably, its an-
tibacterial efficacy extends to various species, such as Gram-positive and negative bacteria.
Mechanistically, eugenol is presumed to exert its antibacterial effects by inducing damage
to the cytoplasmic membrane, facilitated by its ability to readily penetrate the bacterial cell
membrane and access the cytoplasm [4,7,8].
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Figure 1. (A) The molecular structure of eugenol, with the molecular formula C10H12O2, is illustrated. 
Washed human platelets (3.6 × 108 cells/mL) were preincubated with either a solvent control (0.1% 
DMSO) or varying concentrations of eugenol (0.5 to 100 µM). Subsequently, platelets were exposed 
to different agonists, including (B) collagen (1 µg/mL), (C) arachidonic acid (AA; 60 µM), (D) throm-
bin (0.02 U/mL), or (E) U46619 (1 µM), to induce platelet aggregation. Concentration-response his-
tograms for eugenol highlight its inhibitory effects on platelet aggregation triggered by various ag-
onists (%). (F) Cytotoxicity assessment involved preincubating platelets with 0.1% DMSO, 10 µM, 
or 20 µM eugenol for 10 min, followed by two washes with Tyrode’s solution. Subsequently, plate-
lets were stimulated with collagen (1 µg/mL). Statistical significance levels of * p < 0.05 and *** p < 
0.001 indicate differences compared to the 0.1% DMSO-treated group. The presented data in (B–F) 
represent the mean ± standard error of the mean (n = 4). 

2. Results 
2.1. Eugenol Inhibits Collagen and AA-Induced Platelet Aggregation in Humans 

Eugenol, as illustrated in Figure 1A, displayed notable efficacy in inhibiting platelet 
aggregation induced by both collagen (1 µg/mL) and AA (60 µM) within the concentration 
range of 1 to 4 µM (Figure 1B,C). Remarkably, even at concentrations as high as 100 µM, 
eugenol exhibited no significant effects when stimulated by thrombin (0.02 U/mL) or 11-
dideoxy-11α,9α-epoxymethanoprostaglandin (U46619, 1 µM), a prostaglandin endoper-
oxide (Figure 1D,E). In addition, eugenol at concentrations of 40 and 100 µM did not exert 
a significant inhibitory effect on the stimulation induced by thrombin (0.01 U/mL) and 
U46619 (0.5 µM) in washed human platelets (Figure S1). The calculated IC50 of eugenol 
was approximately 2 µM for both collagen and AA stimulation. Subsequently, the IC50 
value (2 µM) and the maximal concentration (4 µM) of eugenol were employed to delve 
into the potential mechanisms underlying its inhibitory activity on platelet activation. No-
tably, platelets preincubated with 0.1% DMSO, or 10 and 20 µM eugenol for 20 min, and 
subsequently washed two times with Tyrode’s solution, exhibited aggregation curves in-
significantly different from those of platelets preincubated with the solvent control 
(Tyrode’s solution) under equivalent conditions (Figure 1F). This observation suggests 
that the effects of eugenol on platelet aggregation are reversible and noncytotoxic. 

Figure 1. (A) The molecular structure of eugenol, with the molecular formula C10H12O2, is illustrated.
Washed human platelets (3.6 × 108 cells/mL) were preincubated with either a solvent control
(0.1% DMSO) or varying concentrations of eugenol (0.5 to 100 µM). Subsequently, platelets were
exposed to different agonists, including (B) collagen (1 µg/mL), (C) arachidonic acid (AA; 60 µM),
(D) thrombin (0.02 U/mL), or (E) U46619 (1 µM), to induce platelet aggregation. Concentration-
response histograms for eugenol highlight its inhibitory effects on platelet aggregation triggered by
various agonists (%). (F) Cytotoxicity assessment involved preincubating platelets with 0.1% DMSO,
10 µM, or 20 µM eugenol for 10 min, followed by two washes with Tyrode’s solution. Subsequently,
platelets were stimulated with collagen (1 µg/mL). Statistical significance levels of * p < 0.05 and
*** p < 0.001 indicate differences compared to the 0.1% DMSO-treated group. The presented data in
(B–F) represent the mean ± standard error of the mean (n = 4).
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Antiplatelet drugs, including integrin αIIbβ3 antagonists, aspirin, and clopidogrel, are
designed to prevent excessive platelet activation [9–11]. However, their efficacy is often
hindered by side effects, like aspirin-induced gastric ulcers and bleeding, and clopidogrel-
associated issues such as aplastic anemia and thrombocytopenic purpura [12,13]. There is a
critical need for novel agents with improved safety and efficacy in treating and preventing
cardiovascular diseases, ideally with minimal or no drug-related complications.

Eugenol has exhibited diverse and notable pharmacological activities; however, there
is limited research addressing the specific impact of eugenol on platelet activation, partic-
ularly its role in humans. Only a solitary study has underscored the potency of eugenol,
surpassing that of aspirin, in inhibiting human platelet aggregation induced by arachi-
donic acid (AA) [14]. Consequently, the current study is dedicated to investigating the
antiplatelet effects of eugenol in human subjects and assessing its therapeutic efficacy
through an in vivo model.

2. Results

2.1. Eugenol Inhibits Collagen and AA-Induced Platelet Aggregation in Humans

Eugenol, as illustrated in Figure 1A, displayed notable efficacy in inhibiting platelet
aggregation induced by both collagen (1 µg/mL) and AA (60 µM) within the concentration
range of 1 to 4 µM (Figure 1B,C). Remarkably, even at concentrations as high as 100 µM,
eugenol exhibited no significant effects when stimulated by thrombin (0.02 U/mL) or
11-dideoxy-11α,9α-epoxymethanoprostaglandin (U46619, 1 µM), a prostaglandin endoper-
oxide (Figure 1D,E). In addition, eugenol at concentrations of 40 and 100 µM did not exert
a significant inhibitory effect on the stimulation induced by thrombin (0.01 U/mL) and
U46619 (0.5 µM) in washed human platelets (Figure S1). The calculated IC50 of eugenol
was approximately 2 µM for both collagen and AA stimulation. Subsequently, the IC50
value (2 µM) and the maximal concentration (4 µM) of eugenol were employed to delve
into the potential mechanisms underlying its inhibitory activity on platelet activation.
Notably, platelets preincubated with 0.1% DMSO, or 10 and 20 µM eugenol for 20 min,
and subsequently washed two times with Tyrode’s solution, exhibited aggregation curves
insignificantly different from those of platelets preincubated with the solvent control (Ty-
rode’s solution) under equivalent conditions (Figure 1F). This observation suggests that the
effects of eugenol on platelet aggregation are reversible and noncytotoxic. Furthermore,
lactate dehydrogenase (LDH) assay results demonstrated that treatment with eugenol
(10–100 µM) did not induce any notable release of LDH when platelets were pre-treated
for 20 min (Figure S2). This finding indicates that eugenol exhibited negligible cytotoxicity
towards platelets.

2.2. Eugenol Modulates ATP Release, [Ca2+]i Levels, and P-Selectin Surface Expression

Eugenol, when administered at concentrations of 2 and 4 µM, exhibited a concentration-
dependent reduction in collagen-induced ATP release, as depicted in Figure 2A. Moreover,
both concentrations of eugenol demonstrated significant attenuation of the elevation in
intracellular calcium ([Ca2+]i) levels induced by collagen, with reductions of approximately
35% and 44%, respectively (Figure 2B). P-selectin, a pivotal biomarker for platelet activation,
typically resides within the inner walls of α-granules. Upon activation, platelets unveil the
inner granule contents to the outer membrane [15]. In Figure 2C, the suppressive effect of
eugenol on collagen-stimulated surface FITC-P-selectin expression is illustrated (a, Tyrode’s
solution, 117 ± 42; b, 0.1% DMSO + collagen group, 575 ± 63; c, 2 µM eugenol + collagen
group, 212 ± 48; d, 4 µM eugenol + collagen group, 150 ± 34; n = 4). Detailed statistical
data are provided in the right-hand panels of Figure 2.
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cubated with either 0.1% DMSO or eugenol (2 and 4 µM), followed by collagen (1 µg/mL) stimula-
tion to elicit the following responses: (A) ATP release, quantified in arbitrary units (AU); (B) relative 
[Ca2+]i level; and (C) surface P-selectin expression (a, Tyrode’s solution; b, 0.1% DMSO + collagen 
group; c, 2 µM eugenol + collagen group; d, 4 µM eugenol + collagen group). Detailed experimental 
methodologies are provided in Section 4. Statistical significance in (A,B) is denoted by * p < 0.05 and 
*** p < 0.001 compared to the 0.1% DMSO-treated group. In (C), *** p < 0.001 indicates deviations 

Figure 2. Eugenol’s inhibitory effects on ATP release, relative [Ca2+]i level, and surface P-selectin
expression in human platelets were investigated. Washed platelets (3.6 × 108 cells/mL) were
preincubated with either 0.1% DMSO or eugenol (2 and 4 µM), followed by collagen (1 µg/mL)
stimulation to elicit the following responses: (A) ATP release, quantified in arbitrary units (AU);
(B) relative [Ca2+]i level; and (C) surface P-selectin expression (a, Tyrode’s solution; b, 0.1% DMSO
+ collagen group; c, 2 µM eugenol + collagen group; d, 4 µM eugenol + collagen group). Detailed
experimental methodologies are provided in Section 4. Statistical significance in (A,B) is denoted by
* p < 0.05 and *** p < 0.001 compared to the 0.1% DMSO-treated group. In (C), *** p < 0.001 indicates
deviations from the resting control (Tyrode’s solution), while ### p < 0.001 signifies differences
compared to the 0.1% DMSO-treated group. The data are presented as the mean ± standard error of
the mean (n = 4).

2.3. Evaluating Eugenol’s Impact on Platelet cPLA2, PLCγ2 Phosphorylation, and PKC Activation

Cytosolic phospholipase A2 (cPLA2) is a key enzyme in platelet activation, as its acti-
vation initiates the release of AA, which promotes platelet aggregation [16]. Concurrently,
phospholipase C (PLC) participates in the intricate signaling cascade by
hydrolyzing phosphatidylinositol 4,5-bisphosphate, generating two crucial secondary
messengers—diacylglycerol (DAG) and inositol trisphosphate (IP3). DAG activates pro-
tein kinase C (PKC), leading to the phosphorylation of a predominantly 47-kDa protein
(pleckstrin or p47) and subsequent granule secretion, while IP3 triggers calcium release
from the dense tubular system [17]. In the context of our study, eugenol, administered at
concentrations of 2 and 4 µM, exhibited a remarkable diminishment in cPLA2 and PLCγ2
phosphorylation as well as PKC activation (p-p47) in collagen-activated platelets (Figure 3).
Further insights into the impact of eugenol on cPLA2 and PLCγ2 phosphorylation were
gained through confocal scanning fluorescence microscopy, revealing green fluorescence
indicative of cPLA2 or PLCγ2 activation, and red fluorescence representing α-tubulin in
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resting or collagen-activated platelets (Figure 4A,B). Collagen-induced fluorescence inten-
sity of phosphorylated cPLA2 or PLCγ2 was notably reduced in eugenol (4 µM)-treated
platelets, whereas α-tubulin intensity remained unchanged between groups (Figure 4).
These findings collectively suggest that eugenol exerts its antiplatelet activity by effectively
inhibiting cPLA2 and PLCγ2/PKC activation.
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Figure 3. The impact of eugenol on the activation of cytosolic phospholipase A2 (cPLA2), phospholi-
pase Cγ2 (PLCγ2), and protein kinase C (PKC) in platelets was investigated. Washed platelets
were preincubated with either 0.1% DMSO or eugenol (2 and 4 µM) and subsequently stimu-
lated with collagen (1 µg/mL) to induce the following responses: phosphorylation of (A) cPLA2,
(B) PLCγ2, and (C) activation of PKC, as indicated by p-p47 phosphorylation. Data are presented as
the mean ± standard error of the mean (n = 4). Significant differences are denoted by *** p < 0.001 in
comparison to resting platelets exposed to Tyrode’s solution. Furthermore, ### p < 0.001 is used to
indicate disparities compared to the group treated with 0.1% DMSO.
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2.4. Regulatory Effects of Eugenol on PI3K-Akt-GSK3β and MAPKs Activation 
The phosphoinositide 3-kinase (PI3K)/Akt/ glycogen synthase kinase 3β (GSK3β) sig-

naling pathway emerges as a pivotal player in thrombus formation under conditions of 
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Figure 4. Eugenol’s inhibitory effects on the activation of cytosolic phospholipase A2 (cPLA2) and
phospholipase Cγ2 (PLCγ2) were visualized using confocal laser microscopy. Washed platelets were
pre-incubated with either 0.1% DMSO or eugenol (4 µM) and subsequently exposed to collagen
(1 µg/mL) for confocal microscopic evaluation at 1000× magnification. This assessment specifically
focused on the visualization of phosphorylated (A) cPLA2 and (B) PLCγ2, represented by green
fluorescence, along with α-tubulin indicated by red fluorescence. The presented images are represen-
tative of four independent experiments. The red boxes serve to highlight one of the numerous cells
that have been phosphorylated and are further magnified within white boxes. The scale bar is 10 µm.

2.4. Regulatory Effects of Eugenol on PI3K-Akt-GSK3β and MAPKs Activation

The phosphoinositide 3-kinase (PI3K)/Akt/ glycogen synthase kinase 3β (GSK3β) sig-
naling pathway emerges as a pivotal player in thrombus formation under conditions of
heightened shear stress [18]. Within this cascade, PI3K assumes a crucial role in orchestrat-
ing the activation of Akt, the principal regulatory node in the pathway [18]. Activation of
the Akt pathway, triggered by various platelet agonists governing platelet activation and
hemostasis, underscores its significance in platelet function. Moreover, GSK3β, a key factor, is
subject to regulation by the PI3K/Akt pathway in platelets [19]. We observed that eugenol
(2 and 4 µM) effectively curtailed the activation of the PI3K/Akt/GSK3β pathway in platelets
upon collagen stimulation (Figure 5A–C). Furthermore, the mitogen-activated protein kinases
(MAPKs) signaling pathways, encompassing p38 MAPK, extracellular signal-regulated kinase



Int. J. Mol. Sci. 2024, 25, 2098 7 of 16

(ERK), and c-Jun N-terminal kinase (JNK), stands as a critical regulator of inflammation, cell
proliferation, apoptosis, and platelet activation [20]. Remarkably, our findings demonstrate
that eugenol exerted a suppressive effect on the phosphorylation of all three MAPKs induced
by collagen. This observation suggests that the antiplatelet activation mediated by eugenol
involves a marked modulation of MAPK pathways (Figure 5D–F). These findings collec-
tively underscore the multifaceted impact of eugenol on key signaling pathways, shedding
light on its potential therapeutic relevance in the intricate landscape of platelet function and
thrombotic events.
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Figure 5. Illustrates the regulatory impact of eugenol on the phosphoinositide 3-kinase
(PI3K)/Akt/glycogen synthase kinase-3β (GSK3β) and mitogen-activated protein kinases (MAPKs)
pathways. Platelets were preincubated with either 0.1% DMSO or eugenol (2 and 4 µM) and subse-
quently exposed to collagen (1 µg/mL). This allowed for immunoblotting analysis of key components
within the (A) PI3K, (B) Akt, (C) GSK3β, (D) p38 MAPK, (E) ERK, and (F) JNK pathways. The data
are presented as the mean ± standard error of the mean (n = 4). Statistical significance is denoted as
* p < 0.05, ** p < 0.01, and *** p < 0.001 compared with the results observed in resting platelets (Tyrode’s
solution); and # p < 0.05, ## p < 0.01, and ### p < 0.001 compared with the results observed in the 0.1%
DMSO group.

2.5. Interplay of p38 MAPK, cPLA2, and TxA2 in Eugenol’s Antiplatelet Mechanism

In Figure 6A,B, a conspicuous elevation in cPLA2 phosphorylation was also observed
in response to AA (60 µM). Both eugenol (4 µM) and the p38 MAPK inhibitor SB203580
(20 µM) demonstrated a significant reduction in cPLA2 phosphorylation induced by AA.
Interestingly, eugenol (4 µM) showed no effects on AA-stimulated p38 MAPK phosphory-
lation (Figure 6B). Moreover, AA assumes a pivotal role as a precursor in the biosynthesis
of diverse bioactive lipid mediators, notably including TxA2, which recognized for its



Int. J. Mol. Sci. 2024, 25, 2098 8 of 16

potency as both a platelet agonist and vasoconstrictor, intricately contributes to the aug-
mentation of platelet activation and aggregation [21]. As delineated in Figure 6C, the levels
of thromboxane B2 (TxB2) exhibited a conspicuous increase upon stimulation by collagen
and AA. Notably, this elevation was significantly attenuated in the presence of eugenol
(4 µM), indicating an inhibitory role of eugenol in the cPLA2-TxA2 pathway stimulated by
collagen and AA.
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Figure 6. The study investigated the effects of eugenol on cytosolic phospholipase A2 (cPLA2) and
p38 mitogen-activated protein kinase (p38 MAPK) phosphorylation, as well as thromboxane B2 (TxB2)
formation in human platelets. Platelets were preincubated with either 0.1% DMSO, eugenol (4 µM) or
with SB203580 (20 µM) and subsequently exposed to arachidonic acid (AA; 60 µM). Immunoblotting
analysis was conducted to assess the levels of (A) cPLA2 and (B) p38 MAPK proteins. (C) In another
set of experiments, platelets were preincubated with Tyrode’s solution alone, or with either 0.1%
DMSO or eugenol (4 µM), followed by exposure to collagen (1 µg/mL) and AA (60 µM) to quantify
TxB2 formation. The data are presented as the mean ± standard error of the mean (n = 4). Statistical
significance is indicated as * p < 0.05 and *** p < 0.001 compared to the results observed in resting
platelets (Tyrode’s solution); # p < 0.05, ## p < 0.01 and ### p < 0.001 compared to the results observed
in the 0.1% DMSO group.

2.6. Anti-Thrombotic Efficacy of Eugenol in Acute Pulmonary Thromboembolism in Mice

Intravenous administration of ADP in murine subjects elicited an acute, platelet-
dependent pulmonary thromboembolic response, manifesting as an increased mortality
rate attributed to the occlusion of pulmonary vessels by platelet thromboemboli. Alve-
oli, integral air sacs facilitating oxygen and carbon dioxide exchange within the lungs
(depicted as stars in Figure 7A), play a pivotal role in maintaining respiratory function.
The blood vessels (indicated by arrows) surrounding the alveoli, along with bronchioles
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(arrowheads), conduits for air during breathing, constitute crucial components of the pul-
monary microenvironment. Figure 7A illustrates a significantly elevated occurrence of
completely or partially occluded lung vessels by platelet thrombi (arrows) in ADP-treated
mice compared to the sham group. Treatment with eugenol at 15 mg/kg effectively reduced
the number of occluded vessels in comparison to 0.1% DMSO treatment. Furthermore,
both eugenol and aspirin treatments (15 mg/kg) demonstrated a notable reduction in
occluded vessels compared to the 0.1% DMSO treatment. Moreover, eugenol and aspirin
(15 mg/kg) substantially diminished the mortality rate from 100% (12 deceased, n = 12;
0.1% DMSO-treated group) to 41.6% (5 deceased, n = 12; p < 0.05) and 75% (9 deceased,
n = 12; p < 0.05), respectively (Figure 7B). Bleeding time assessment, conducted by tail vein
transection 30 min after intraperitoneal administration of aspirin and eugenol (15 mg/kg;
Figure 7C), revealed non-significant changes in bleeding time between the normal saline
(NS) group (156 ± 20 s; n = 12), solvent control group (0.1% DMSO, 182 ± 26 s; n = 12),
and eugenol group (15 mg/kg; 185 ± 19 s; n = 12). In contrast, bleeding time markedly
prolonged after 15 mg/kg aspirin treatment (497 ± 27 s; n = 12). To discern rebleeding
tendencies, individual mice were monitored for 15 min even after cessation of bleeding. The
findings suggest that eugenol exhibits in vivo antithrombotic activity without significantly
impacting bleeding time at the effective dose of 15 mg/kg.
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Figure 7. The study evaluated the efficacy of eugenol in mitigating thromboembolism in the lungs of
mice. (A) Acute pulmonary thrombosis was induced by intraperitoneally administering either 0.1%
DMSO, eugenol (15 mg/kg), or aspirin (15 mg/kg) to mice, followed by the injection of ADP
(700 mg/kg) into the tail vein. Histological examination of lung tissue sections stained with
hematoxylin–eosin focused on alveoli (stars), blood vessels (arrows), and bronchioles (arrowheads),
with a scale bar indicating 200 µm. The mortality rate (%) of ADP-induced pulmonary thromboem-
bolism in mice (n= 12) was presented in (B). (C) In a separate investigation, bleeding time was
determined by transecting mouse tails after a 30-min interval following intraperitoneal administra-
tion of either normal saline (NS), 0.1% DMSO, eugenol (15 mg/kg), or aspirin (15 mg/kg). The data
are presented as the mean ± standard error of the mean (n = 12). Statistical significance is denoted as
*** p < 0.001 compared to the results observed in the 0.1% DMSO group.
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3. Discussion

Eugenol, an aromatic phenolic compound predominantly derived from clove oil, has
enjoyed historical applications in diverse fields, including cosmetology, medicine, and phar-
macology. The current study underscores the remarkable antiplatelet efficacy of eugenol,
substantiated through both human and animal experimentation. In particular, our findings
demonstrate that concentrations as modest as 4 µM of eugenol suffice to impede platelet
activation induced by collagen. Notwithstanding that eugenol, when sourced from natural
reservoirs, may fall short of attaining the requisite plasma concentrations for inhibition of
in vivo platelet activation, its protracted consumption presents an advantageous strategy
for averting atherothrombotic events. In light of these revelations, eugenol emerges as a
compelling prospect for pioneering antithrombotic interventions in human subjects, given
its conspicuously robust antiplatelet attributes.

Platelet activation instigates a complex array of tyrosine kinase cascades, culminating
in heightened intracellular calcium concentrations and the exocytosis of granules contain-
ing notable constituents such as P-selectin and ADP/ATP. The principal repository for
protein storage within platelets is dominated by α-granules, encompassing both membrane-
associated proteins like P-selectin and various soluble proteins including fibrinogen and
platelet-derived growth factor. The exocytosis-mediated release of α-granules stands as
a pivotal hallmark of platelet activation. This activation status can be effectively gauged
through the meticulous examination of P-selectin expression, a key molecular indicator, as
elucidated in Figure 2C.

The activation of PLCγ2 is conspicuously apparent upon platelet stimulation with
collagen and AA, yet remains notably absent in response to thrombin and U46619. Human
platelets contain two predominant isoforms of PLC: PLCβ and PLCγ. Notably, both
isoforms play distinctive roles in the signaling cascades elicited by collagen, AA, thrombin,
and U46619 during platelet activation. Within the PLCγ family, isoforms 1 and 2 coexist,
with PLCγ2 prominently involved in the signaling pathways instigated by collagen and
AA [22,23]. Collagen, a pivotal constituent of the extracellular matrix exposed upon
vascular injury, triggers platelet activation through PLCγ2-dependent pathways upon
binding to specific receptors, such as glycoprotein VI (GP VI) [24]. Upon platelet activation
by various stimuli, including collagen, phospholipase enzymes like cPLA2 are activated.
These enzymes cleave AA from phospholipids in the cell membrane. Subsequently, AA can
be metabolized by cyclooxygenase to generate TxA2, thereby amplifying platelet activation.
The interconnected roles of AA-TxA2 and PLCγ2-PKC in platelet signaling pathways are
evident, with PLCγ2 initiating signaling events and generating second messengers, while
AA-TxA2 contributes to downstream processes enhancing platelet activation (Figure 8) [23].
Upon activation of Gαq-protein-coupled receptors (GPCRs), Gαq dissociates from the
receptor and activates PLCβ, a critical step for platelet aggregation in response to most
GPCR agonists like thrombin, serotonin, ADP, and TxA2 [25]. This elucidates why eugenol
demonstrates notable efficacy in inhibiting platelet aggregation induced by collagen and
AA but not by thrombin or U46619. In our study, eugenol effectively suppressed PLCγ2-
PKC activation triggered by collagen. Notably, eugenol did not exert a direct influence on
PKC activation, as evidenced by the unaltered platelet aggregation response induced by
phorbol 12,13-dibutyrate. This intriguing observation suggests that the inhibition of PLCγ2
downstream pathways may constitute a pivotal mechanism through which eugenol exerts
its inhibitory effects on platelet activation.

Platelet activation is orchestrated through intricate signaling pathways, with PI3K
emerging as a pivotal contributor. PI3K assumes a critical role downstream of various
platelet receptors, notably GP VI, orchestrating the activation of PLCγ2 and facilitating
calcium mobilization [26]. Among the major effectors influenced by PI3K, Akt stands out,
and mice lacking Akt display impaired platelet aggregation and stable adhesion under flow
conditions [27]. Consequently, the PI3K-mediated activation of Akt presents a promising
target for the development of antithrombotic medications. Conversely, the involvement of
Akt’s downstream signaling in platelet activation remains elusive, with potential candidates
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such as GSK3, including its α and β isoforms, identified and expressed in platelets. Notably,
GSK3β emerges as the most abundant protein among them [28]. Mice with platelet-specific
PI3K deficiency manifest arterial thrombus instability under conditions of high shear stress
due to impaired Akt/GSK3 activation within the developing thrombus [18]. However, the
precise mechanisms through which GSK3 regulates platelet activation remain enigmatic.
Therefore, the identification of GSK3’s substrates within platelets holds the potential to
unveil promising targets for the development of novel antithrombotic drugs. In the realm of
platelet signaling, PI3K/Akt and MAPKs undergo mutual activation, with PKC serving as
the upstream regulator of MAPKs (Figure 8) [29]. Therefore, the PI3K-Akt-GSK3β signaling
cascade assumes a pivotal role in platelet activation and thrombus growth and stability
under conditions of high shear stress in vivo.
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Figure 8. A theoretical framework provides insights into the complex mechanisms through which
eugenol exerts inhibitory effects on human platelet activation. Eugenol’s impact involves targeting
pivotal signaling cascades, specifically cPLA2/TxA2 and PLCγ2/PKC, followed by the activation
of PI3K-Akt-GSK3β and MAPKs pathways. This orchestrated modulation leads to a precise control
of reducing intracellular calcium ([Ca2+]i) levels, ultimately resulting in the suppression of platelet
aggregation. In the diagram, red suppress arrows represent inhibition, orange double-head arrows
signify mutual influence, and black arrows denote standard signaling pathways.

MAPK cascades represent indispensable signaling pathways intricately governing
diverse cellular processes such as proliferation, differentiation, and apoptosis. Rigorous
investigation employing MAPK-specific inhibitors and knockout mice has compellingly
affirmed the involvement of ERK, JNK, and p38 MAPK in platelet activation [30]. Despite
this, the precise roles of JNK and ERK in platelet activation remain enigmatic, with intrigu-
ing indications hinting at their potential as suppressors of integrin αIIbβ3 activation [31].
Furthermore, the activation of ERK and JNK play a pivotal role in collagen-induced platelet
aggregation [32]. The intricate interplay extends to cPLA2, playing a critical role in facili-
tating the release of AA to generate TxA2, a crucial substrate is propelled by p38 MAPK
activation in response to platelet agonists (Figure 8) [32]. Our study brings to light the
significant inhibitory impact of eugenol on the activation of ERK, JNK, and p38 MAPK, as
well as TxA2 formation. This observed inhibition may elucidate the heightened efficacy of
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eugenol in restraining platelet activation induced by collagen or AA. Furthermore, we also
conducted a fibrin clot retraction assay by introducing thrombin into a solution containing
fibrinogen along with platelets treated with either 0.1% DMSO or eugenol (Figure S3).
Fibrin clot retraction was more pronounced in 0.1% DMSO-treated platelets incubated for
30 min compared to those incubated for 15 min. However, fibrin clot retraction was not
significantly suppressed in platelets treated with 4 µM eugenol. This observation suggests
that eugenol may not interfere with platelet integrin αIIbβ3 outside–in signaling.

In the exploration of the therapeutic potential of experimental compounds against
vascular thrombosis, the judicious selection of animal models assumes paramount signifi-
cance. Notably, the mouse model emerges as a particularly advantageous choice due to its
technical simplicity, expeditious execution, and high reproducibility. Momi et al. [33] have
previously demonstrated the effectiveness of this model by inducing platelet pulmonary
thromboembolism in mice through the intravenous injection of collagen plus epinephrine,
resulting in a dose-dependent increase in the occlusion of lung vessels by platelet throm-
boemboli and a significant reduction in circulating platelet numbers [33]. In alignment with
these established methodologies, our current investigation similarly reveals a compelling
histological observation. Following the injection of ADP, a substantially high number
of lung vessels were observed to be either completely or partially occluded by platelet
thrombi. This observation resonates with the recognized notion that platelet aggregation
constitutes a critical risk factor for vascular thrombosis. Our study introduces a novel
dimension by evaluating the therapeutic potential of eugenol, administered at a dosage of
15 mg/kg, eugenol demonstrates efficacy in reducing mortality associated with acute pul-
monary thromboembolism, without concurrent alterations in bleeding time. This is in stark
contrast to aspirin (15 mg/kg), a widely employed antiplatelet therapy for both primary
and secondary prevention of CVDs. Intriguingly, aspirin significantly reduces the mortality
rate but is accompanied by an unwanted prolongation of bleeding time. This nuanced
finding positions eugenol as a promising natural compound for the treatment of throm-
boembolic disorders, presenting a potentially advantageous alternative to conventional
antiplatelet therapies.

4. Materials and Methods

4.1. Chemicals, Reagents, and Antibodies

Eugenol (≥98.5%) was purchased from MedChem Express (Monmouth Junction, NJ,
USA). Collagen (type I), aspirin, luciferin–luciferase, AA, U46619, phenylmethylsulfonyl
fluoride (PMSF), sodium orthovanadate, sodium pyrophosphate, aprotinin, leupeptin,
sodium fluoride (NaF), ethylenediaminetetraacetic acid (EDTA), bovine serum albumin
(BSA), and thrombin were purchased from Sigma (St. Louis, MO, USA). Anti-phospho-JNK
(Thr183/Tyr185), anti-phospho-PLCγ2, anti-phospho-p44/p42 ERK (Thr202/Tyr204), anti-
phospho-PI3K p85 (Tyr458)/p55 (Tyr199), and anti-phospho-(Ser) PKC substrate polyclonal
antibodies (pAbs) were purchased from Cell Signaling (Beverly, MA, USA). Anti-phospho-
p38 MAPK (Thr180/Tyr182), phospho-cPLA2 (Ser505) pAbs was purchased from Affinity
(Cincinnati, OH, USA). Protein assay dye reagent concentrate was purchased from Bio-Rad
Laboratories Inc. (Hercules, CA, USA). Anti-phospho-Akt (Ser473) pAb was purchased
from BioVision, Inc. (Mountain View, CA, USA). Anti-phospho-GSK3α/β and anti-α-
tubulin mAbs were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA).
Fura-2-acetoxymethyl ester (Fura 2-AM) was purchased from Molecular Probes (Eugene,
OR, USA). FITC-anti-human CD42P (P-selectin) mAb was obtained from BioLegend (San
Diego, CA, USA). Amersham (Buckinghamshire, UK) supplied Hybond-P polyvinylidene
difluoride membranes, enhanced chemiluminescence Western blotting detection reagent,
horseradish peroxidase-conjugated donkey anti-rabbit immunoglobulin G (IgG), and sheep
anti-mouse IgG. A 0.1% dimethyl sulfoxide (DMSO) was used to dissolve eugenol and the
stock solution was stored at 4 ◦C. TxB2 enzyme-linked immunosorbent assay (ELISA) kit
was purchased from Cayman Chemical (Ann Arbor, MI, USA).
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4.2. Isolation of Human Platelets Followed by Assessment of Aggregation Capability

Approval for this study was granted by the Institutional Review Board of Taipei
Medical University (TMU-JIRB-N202112047), adhering to the ethical principles delineated
in the Helsinki Declaration. Informed consent was obtained from all human blood donors
who participated in the study through the signing of a consent form prior to enrollment.
Platelet suspensions were meticulously prepared from the blood of healthy human donors,
employing a method previously outlined, which involved combining whole blood with
an acid-citrate-dextrose solution (at a ratio of 9:1, v/v). Subsequent centrifugation steps
were conducted to isolate platelet-rich plasma (PRP), which was then supplemented with
EDTA (2 mM) and heparin (6.4 U/mL). Following a brief incubation period, another round
of centrifugation was performed, and the resultant platelet pellets underwent resuspension
and additional centrifugation before being suspended in Tyrode’s solution enriched with
BSA at a concentration of 3.5 mg/mL and Ca2+ at 1 mM. Platelet counts were determined
using a Coulter counter (Beckman Coulter, Miami, FL, USA). Washed platelets, adjusted to a
concentration of 3.6 × 108 cells/mL, were preincubated with a solvent control (0.1% DMSO)
or eugenol (ranging from 0.5 to 100 µM) for a duration of 3 min before stimulation with
various agonists, including collagen (1 µg/mL), AA (60 µM), thrombin (0.02 U/mL), and
U46619 (1 µM). The aggregation capacity was evaluated using a lumi-aggregometer (Payton,
Scarborough, ON, Canada) [34], and the extent of platelet aggregation was quantified
as a percentage relative to the control group (treated with 0.1% DMSO) based on light
transmission units. In the ATP release assay, luciferin-luciferase reagent was added to the
platelet suspension 1 min before the introduction of collagen, and absorbance measurements
were conducted using a Hitachi Spectrometer F-7000 (Tokyo, Japan) to quantitatively assess
the released ATP levels.

4.3. Analysis of Change of [Ca2+]i Level and Surface Expression of P-Selectin

To assess intracellular calcium mobilization ([Ca2+]i), whole blood treated with citrate
was centrifuged, and the resulting supernatant was incubated with 0.1% DMSO or eugenol
(2 and 4 µM) and Fura 2-AM (5 µM). The levels of Fura 2-AM were measured using a
Hitachi Spectrometer F-7000 (Tokyo, Japan) with excitation wavelengths of 340 nm and
380 nm, and an emission wavelength of 500 nm. In another study, the platelets were treated
with eugenol (2 and 4 µM) in combination with FITC-conjugated anti-P-selectin mAb
(2 µg/mL). This preincubation step lasted for 3 min. Following the preincubation, the
platelets were stimulated with collagen (1 µg/mL). To analyze the platelets, a flow cy-
tometer (FAC Scan system; Becton Dickinson, San Jose, CA, USA) was used to detect
fluorescein-labeled platelets. Data were collected from 50,000 platelets per experimental
group, and the platelets were identified based on their characteristic forward and orthogo-
nal light-scattering profiles. To ensure reliability, these experiments were repeated at least
four times [35].

4.4. Measurement of TxB2 Formation

Platelet suspensions (3.6 × 108 cells/mL) underwent a preincubation period of 3 min
with either 0.1% DMSO or eugenol (2 and 4 µM). Following this, collagen (1 µg/mL) or AA
(60 µM) was introduced for 6 min. Subsequently, EDTA (2 mM) and indomethacin (500 µM)
were added, and the resulting mixture was subjected to centrifugation at
2000× g for 5 min. Finally, TxB2 levels were quantified in the supernatants using an
ELISA kit, adhering to the guidelines provided by the manufacturer.

4.5. Immunoblotting

Washed platelets (1.2 × 109 cells/mL) underwent incubation with eugenol (2 and
4 µM) or 0.1% DMSO. Subsequent to this incubation, platelets were stimulated with or
without collagen for 5 min. For the subsequent analytical phase, a 200 µL lysis buffer
comprising aprotinin (10 µg/mL), PMSF (1 mM), leupeptin (2 µg/mL), NaF (10 mM),
sodium orthovanadate (1 mM), and sodium pyrophosphate (5 mM) was introduced. The
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platelets were resuspended in the lysis buffer and left to incubate for 1 h. Following
centrifugation at 5000× g for 5 min, the supernatant containing the lysates was carefully
collected. From these lysates, 80 µg of protein underwent separation using 8% SDS-PAGE,
and protein concentrations were determined utilizing the Bradford protein assay (Bio-Rad,
Hercules, CA, USA). To facilitate the identification of specific target proteins, corresponding
primary antibodies were employed for protein spot detection. The optical density of the
protein bands was quantified using a video densitometer and Bio-profil Biolight software,
Version V2000.01 (Vilber Lourmat, Marne-la-Vallée, France). The determination of relative
protein expression involved normalizing the expression levels to the total protein content
of interest.

4.6. Utilization of Confocal Laser Fluorescence Microscopy

Resting or collagen-activated platelets were meticulously immobilized on poly-L-
lysine-coated coverslips, followed by fixation in a solution containing 4% (v/v) paraformalde-
hyde for 1 h. Subsequent to fixation, platelets underwent permeabilization using 0.1%
Triton X-100 and were then incubated in a 5% BSA solution in phosphate-buffered saline
(PBS) for 1 h to effectively block nonspecific binding sites. Following this preparatory step,
platelets were subjected to immunostaining by prolonged incubation with specific primary
antibodies targeting the proteins of interest over a 24-h period. Post-immunostaining,
thorough washing with PBS was performed, and the platelets were subsequently exposed
to secondary antibodies (Alexa Fluor® 488 labeled goat anti-rabbit IgG and Alexa Fluor®

647 labeled goat-anti-mouse IgG) for an additional hour. Finally, a confocal microscope
(Leica TCS SP5, Mannheim, Germany) equipped with a 100× oil immersion objective was
employed for imaging the platelets.

4.7. Acute Pulmonary Thromboembolism in Mice

Acute pulmonary microvascular thrombosis was induced in accordance with a previ-
ously delineated methodology [36]. Ethical clearance for all procedures in this investigation
was secured from the Institutional Animal Care and Use Committee of Taipei Medical
University (Approval ID: LAC-2022-0080). Male ICR mice were subjected to intraperitoneal
injections of 50 µL of either DMSO (0.1%), aspirin (15 mg/kg) or eugenol (15 mg/kg). Fol-
lowing a 5-min interval, each mouse received an intravenous injection of ADP (700 mg/kg)
via the tail vein. Mortality rates were meticulously recorded within 10 min post-ADP ad-
ministration for each experimental group. Subsequent to extraction, the pulmonary tissues
were preserved through fixation in 4% formalin, followed by embedding in paraffin. This
process facilitated the generation of paraffin sections, which were subsequently subjected
to hematoxylin–eosin (HE) staining. The stained lung sections underwent thorough obser-
vation, with resultant images acquired through the utilization of Microvisioneer Manual
Whole Slide Imaging (manuaIWSI; Freising, Germany).

4.8. Tail Bleeding Time in Mice

The determination of bleeding time was conducted through the tail vein transection
method. Anesthesia was induced in ICR mice via intraperitoneal injection of 50 µL of
DMSO (0.1%), aspirin (15 mg/kg) or eugenol (15 mg/kg). Following a 30-min interval, the
tails of the mice were precisely incised at a distance of 3 mm from the tip. The excised tails
were promptly immersed in a normal saline-filled tube maintained at 37 ◦C for the purpose
of measuring bleeding time. The duration of bleeding was recorded until the cessation of
blood flow was achieved.

4.9. Statistical Analysis

The data are expressed as the mean ± standard error of the mean, with n denoting the
number of experiments conducted using samples from distinct blood donors. To discern
significant differences among the experimental groups, a one-way analysis of variance
(ANOVA) was employed, complemented by the Student–Newman–Keuls post hoc test for
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family-wise type I error control. A predetermined threshold of statistical significance was
established at p < 0.05. All statistical analyses were executed using SAS (version 9.2; SAS
Inc., Cary, NC, USA).

5. Conclusions

The promotion of healthy dietary and lifestyle habits stands as a pivotal strategy for
the modifiable prevention of CVDs at their earliest stages. Our investigations unveiled
that eugenol exerts a potent inhibitory effect on platelet activation, achieved through the
inhibition of the PLCγ2–PKC and cPLA2-TxA2 cascade. Consequently, this leads to a
subsequent suppression of the PI3K-Akt and MAPK signaling pathways. This multifaceted
action culminates in the reduction of ([Ca2+]i) and a consequential inhibition of platelet
aggregation (Figure 8). This study underscores the potential therapeutic and prophylactic
applications of eugenol in the CVDs.
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