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Abstract: Dendritic cells (DCs) are the most specialized antigen-presenting cells, and lymph nodes
(LNs) play an important role in the DC-mediated T-cell response. We evaluated the infiltration of
CD1a-positive DCs (CD1a-DCs), i.e., immature DCs, and S100-positive dendritic cells (S100-DCs), a
mixture of immature and mature DCs, in 73 cases of laryngeal cancer and its regional LNs. Among
them, 31 patients underwent radiotherapy (RT) or chemoradiotherapy (CRT) prior to surgery. No
significant difference was found for CD1a-DC infiltration in the primary tumors, metastatic LNs
and non-metastatic LNs, while S100-DCs were significantly fewer in number in the primary tumors
and metastatic LNs compared to non-metastatic LNs. The cases which showed a high infiltration
of S100-DCs in the metastatic LNs appeared to show a favorable prognosis, although statisti-
cal significance was not reached. In the RT/CRT group, the infiltration of the CD1a-DCs and
S100-DCs was less in the primary tumors and metastatic LNs compared to the treatment-naive group.
Conversely, the RT/CRT group showed higher CD1a-DC and S100-DC numbers in the non-metastatic
LNs compared to the treatment-naïve group. Thus, DC maturation in metastatic LNs plays an
important role in tumor immunity in laryngeal cancer, and the infiltration of DCs into the primary
tumor and metastatic LNs is impaired by RT/CRT.
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1. Introduction

Laryngeal cancer is a common malignancy of the head and neck. Although the
prognosis of early laryngeal cancer is favorable, that for advanced laryngeal cancer is poor,
despite much progress being made with regard to multidisciplinary therapy, such as the
combined use of chemoradiotherapy and surgery [1]. For patients who have lost voice
function due to laryngectomy, electrolarynx, esophageal speech and tracheoesophageal
speech are used to supplement voice function and maintain their quality of life [2].

In Japan, laryngeal cancer is the second most common head and neck squamous cell
carcinoma. A total of 5111 new cases were diagnosed in 2019, with a male-to-female ratio
of 11:1, predominantly in males; the 5-year survival rate is 81.0% [3]. It is overwhelm-
ingly more common in males, which may be due to smoking [4]. However, smoking
rates have been reported to be declining in younger patients worldwide, with less dif-
ference between younger males and females than in elderly patients. Factors other than
smoking, such as laryngopharyngeal reflux and HPV infection, have been pointed out in
young-onset patients [5].
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The treatment strategy for laryngeal cancer is different according to the tumor stage.
Local resection or radiation therapy is the first choice for patients with early-stage cancer [6],
but for advanced cancer, larynx-preserving surgery or total laryngectomy is performed.
Cervical LN dissection may be carried out depending on the presence of LN metastases.
Chemoradiotherapy is usually required when the postoperative pathology shows positive
margins or LN metastasis with extracapsular extension [7]. If surgery is not an option,
chemoradiotherapy is the first treatment of choice, but if residual tumor is observed after
treatment, salvage surgery is performed [8]. In cases with T4 or LN metastases, induction
chemotherapy should be given first, followed by chemoradiotherapy if a response is
elicited. If there is no response, surgery is considered [9]. Thus, there is a wide range of
treatment options for laryngeal cancer, which may be modified by the patient’s desire to
preserve their larynx or surgical risk due to an underlying condition. Currently, there is no
unified treatment strategy for laryngeal cancer, and it is often difficult to decide between
surgery and chemoradiotherapy. Regarding chemotherapy, the first choice for induction
chemotherapy is a three-drug combination of cisplatin + docetaxel + 5-FU (5-fluorouracil).
Instead of cisplatin, carboplatin or cetuximab may also be selected [10]. For recurrent,
metastatic or unresectable cases, a Combined Positive Score (CPS) is calculated based on
PD-L1 (22C3) immunostaining results. If positive, chemotherapy with pembrolizumab
alone or pembrolizumab + cisplatin + 5-FU is selected; if negative, chemotherapy with
cisplatin + 5-FU + cetuximab is given [11].

In recent years, immune checkpoint inhibitors have contributed to the improved prog-
nosis of laryngeal cancer. The importance of tumor immunity research and immunother-
apy is expected to increase. However, there are many unknowns about the immune
microenvironment of laryngeal cancer, and elucidating the immune environment may lead
to the development of effective immunotherapy and improved treatment outcomes for
laryngeal cancer.

DCs play important roles in cancer immune responses. First, they phagocytose necrotic
cancer cell antigens. Subsequent T-cell responses require signals, such as inflammatory
cytokines released by tumor cells to prevent immune tolerance to the tumor antigen in the
periphery. DCs then present the antigen captured on the major histocompatibility complex
(MHC) I or MHC II molecules to T-cells. The T-cell response to the cancer-specific antigen
is then primed and activated. The ratio of effector T-cells to regulatory T-cells is determined
and influences the outcome. Activated effector T-cells migrate to and infiltrate tumor
sites, where they interact with antigens bound to T-cell receptors and MHC I molecules,
which then specifically recognize and bind to cancer cells, destroying them [12]. T-cells
recognize lipid antigens in a complex with CD1 antigen-presenting molecules. Humans
have five CD1 genes encoding five proteins: CD1a, b, c, d and e. The CD1 isoforms overlap
but have distinct lipid-binding specificities, which affect the repertoire of lipid antigens
that stimulate T-cells. CD1a expression declines as DCs mature and acquire the ability to
present antigens [13,14].

Several studies on various types of carcinomas have focused on the infiltration of DCs
into tumor tissue [15–22], but no unanimous opinion has been reached. In a previous study
conducted in our laboratory, CD1a-DCs were found to be associated with unfavorable
clinical outcomes in patients with advanced laryngeal cancer who had undergone total
laryngectomy as the initial treatment [23]. However, only a small number of studies have
focused on DC infiltration into laryngeal cancer tissue, but the results differed [24–29]; thus,
the role of DC infiltration in laryngeal cancer remains unclear.

LNs play a very important role in the DC-mediated T-cell response. After antigen
phagocytosis, DCs are activated and express C-chemokine receptor 7 (CCR7), a spe-
cific chemokine receptor that promotes their migration to LNs, and they are directed
by chemokines to the draining lymph vessels and to the T-cell areas of LNs, where they
initiate T-cell responses [30,31]. To the best of our knowledge, there has been no specific
study that has focused on DC infiltration into the LNs of cancer patients.
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In the present study, the aim was to elucidate the trend of DCs in tumor immu-
nity in laryngeal cancer by analyzing DC infiltration into the regional LNs and tumor
tissue. Furthermore, we also evaluated the status of DC infiltration after radiotherapy
and/or chemoradiotherapy.

2. Results
2.1. Clinicopathological Features of 73 Patients with Laryngeal Cancer

The clinical and pathological findings of the cohort of 73 laryngeal cancer patients
composed of 70 males (95.9%) and 3 females (4.1%) are summarized in Table 1. The
median age at initial diagnosis was 68.9 years. The primary tumor sites were glottic in
36 (49.3%) patients, supraglottic in 36 (49.3%) and subglottal in 1 (1.4%). The T-stages at
initial diagnosis were T1 in 8 (11.0%), T2 in 21 (28.8%), T3 in 21 (28.8%) and T4 in 23 (31.5%)
patients, respectively. Forty-six (37.0%) patients had metastatic LNs, and one patient had
no non-metastatic LN specimens. The stages at initial diagnosis were Stage I, 5 patients
(6.8%); Stage II, 11 patients (15.1%); Stage III, 16 patients (21.9%); and Stage IV, 41 patients
(56.2%). The histology of the patient tumors was all squamous cell carcinoma (SCC), except
for one case of carcinosarcoma containing an SCC component.

Table 1. Clinicopathological features of 73 patients with laryngeal cancer.

Age, Years (Mean ± SD) 68.9 ± 9.4

Sex

Male/Female 70 (95.9%)/3 (4.1%)

Smoking habit

Never/Ex/Current 8 (11.0%)/15 (20.5%)/50 (68.5%)

Alcohol abuse

(−)/(+) 22 (30.1%)/51 (69.9%)

Subsite

Glottis/Supraglottis/Subglottis 36 (49.3%)/36 (49.3%)/1 (1.4%)

Histology and differentiation

Well/Mode/Poor/Carcinosarcoma 33 (45.2%)/35 (47.9%)/4 (5.5%)/1 (1.4%)

Primary T stage

T1/T2/T3/T4 8 (11.0%)/21 (28.8%)/21 (28.8%)/23 (31.5%)

N

(−)/(+) 27 (63.0%)/46 (37.0%)

Primary M stage

M0/M1 71 (97.3%)/2 (2.7%)

Stage

I/II/III/IV 5 (6.8%)/11 (15.1%)/16 (21.9%)/41 (56.2%)

Treatment background

Surgery without RT/CRT 42 (57.5%)

Surgery after RT 2 (2.7%)

Surgery after CRT 29 (39.7%)

Abbreviations: SD, standard deviation; RT, radiotherapy; CRT, chemoradiotherapy.

Forty-two (57.5%) patients underwent surgical resection as their initial treatment. Two
(2.7%) patients underwent preoperative radiotherapy (RT) and then underwent surgery,
and 29 (39.7%) were given chemoradiotherapy (CRT) before surgery. The primary tumor
was not detectable after CRT in eight cases. In these cases, the biopsy specimens obtained
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prior to CRT were defined as treatment-naïve primary tumor tissue. Thus, 50 cases of
primary tumor tissue were finally evaluated as treatment naïve.

2.2. Assessment of DCs in Primary Tumors and Regional LNs

The results of the CD1a-DCs and S100-DCs, which were evaluated for each primary
tumor, metastatic LNs and non-metastatic LNs, are shown in Figure 1. The average number
± standard deviation (SD) of the CD1a-DCs, which are considered to be immature DCs,
in primary tumors was 35.1 ± 38.9 (median: 21). The average number of CD1a-DCs in
the metastatic LNs and non-metastatic-LNs was 44.9 ± 47.7 and 34.3 ± 49.0, respectively.
There were no significant statistical differences in the numbers of CD1a-DCs found in the
primary tumors, metastatic LNs and non-metastatic LNs.
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metastatic LNs, respectively. The left figure shows the evaluation for all patients (n = 73), the right
figure shows the evaluation for patients after RT/CRT (n = 31) vs. treatment-naïve patients (n = 42).

The average numbers ± SD of the S100-DCs, which are considered to be a mixture
of immature DCs and mature DCs, in primary tumors was 49.2 ± 36.0 (median: 43). The
average numbers of the S100-DCs in the metastatic LNs and non-metastatic LNs were
45.1 ± 33.7 and 89.5 ± 49.1, respectively. The numbers of the S100-DCs in the non-
metastatic LNs were significantly greater than in the metastatic LNs (p < 0.000) or primary
tumors (p < 0.000).

2.3. Comparison of DCs in Primary Tumors and Regional LNs between the RT/CRT and
Treatment-Naïve Groups

In the analysis of the RT/CRT and treatment-naïve groups, the average number ± SD
of CD1a-DCs in the primary tumors, metastatic LNs and non-metastatic LNs of the RT/CRT
group were 23.4 ± 36.7, 25.1 ± 35.2 and 43.2 ± 61.2, and in the treatment-naïve group
were 40.4 ± 39.0, 60.1 ± 51.0 and 27.6 ± 36.7, respectively. The numbers of the CD1a-DCs
in the primary tumors and metastatic LNs in the RT/CRT group were fewer than in the
treatment-naïve group. A statistically significant difference was found for the metastatic
LNs (p = 0.008) but not for the primary tumors (p = 0.128). Conversely, the number of
CD1a-DCs in the non-metastatic LNs in the RT/CRT group appeared to be greater than in
the treatment-naïve group, but statistical significance was not reached (p = 0.140).

The average number ± SD of S100-DCs in the primary tumors, metastatic LNs and
non-metastatic LNs of the RT/CRT group were 33.0 ± 25.5, 33.2 ± 26.0 and 101.0 ± 52.8,
and for the treatment-naïve group were 56.6 ± 37.9, 54.3 ± 36.4 and 80.8 ± 44.7, respectively.
The numbers of the S100-DCs detected in the primary tumors and metastatic LNs in the
RT/CRT group were fewer than in the treatment-naïve group. Statistical significance was
found after an analysis of the primary tumor (p = 0.020) but not for the metastatic LNs
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(p = 0.077). Conversely, the numbers of the S100-DCs in the non-metastatic LNs in the
RT/CRT group was significantly greater than in the treatment-naïve group (p = 0.034).

2.4. Clinicopathological Features per CD1a-DCs Infiltration in Primary Tumors, Metastatic LNs
and Non-Metastatic LNs

In the primary tumors, the patient cohort was divided into a CD1a-low group
(n = 37) and a CD1a-high group (n = 36) by a cut-off value determined by the median.
No significant differences were found in age, gender and the TNM stage between the
CD1a-low and CD1a-high groups. The patients who received RT/CRT had significantly
fewer CD1a-DCs (p = 0.043).

For the analysis of the metastatic LNs, the patient cohort was divided into a CD1a-low
group (n = 23) and a CD1a-high group (n = 23) by the same cut-off value for the primary
tumors. No significant differences were found with regard to age, gender and the TNM
stage. The patients who received RT/CRT had significantly fewer CD1a-DCs (p = 0.036).

For the analysis of the non-metastatic LNs, the patient cohort was divided into a
CD1a-low group (n = 40) and a CD1a-high group (n = 32) according to the cut-off. The non-
metastatic LNs of the older patients tended to have fewer CD1a-DCs (p = 0.074). However,
no significant differences were observed in age, gender, the TNM stage or RT/CRT (Table 2).

Table 2. Clinicopathological features per CD1a-DC infiltration.

Primary Tumor
(n = 73)

Metastatic LN
(n = 46)

Non-Metastatic LN
(n = 72 *)

CD1a-Low
(n = 37)

CD1a-High
(n = 36) p CD1a-Low

(n = 23)
CD1a-High

(n = 23) p CD1a-Low
(n = 40)

CD1a-High
(n = 32) p

Age, years
(mean ± SD) 67.1 ± 8.9 70.5 ± 9.7 0.124 68.3 ± 9.5 67.5 ± 9.8 0.772 70.6 ± 8.4 66.6 ± 10.3 0.074

Sex

Male 36 (97.3%) 34 (94.4%) 0.615 23 (100.0%) 20 (87.0%) 0.233 39 (97.5%) 30 (93.8%) 0.582

Female 1 (2.7%) 2 (5.6%) 0 (0.0%) 3 (13.0%) 1 (2.5%) 2 (6.3%)

Primary T stage

T1/2 17 (46.0%) 12 (33.3%) 0.341 12 (52.2%) 10 (43.5%) 0.768 19 (47.5%) 10 (31.3%) 0.227

T3/4 20 (54.1%) 24 (66.7%) 11 (47.8%) 13 (56.5%) 21 (52.5%) 22 (68.8%)

N

N (−) 12 (32.4%) 15 (41.7%) 0.473 0 (0.0%) 0 (0.0%) n/a 14 (35.0%) 13 (40.6%) 0.634

N (+) 25 (67.6%) 21 (58.3%) 23 (100%) 23 (100%) 26 (65.0%) 19 (59.4%)

Primary M stage

M0 36 (97.3%) 35 (97.2%) 1.000 22 (95.7%) 22 (95.7%) 1.000 40 (100.0%) 30 (93.8%) 0.194

M1 1 (2.7%) 1 (2.8%) 1 (4.4%) 1 (4.4%) 0 (0.0%) 2 (6.3%)

Timing of the resected samples

After RT or
CRT 16 (43.2%) 7 (19.4%) 0.043 14 (60.9%) 6 (26.1%) 0.036 18 (45.0%) 12 (37.5%) 0.632

Treatment
naïve ** 21 (56.8%) 29 (80.6%) 9 (39.1%) 17 (73.9%) 22 (55.0%) 20 (62.5%)

* One patient had no non-metastatic LNs. ** Eight cases are biopsy specimens obtained prior to CRT. Abbreviations:
DC, dendritic cell; SD, standard deviation; n/a, not available; RT, radiotherapy; CRT, chemoradiotherapy.

2.5. Clinicopathological Features per S-100 DC Infiltration in Primary Tumors, Metastatic LNs
and Non-Metastatic LNs

According to the cut-off value determined by the median value for the primary tumor,
the patient cohort was divided into an S100-low group (n = 37) and an S100-high group
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(n = 36). No significant differences were found with regard to age and the TNM stage in
the S100-low and S100-high groups. The patients who received RT/CRT had significantly
fewer S100-DCs (p = 0.011).

In the analysis of the metastatic LNs, the patient cohort was divided into an S100-
low group (n = 25) and an S100-high group (n = 21) according to the same cut-off value
for the primary tumors. No significant difference was found with regard to age, gen-
der or the TNM stage. The patients who received RT/CRT had significantly fewer
S100-DCs (p = 0.019).

For the analysis of the non-metastatic LNs, the patient cohort was divided into an
S100-low group (n = 14) and an S100-high group (n = 58) according to the cut-off. In
the non-metastatic LNs, the patients who had distant metastasis had significantly fewer
S100-DCs (p = 0.036). No significant difference was found for age, gender, the TNM stage
or RT/CRT (Table 3).

Table 3. Clinicopathological features per S100-DC infiltration.

Primary Tumor
(n = 73)

Metastatic LN
(n = 46)

Non-Metastatic LN
(n = 72 *)

S100-Low
(n = 37)

S100-High
(n = 36) p S100-Low

(n = 25)
S100-High

(n = 21) p S100-Low
(n = 14)

S100-High
(n = 58) p

Age, years
(mean ± SD) 68.0 ± 9.3 69.7 ± 9.6 0.445 68.5 ± 10.5 67.2 ± 8.3 0.654 72.1 ± 9.3 68.0 ± 9.4 0.150

Sex

Male 36 (97.3%) 34 (94.4%) 0.615 24 (96.0%) 19 (90.5%) 0.585 13 (92.9%) 56 (96.6%) 0.483

Female 1 (2.7%) 2 (5.6%) 1 (4.0%) 2 (9.5%) 1 (7.1%) 2 (3.5%)

Primary T stage

T1/2 15 (40.5%) 14 (38.9%) 1.000 7 (28.0%) 15 (71.4%) 0.007 5 (35.7%) 24 (41.4%) 0.770

T3/4 22 (59.5%) 22 (61.1%) 18 (72.0%) 6 (28.6%) 9 (64.3%) 34 (58.6%)

N

N (−) 15 (40.5%) 12 (33.3%) 0.630 0 (0.0%) 0 (0.0%) n/a 5 (35.7%) 22 (37.9%) 1.000

N (+) 22 (59.5%) 24 (66.7%) 25 (100%) 21 (100%) 9 (64.3%) 36 (62.1%)

Primary M stage

M0 36 (97.3%) 35 (97.2%) 1.000 23 (92.0%) 21 (100.0%) 0.493 12 (85.7%) 58 (100.0%) 0.036

M1 1 (2.7%) 1 (2.8%) 2 (8.0%) 0 (0.0%) 2 (14.3%) 0 (0.0%)

Timing of resected samples

After CRT or
RT 17 (45.9%) 6 (16.7%) 0.011 15 (60.0%) 5 (23.8%) 0.019 3 (21.4%) 27 (46.6%) 0.131

Treatment
naïve ** 20 (54.1%) 30 (83.3%) 10 (40.0%) 16 (76.2%) 11 (78.6%) 31 (53.5%)

* One patient had no non-metastatic LNs. ** Eight cases are biopsy specimens obtained prior to CRT. Abbreviations:
DC, dendritic cell; SD, standard deviation; n/a, not available; RT, radiotherapy; CRT, chemoradiotherapy.

2.6. Kaplan–Meier Survival Curves According to the Infiltration of CD1a- and S100-DCs

The Kaplan–Meier curves, based on the status of CD1a-DCs infiltration, are shown
in Figure 2. In the primary tumors, the CD1a-high group appeared to exhibit a worse
prognosis in terms of the disease-specific survival (DSS), although statistical significance
was not achieved (p = 0.090). However, no tendency was observed in the analyses of
the overall survival (OS) for the primary tumors (p = 0.468), DSS in the metastatic LNs
(p= 0.969) and non-metastatic LNs (p = 0.580), or for each analysis of the OS for the primary
tumors (p = 0.468), metastatic LNs (p = 0.581) and non-metastatic LNs (p = 0.737).
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Figure 2. Kaplan–Meier survival curves according to CD1a-DCs infiltration status in primary tumor,
metastatic LNs and non-metastatic LNs. (a–c) Kaplan–Meier survival curves by disease-specific
survival (DSS). (d–f) Kaplan–Meier survival curves by overall survival (OS).

The Kaplan–Meier curves, based on the status of the S100-DC infiltration, are displayed
in Figure 3. In the metastatic LNs, the S100-high group appeared to show a favorable
prognosis in terms of the DSS and OS, although statistical significance was not reached
(p = 0.165, p = 0.067, respectively). However, no tendency was observed in the analysis of
the DSS for the primary tumors (p = 0.535) and non-metastatic LNs (p = 0.865), or in the
analysis of the OS for the primary tumors (p = 0.994) and non-metastatic LNs (p = 0.487).
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2.7. Univariate Analyses for DSS and OS in All Patients (n = 73)

The results of the univariate analyses for the DSS and OS in all the patients are
summarized in Table 4. The only factor that was significantly correlated with the DSS was
the N stage (p = 0.025). The factors that were significantly correlated with the OS were
the T stage (p = 0.031) and the N stage (p = 0.037). The status of both the CD1a-DC and
S100-DC infiltration in each primary tumor, metastatic LN and non-metastatic LN showed
no significant correlation with neither the DSS nor OS, although tendencies were observed
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in the DSS for CD1a-DC infiltration in the primary tumors (p = 0.098), the DSS for S100-DC
infiltration in the metastatic LNs (p = 0.177, and the OS for S100-DC infiltration in the
metastatic LNs (p = 0.077).

Table 4. Univariate analyses for DSS and OS in all patients (n = 73).

Characteristic n DSS OS

HR (95% CI) p HR (95% CI) p

Age 0.683 0.783

≤68 years 38 1 1

>68 years 35 0.84 (0.35–1.98) 1.09 (0.59–2.03)

Sex 0.473 0.470

Female 3 1 1

Male 70 0.48 (0.06–3.58) 0.59 (0.14–2.47)

T stage 0.109 0.031

T1/T2 29 1 1

T3/T4 44 2.18 (0.84–5.63) 2.09 (1.07–4.08)

N stage 0.025 0.037

N0 27 1 1

N1–3 46 2.96 (1.14–7.67) 1.97 (1.04–3.72)

M stage 0.050 0.179

M0 71 1 1

M1 2 4.32 (1.00–18.69) 2.68 (0.64–11.25)

CD1a-DCs in
primary tumor 0.098 0.472

low 37 1 1

high 36 2.11 (0.87–5.12) 1.25 (0.67–2.35)

CD1a-DCs in
metastatic LN 0.969 0.586

low 23 1 1

high 23 0.98 (0.36–2.61) 0.80 (0.36–1.79)

CD1a-DCs in
non-metastatic LN 0.582 0.739

low 40 1 1

high 32 1.28 (0.53–3.08) 0.90 (0.47–1.70)

S100-DCs in primary
tumor 0.538 0.994

low 37 1 1

high 36 1.31 (0.55–3.09) 1.00 (0.54–1.87)

S100-DCs in
metastatic LN 0.177 0.077

low 25 1 1

high 21 0.50 (0.18–1.37) 0.47 (0.21–1.08)

S100-DCs in
non-metastatic LN 0.866 0.490

low 14 1 1

high 58 0.91 (0.30–2.73) 0.77 (0.36–1.62)

Abbreviations: DSS, disease-specific survival; OS, overall survival; HR, hazard ratio; CI: confidence interval.
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3. Discussion

DCs are derived from common myeloid progenitors (CMPs) in the bone marrow and
comprise two subtypes. In inflammatory conditions, they differentiate into monocytes and
then into monocyte DCs through the expression of the transcription factor Nur77. In the
absence of Nur77, CMPs differentiate into dendritic cell progenitors, which differentiate
into plasmacytoid DCs (pDCs) or conventional DCs (cDCs). cDCs are immature at first
but can differentiate into mature DCs following injury or exposure to pathogen-associated
factors or inflammatory cytokines. DCs express CCR7 and migrate to the LNs. In the LNs,
mature DCs activate naive T-cells to initiate an immune response [32,33].

Several factors have been implicated in DC differentiation and maturation [34]. Several
cytokines affect DCs: IL-6 inhibits DC differentiation and maturation [35,36] and IL-10
inhibits DC differentiation, maturation and certain functions [37,38]. M-CSF inhibits their
differentiation into DCs from CD34-positive CMPs [35]. GM-CSF produced by tumors has
an inhibitory effect on immature DCs [39], while VEGF inhibits the differentiation of DCs
and affects the differentiation of the multiple hematopoietic lineage [40]. These research
findings raise the possibility that the activation and maturation of DCs are affected by
various cytokines and that not all tumor-infiltrating DCs function as antigen-presenting
cells. It is possible that the maturation, activation and T-cell response of DCs may be
significantly affected by the histological type or by the progression of the tumor.

In the present study, the infiltration of CD1a-DCs was not significantly different in
the primary lesion, metastatic LNs or non-metastatic LNs. However, the infiltration of the
S100-DCs was significantly different: the infiltration of the S-100DCs in the non-metastatic
LNs was significantly greater than for the primary lesions and metastatic LNs. As S100-DCs
are considered to label both immature and mature DCs, these results support the hypothesis
that the maturation of DCs was prevented by the presence of cancer cells.

Our previous research has indicated that the infiltration of CD1a-DCs into the primary
lesion is associated with an unfavorable prognosis for patients with advanced laryngeal
cancer who had undergone a total laryngectomy as their initial treatment [23]. A similar
tendency was observed in the present study for a different cohort of patients. The high-
CD1a-DC infiltrating group in the primary lesions indicated an unfavorable prognosis
compared to the low-CD1a-DC infiltrating group, although statistical significance was
not reached. Conversely, while the infiltration of the S100-DCs into the primary lesions
and non-metastatic LNs did not affect the prognosis, a higher infiltration of the S100-DCs
in the metastatic LNs was correlated with better outcomes. These findings highlight the
importance of the maturation of DCs in metastatic LNs for an immune response against
laryngeal cancer.

Our study had the following limitations, namely a small sample size, the retrospective
nature of the study, the lack of follow-up data and that the assessment of the mature DCs
was only an indirect marker of S100. However, the results produced important hints for
understanding the immune response mediated by DCs in laryngeal cancer. It is likely
that the cancer cells play some important roles in both the infiltration and maturation
of DC at the primary sites and in metastatic LNs. Unraveling the mechanism of the
induction and maturation of DCs by cancer cells may well lead to the development of
new immunotherapies. Therefore, the analysis of various cytokines and chemokines in
cancer tissue that are associated with the infiltration and maturation of DCs is an important
research area, as well as the examination of the characteristics of CD1a-DC regarding their
interaction with cancer cells. This research will provide new insights into our understanding
of cancer immune responses mediated by DCs.

It has been shown that antigen phagocytosis and the maturation of DCs are processes
affected by RT and chemotherapy [41–44]. Radiotherapy, in particular, has been reported
to have an inhibitory effect on DC functions, suggesting that the presence or absence of
radiotherapy may make a difference to DC infiltration and maturation [45,46].

RT exerts its therapeutic effect through DNA damage. It is now recognized that the
nucleic acid species produced from this DNA damage are inflammatory and potentially
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immunogenic. RT enhances antigenicity through the release of antigens associated with
tumor cell death, radiation-induced neoantigens and the upregulation of MHC-I molecules.
On the other hand, RT initiates immunoregulatory and homeostatic actions that reduce
the functions of DCs in the tumor microenvironment. In short, RT promotes antitumor
immunity through DCs while simultaneously counteracting their functions [47–50].

The present research also focused on the status of DC infiltration and maturation
in primary tumors and LNs after RT/CRT. Our results indicated that the infiltration of
CD1a-DCs were fewer in number in the primary lesions and metastatic LNs in the RT/CRT
group compared to the treatment-naïve group. Conversely, the RT/CRT group showed a
higher level of CD1a-DC infiltration into the non-metastatic LNs than the treatment-naïve
group. Similar results were also obtained in the analyses of the S100-DCs. These results
support the following working hypothesis: the ability of DC induction in cancer cells and
the surrounding stroma is impaired by necrosis and/or the degeneration of the tumor
cells and microenvironmental changes due to RT/CRT. On the other hand, the ability for
DC induction remains in non-metastatic LNs, which are relatively unaffected by RT/CRT.
The infiltration of DC numbers into non-metastatic LNs, both CD1a-DCs and S100-DCs,
was higher in the RT/CT cases than in the treatment-naïve cases. This result was also
predictable considering the enhanced immune reaction elicited by RT/CRT.

In conclusion, our study suggested that DC maturation in metastatic LNs plays an
important role in tumor immunity in laryngeal cancer. Additionally, the results confirmed
DC induction in tumor tissue is impaired by RT/CRT in clinically resected specimens.
Understanding these phenomena could open avenues for novel immunotherapies. The
further accumulation of clinicopathological and basic research data and validation studies
using a larger cohort will be necessary to clarify the mechanisms underlying tumor immune
responses involving DCs.

4. Materials and Methods
4.1. Patients

A total of 333 patients with laryngeal cancer treated at Saga University Hospital
between 2000 and 2020 were initially enrolled in this study. Among these, cases without
lymphadenectomy or lymph node biopsy, and those with histological types other than
squamous cell carcinoma were excluded. Finally, 73 patients were enrolled (Figure 4).
Comprehensive informed consent for the use of resected tissue for this research was
obtained from all patients, and the study protocol was approved by the Ethics Committee
of Saga University (2023-02-R-09).
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4.2. Immunohistochemistry

Immunohistochemistry (IHC) of CD1a and S-100 was carried out on representative
primary tumors and regional LNs. In the cases with nodal metastasis, both representative
metastatic and non-metastatic LNs were subjected to IHC. For patients without nodal
metastasis, only non-metastatic LNs were analyzed using IHC. As one patient had no non-
metastatic LNs, only metastatic nodes were subjected to IHC in that case. The specimens
were sectioned into 4 µm slices from Formalin-Fixed Paraffin-Embedded (FFPE) blocks.
The primary antibodies used were CD1a (Clone 010, prediluted; Dako, Glostrup, Denmark),
and S100 (GA50461–2 J; prediluted; Dako). IHC was performed using an Autostainer plus
automatic stainer (Dako). The Envision System (Dako) was employed as the secondary
antibody. Specimens on slides were visualized by diaminobenzidine tetrahydrochloride
and nuclei were counterstained with hematoxylin.

4.3. Assessment of CD1a- and S100-DCs

The IHC sections were scanned and converted to digital slides using a NanoZoomer
S360 (Hamamatsu Photonics, Shizuoka, Japan). CD1a-DCs and S100-positive DCs
(S100-DCs) were evaluated in 3 random hot spots at a magnification of ×100 (Figure 5).
The median values of CD1a-DCs and S100-DCs in the primary tumors were used as the
cut-off values and the patient cohort was divided into a high group and a low group.
The same cut-off value determined for the primary tumors was used in the evaluation of
LNs. Patients were also divided into high and low groups according to the degree of DC
infiltration into LNs.
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4.4. Statistical Analysis

All statistical analyses were performed using JMP Pro 13.1.0 software (SAS Institute,
Cary, NC, USA). For comparisons between two groups, Student’s t-test (two-tailed) was
used for comparison of the age. Fisher’s exact test (two-tailed) was used for comparison
of other factors. Univariate analyses were performed using the Cox proportional hazard
model.

Disease-specific survival (DSS) was defined as the period from surgery to cancer-
related death or the last follow-up. Overall survival (OS) was defined as the period from
surgery to death or the last follow-up. The maximum follow-up period during the study
was 120 months, with a median follow-up time of 45.0 months. The survival curve was
calculated by the Kaplan–Meier method, and a log-rank test was conducted.
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