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Abstract: Serine/arginine-rich splicing factors (SRSFs) are a family of proteins involved in RNA
metabolism, including pre-mRNA constitutive and alternative splicing. The role of SRSF proteins in
regulating mitochondrial activity has already been shown for SRSF6, but SRSF4 altered expression
has never been reported as a cause of bone marrow failure. An 8-year-old patient admitted to the
hematology unit because of leukopenia, lymphopenia, and neutropenia showed a missense variant
of unknown significance of the SRSF4 gene (p.R235W) found via whole genome sequencing analysis
and inherited from the mother who suffered from mild leuko-neutropenia. Both patients showed
lower SRSF4 protein expression and altered mitochondrial function and energetic metabolism in
primary lymphocytes and Epstein–Barr-virus (EBV)-immortalized lymphoblasts compared to healthy
donor (HD) cells, which appeared associated with low mTOR phosphorylation and an imbalance in
the proteins regulating mitochondrial biogenesis (i.e., CLUH) and dynamics (i.e., DRP1 and OPA1).
Transfection with the wtSRSF4 gene restored mitochondrial function. In conclusion, this study shows
that the described variant of the SRSF4 gene is pathogenetic and causes reduced SRSF4 protein
expression, which leads to mitochondrial dysfunction. Since mitochondrial function is crucial for
hematopoietic stem cell maintenance and some genetic bone marrow failure syndromes display
mitochondrial defects, the SRSF4 mutation could have substantially contributed to the clinical
phenotype of our patient.

Keywords: marrow failure; mitochondria; SRSF4; mTOR; CLUH; DRP1; OPA1

1. Introduction

Bone marrow failure (BMF) refers to the decreased production of one or more major
hematopoietic lineages due to diminished or absent hematopoietic precursors in the bone
marrow [1]. In particular, leukopenia and neutropenia require a specific diagnostic work up
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to rule out several malignant and non-malignant disorders. Specifically, clinical phenotypes
of neutropenia lasting more than 2 years or neutropenia showing after 5 years of age,
particularly if associated with leucopenia, have recently been shown to be secondary to
underlying congenital disorders in a considerable number of patients [2–4].

Serine-/arginine-rich splicing factors (SRSFs) belong to a family of proteins involved
in RNA metabolism, including pre-mRNA constitutive and alternative splicing. These
mechanisms are tightly regulated. While pre-mRNA splicing allows the maintenance of
cellular and tissue homeostasis, alternative splicing provides cells with multiple transcripts
to respond to physiological and environmental stress. Deregulated splicing is common in
cancer, and the altered expression of SRSF proteins has been described in several tumors
and metastasis. Furthermore, the heterozygous mutation of SRSF2 induced an increased
proliferation of hematopoietic stem and progenitor cells (HSPCs) with altered differentia-
tion, cytopenia, and myelodysplasia [5].

Among this protein family, the involvement of SRSF4 has already been reported in the
setting of hematological diseases. In two patients with autoimmune lymphoproliferative
syndrome (ALPS), the abnormal splicing of exon 6 of FAS, which encodes the part of
the protein that localizes in the plasma membrane and allows the FAS protein to act
as a signal between the environment and the cell, was shown to be present due to the
reduced expression of SRSF4 [6]. Moreover, mice with hypomorphic mutations in dyskerin
(DKC1) showed reduced expression of SRSF4, bone marrow hypo-cellularity, and cancer
predisposition [7].

In addition, the role of SRSF proteins in mitochondrial activity has already been
reported for SRSF6. Recently, Wagner et al. described that the loss of SRSF6 increased
mitochondrial fragmentation and reduced the oxygen consumption rate (OCR), oxidative
phosphorylation (OxPhos), and ATP synthesis in mouse embryonic fibroblasts (MEFs) [8].
It is well known that mitochondrial function is crucial for hematopoietic stem cell (HSC)
maintenance [9], and mitochondrial defects have been described in some congenital bone
marrow failure (cBMF) syndromes [10,11].

Germline mutations of the SRSF4 gene have never been reported as disease-causing.
Herein, we describe a case of a boy with leuko-neutropenia secondary to bone marrow
failure carrying a variant of the SRSF4 gene. To investigate whether this mutation in the
SRSF4 gene may also have an impact on mitochondrial metabolism, we evaluated the
expression of proteins involved in mitochondrial biogenesis and dynamics, as well as the
aerobic metabolism function in a cell line derived from the patient himself and in a cell line
derived from his mother, who was affected by a mild leukopenia.

2. Results
2.1. Genetic Analysis

Whole-genome sequencing (WGS) detected the missense variant c.703C>T in the
SRSF4 gene (NM_005626.5) shared between the proband (abbreviated Pt2 in the text) and
his mother (abbreviated Pt1 in the text) in the heterozygous state. This variant affects
codon Arg235 and induces the p.R235W substitution in the Arg/Ser (RS)-rich domain
that drives the activity, localization, and interactions of SRSF proteins [12]. It is classified
as a variant of uncertain (or unknown) significance (VUS) according to the Franklin soft-
ware (https://franklin.genoox.com/clinical-db/home, accessed on 18 July 2023) (Genoox,
Tel Aviv, Israel). However, other scores, suitable for predicting the deleteriousness of vari-
ants in the human genome, suggest its possible pathogenic role. In particular, the Combined
Annotation Dependent Depletion (CADD) (https://cadd.gs.washington.edu/, accessed on
18 July 2023) gave a score of 28.3, the suggested cutoff being between 10 and 20 (15 is the
most used) to identify potentially pathogenic variants; Protein Variation Effect Analyzer
(PROVEAN) (https://www.jcvi.org/research/provean, accessed on 18 July 2023) and Sort-
ing Intolerant From Tolerant For Genomes (SIFT4G) (https://sift.bii.a-star.edu.sg/sift4g/,
accessed on 18 July 2023) support pathogenicity, with scores of −5.27 and 0.001, respectively.
In fact, the cutoff for PROVEAN scores (https://urlsand.esvalabs.com/?u=https://www.
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jcvi.org/re&e=ed7a584b&h=40e5bc71&f=y&p=ysearch/provean, accessed on 18 July 2023)
has been set to −2.5 for highly balanced accuracy, and all lower values are associated with a
high probability of being deleterious. SIFT4G is a faster version of SIFT (Sorting Intolerant
From Tolerant), whose score ranges from 0.0 (deleterious) to 1.0 (tolerated). The deleterious
annotation of genetic variants using neural networks (DANN), a functional prediction score
based on a deep neural network (https://cbcl.ics.uci.edu/public_data/DANN/, accessed
on 18 July 2023), gave a score of 0.9937. The score can range from 0 to 1, with higher values
being more likely to be deleterious. Moreover, two additional software applications were
used to predict the conservation of the affected nucleotide position, namely, Phylogenetic
p-values (PhyloP) (https://bio-protocol.org/exchange/minidetail?type=30&id=9117820,
accessed on 18 July 2023), whose scores measure evolutionary conservation at individual
alignment sites, with positive scores for sites predicted to be conserved and negative for sites
expected to be fast-evolving (range from −20 to +30), gave a score of 5.77. The Genomic Evo-
lutionary Rate Profiling (GERP++) (http://mendel.stanford.edu/sidowlab/downloads/
gerp/index.html, accessed on 18 July 2023) scores range from −12.3 to 6.17, with higher
scores indicating higher evolutionary constraints. A score greater than 2 is considered
constrained, and our SRSF4 variant has a score of 4.16. In addition, the affected RS-rich
domain is critical for the SRSF4 protein, and this, along with the low frequency (6.6 × 10−6)
in the Genome Aggregation Database (gnomAD) (https://gnomad.broadinstitute.org/,
accessed on 18 July 2023), can further support a deleterious effect of the p.R235W variant.

2.2. The SRSF4 Mutation Reduces the Cellular Energy Status and the Aerobic Metabolism by
Affecting Oxidative Phosphorylation

The ATP/AMP ratio has been evaluated in the lymphoblasts derived from the two
examined patients to assess the effect of the SRSF4 gene mutation on the cell energy state by
comparing the results with those of healthy donors. Both samples carrying the SRSF4 gene
mutation showed a decrease in intracellular ATP levels (Figure 1A) and an increase in AMP
content (Figure 1B) compared to the healthy donor (HD) cell lines and SRSF4-corrected
cells. Because of these alterations, the patient cells show a marked reduction in ATP/AMP
ratio, indicating a poor cellular energy status (Figure 1C).

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 3 of 14 
 

 

(https://sift.bii.a-star.edu.sg/sift4g/ accessed on 18 July 2023) support pathogenicity, with 
scores of −5.27 and 0.001, respectively. In fact, the cutoff for PROVEAN scores 
(https://urlsand.esvalabs.com/?u=https%3A%2F%2Fwww.jcvi.org%2Fre&e=ed7a584b&h
=40e5bc71&f=y&p=ysearch/provean accessed on 18 July 2023) has been set to −2.5 for 
highly balanced accuracy, and all lower values are associated with a high probability of 
being deleterious. SIFT4G is a faster version of SIFT (Sorting Intolerant From Tolerant), 
whose score ranges from 0.0 (deleterious) to 1.0 (tolerated). The deleterious annotation of 
genetic variants using neural networks (DANN), a functional prediction score based on a 
deep neural network (https://cbcl.ics.uci.edu/public_data/DANN/ accessed on 18 July 
2023), gave a score of 0.9937. The score can range from 0 to 1, with higher values being 
more likely to be deleterious. Moreover, two additional software applications were used 
to predict the conservation of the affected nucleotide position, namely, Phylogenetic 
p-values (PhyloP) (https://bio-protocol.org/exchange/minidetail?type=30&id=9117820 accessed 
on 18 July 2023), whose scores measure evolutionary conservation at individual alignment sites, 
with positive scores for sites predicted to be conserved and negative for sites expected to be 
fast-evolving (range from −20 to +30), gave a score of 5.77. TheGenomic Evolutionary Rate 
Profiling (GERP++) (http://mendel.stanford.edu/sidowlab/downloads/gerp/index.html 
accessed on 18 July 2023) scores range from −12.3 to 6.17, with higher scores indicating 
higher evolutionary constraints. A score greater than 2 is considered constrained, and our 
SRSF4 variant has a score of 4.16. In addition, the affected RS-rich domain is critical for 
the SRSF4 protein, and this, along with the low frequency (6.6 × 10−6) in the Genome 
Aggregation Database (gnomAD) (https://gnomad.broadinstitute.org/ accessed on 18 
July 2023), can further support a deleterious effect of the p.R235W variant. 

2.2. The SRSF4 Mutation Reduces the Cellular Energy Status and the Aerobic Metabolism by 
Affecting Oxidative Phosphorylation 

The ATP/AMP ratio has been evaluated in the lymphoblasts derived from the two 
examined patients to assess the effect of the SRSF4 gene mutation on the cell energy state 
by comparing the results with those of healthy donors. Both samples carrying the SRSF4 
gene mutation showed a decrease in intracellular ATP levels (Figure 1A) and an increase 
in AMP content (Figure 1B) compared to the healthy donor (HD) cell lines and 
SRSF4-corrected cells. Because of these alterations, the patient cells show a marked re-
duction in ATP/AMP ratio, indicating a poor cellular energy status (Figure 1C). 
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Figure 1. Cellular energy status in SRSF4 cell lines. All data were evaluated in healthy donor (HD)
cell lines, cell lines mutated for SRSF4 (Pt1 and Pt2), mutated cell lines corrected with empty vector
(Pt1scr and Pt2scr), and mutated cell lines corrected with wild-type SRSF4 (Pt1corr and Pt2corr).
(A) Intracellular ATP content; (B) intracellular AMP content; (C) ATP/AMP ratio as a cell energy
status marker. Data are reported as mean ± standard deviation (SD) and are representative of three
independent experiments. *** and **** indicate a p < 0.001 or 0.0001, respectively, between Pt1 or Pt2
and HD. #### indicates a p < 0.0001 between the mutated sample and the corrected cells within the
same patient. §§ and §§§§ indicate a p < 0.01 or 0.0001, respectively, between Pt1 and Pt2.

However, it is noteworthy that Pt2 shows a higher decrease in ATP/AMP ratio than
Pt1, which is proportional to the expression of the SRSF4 protein (Figure 2A,B).
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Figure 2. Expression of SRSF4 in patients and healthy donors. All data were evaluated in healthy
donor (HD) cell lines, cell lines mutated for SRSF4 (Pt1 and Pt2), mutated cell lines corrected with
empty vector (Pt1scr and Pt2scr), and mutated cell lines corrected with wild-type SRSF4 (Pt1corr
and Pt2corr). (A) SRSF4 Western blot (WB) signal; (B) densitometric analysis of the SRSF4 signal
normalized to the actin signal. Data are reported as mean ± SD and are representative of four
independent experiments. **** indicates a p < 0.0001 between Pt1 or Pt2 and HD. #### indicates a
p < 0.0001 between the mutated sample and the corrected cells within the same patient. §§§§ indicates
a p < 0.0001 between Pt1 and Pt2.

The decrease in ATP/AMP ratio appears to be associated with OxPhos impairment,
as mutated cells are characterized by a reduction in both oxygen consumption (OCR,
Figure 3B,E) and ATP synthesis (Figure 3A,D). Again, Pt2 shows a more pronounced
decrease in OxPhos function than Pt1, and transfection with the wild-type SRSF4 gene
reverts the metabolic defect. However, in both SRSF4 lines, the drop in OCR is less than
that in ATP synthesis, so the P/O ratio, an index of OxPhos efficiency, is decreased in
patients compared to the control sample (Figure 3C,F).

It is known that the uncoupling between respiration and energy production is asso-
ciated with a further decline in ATP synthesis and an increased risk of reactive oxygen
species (ROS) production and related oxidative damage [13]. This observation is also
valid for SRSF4 cells, which display a malondialdehyde accumulation, a marker of lipid
peroxidation (Figure 4).

Interestingly, the aerobic metabolism alteration appears to involve both the pathways
led by Complexes I or II, suggesting that the OxPhos impairment may depend on the entire
electron transport chain. This hypothesis has been confirmed through the activity reduction
of all four respiratory complexes (Figure 5), which, as with the other parameters, appears
more pronounced in Pt2.

2.3. The SRSF4 Mutation Causes a Reduction in mTOR Phosphorylation and Expression and an
Alteration in Mitochondrial Dynamics

To understand the causes of OxPhos dysfunction, the phosphorylation level and
expression of mTOR, a serine/threonine kinase that plays a pivotal role in regulating
mitochondrial function [14], were assessed. The data reported in Figure 6 show that in
both lines derived from patients mutated for SRSF4, mTOR phosphorylation appears
lower than in healthy controls and corrected cells, although Pt2 shows significantly lower
values than Pt1. In addition, Pt2 also shows a marked decrease in total mTOR expression,
which is much less evident in Pt1. In other words, the SRSF4 mutation appears to cause
decreased activation of the mTOR-regulated pathway due to the low phosphorylation and
lower expression.
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cell lines, cell lines mutated for SRSF4 (Pt1 and Pt2), mutated cell lines corrected with empty vec-
tor (Pt1scr and Pt2scr), and mutated cell lines corrected with wild-type SRSF4 (Pt1corr and Pt2corr).
(A) Pyruvate/malate (P/M)-induced ATP synthesis; (B) P/M-induced oxygen consumption rate (OCR);
(C) P/M-induced P/O ratio as an OxPhos efficiency marker; (D) succinate (Succ)-induced ATP synthesis;
(E) Succ-induced OCR; (F) Succ-induced P/O ratio as an OxPhos efficiency marker. Data are reported as
mean ± SD and are representative of three independent experiments. **** indicates a p < 0.0001 between
Pt1 or Pt2 and HD. #### indicates a p < 0.0001 between the mutated sample and the corrected cell within
the same patient. §§ and §§§§ indicate a p < 0.01 or 0.0001, respectively, between Pt1 and Pt2.

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 6 of 14 
 

 

 
Figure 4. Lipid peroxidation accumulation in SRSF4 cell lines. All data were evaluated in healthy 
donor (HD) cell lines, cell lines mutated for SRSF4 (Pt1 and Pt2), mutated cell lines corrected with 
empty vector (Pt1scr and Pt2scr), and mutated cell lines corrected with wild-type SRSF4 (Pt1corr 
and Pt2corr). The graph represents the intercellular malondialdehyde (MDA) content as a lipid 
peroxidation accumulation marker. Data are reported as mean ± SD and are representative of four 
independent experiments. **** indicates a p < 0.0001 between Pt1 or Pt2 and HD. #### indicates a p < 
0.0001 between the mutated sample and the corrected cell within the same patient. §§§§ indicates a 
p < 0.0001 between Pt1 and Pt2. 

Interestingly, the aerobic metabolism alteration appears to involve both the path-
ways led by Complexes I or II, suggesting that the OxPhos impairment may depend on 
the entire electron transport chain. This hypothesis has been confirmed through the ac-
tivity reduction of all four respiratory complexes (Figure 5), which, as with the other 
parameters, appears more pronounced in Pt2. 

Figure 4. Lipid peroxidation accumulation in SRSF4 cell lines. All data were evaluated in healthy donor
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Figure 5. Respiratory complex activity in SRSF4 cell lines. All data were evaluated in healthy
donor (HD) cell lines, cell lines mutated for SRSF4 (Pt1 and Pt2), mutated cell lines corrected with
empty vector (Pt1scr and Pt2scr), and mutated cell lines corrected with wild-type SRSF4 (Pt1corr
and Pt2corr). (A) NADH-ubiquinone oxidoreductase (Complex I) activity; (B) succinate-coenzyme
Q reductase (Complex II) activity; (C) coenzyme Q-cytochrome c reductase (Complex III) activity;
(D) cytochrome oxidase (Complex IV) activity. Data are reported as mean ± SD and are representative
of four independent experiments. ** and **** indicate a p < 0.01 or 0.0001, respectively, between Pt1 or
Pt2 and HD. ### and #### indicate a p < 0.001 or 0.0001, respectively, between the mutated sample
and the corrected cell within the same patient. §§§§ indicates a p < 0.0001 between Pt1 and Pt2.

Since the OxPhos functionality also depends on the modulation of the mitochondrial
network dynamic, the expressions of CLUH, an RNA-binding protein that regulates the
expression of proteins involved in mitochondrial fusion and fission (i.e., OPA1, a fusion
regulatory protein, and DRP1, a protein involved in fission [15]), were evaluated. The data
show that both patients, especially Pt2, are characterized by a low expression of CLUH
and OPA1 and a high expression of DRP1 (Figure 6), suggesting an altered regulation of
mitochondrial dynamics in favor of fission, recovered through correction with the wild-type
SRSF4 gene.
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Figure 6. Expression of mTOR and proteins involved in the mitochondrial network dynamic in SRSF4
cell lines. All data were evaluated in healthy donor (HD) cell lines, cell lines mutated for SRSF4 (Pt1
and Pt2), mutated cell lines corrected with empty vector (Pt1scr and Pt2scr), and mutated cell lines
corrected with wild-type SRSF4 (Pt1corr and Pt2corr). (A) WB signals and relative densiometric
analysis of phosphorylated and total mTOR ratio (B), CLUH (C), OPA1 (D), and DRP1 (E). Each
signal was normalized to the actin signal. Data are reported as mean ± SD and are representative
of four independent experiments. *** and **** indicate a p < 0.001 or 0.0001, respectively, between
Pt1 or Pt2 and HD. # indicate a p < 0.05 and #### indicate a p < 0.0001, respectively, between the
mutated sample and the corrected cell within the same patient. §, §§ and §§§§ indicate a p < 0.05, 0.01
or 0.0001, respectively, between Pt1 and Pt2.

3. Discussion

In addition to the classical cBMF, several germline defects predisposing individuals to
MF and potentially evolving to myelodysplastic syndrome (MDS) and leukemia have been
increasingly discovered (GATA2, SAMD9, and DADA2) in the last few years [16–21]. In
some cases, overlapping clinical features between immune dysregulation and concomitant
peripheral blood cell destruction have been shown, and thus represent a considerable group
of non-classical cMFs in children. In this setting, long-lasting leukopenia and neutropenia
may represent a pivotal sign of such disorders [2] and therefore deserve a specific and
accurate hematological and immunological work up [22]. In our patient, the strongly
suggestive family history and a long-lasting leuko-neutropenia induced us to perform
a deep genetic work up, revealing the presence of a variant of SRSF4 never reported in
subjects with hematological diseases.

The cell lines derived from the 8-year-old patient and his mother affected by mild MF
and leukopenia, respectively, show an mTOR hypophosphorylation, an altered dynamicity
in the mitochondrial network, and an aerobic metabolism derangement. The active role of
the SRSF4 mutated gene in these molecular dysfunctions is confirmed via the observations
that the severity of the alterations is inversely proportional to the SRSF4 protein expression
and that the wild-type SRSF4 gene transfection in patient cells completely reverses all the
dysfunctions. Moreover, defects in splicing machinery could induce alternative splicing
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in proteins that regulate epigenetics signals, causing a difference in phenotype between
mother and child [23].

The dysfunctional OxPhos activity seems to be triggered by the imbalance between
mitochondrial fusion and fission, which, in turn, could depend on the altered mTOR
phosphorylation and CLUH expression, two modulators of mitochondrial function [15,16].
In detail, the phosphorylation of the eukaryotic initial factor 4E-binding protein (eIF4E-
BP) by mTOR induces the mRNA translation of several genes that control mitochondrial
activity and biogenesis, including the balance between fusion and fission dynamics [24,25].
Moreover, cells depleted for CLUH show clustering of the mitochondrial network near
the nucleus, ultrastructural abnormalities, and deficiencies in the enzymatic activities of
respiratory complexes and Krebs cycle enzymes. CLUH also regulates the expression of
several proteins involved in the mitochondrial fusion and fission processes [26], which,
in turn, influence OxPhos activity and efficiency [27]. In fact, the aerobic metabolism is
most efficient when single mitochondria are organized in a network [26] that follows the
course of the endoplasmic reticulum. Conversely, an imbalance towards mitochondrial
fission, as observed in our patient models due to the high DRP1 expression, results in a
decreased capacity to synthesize ATP and increased ROS production [28]. In fact, both cell
lines show a lower energy status compared to the HD and corrected cells and an increased
accumulation of peroxidized lipids.

Interestingly, mitochondrial dysfunction has already been shown after the loss of
SRSF6 [8] and has also been reported in other cMF syndromes (Pearson, Fanconi anemia
(FA), Schwachman–Diamond Syndrome (SDS)) [10–12]. Therefore, it may be speculated
that the SRSF4-related mitochondrial and mTOR defects may contribute to the marrow
failure observed in the two reported patients.

Indeed, mitochondrial function is critical in HSC maintenance, self-renewal, and
differentiation [29]. Ansò et al. demonstrated that impaired OxPhos modifies DNA in
hematopoietic progenitor and stem cells (HPSCs) and that this alters the expression of
proteins involved in HSC renewal and differentiation [30]. In addition, an impaired OxPhos
due to reduced beta-oxidation may negatively affect the self-renewal and asymmetric
division of HSCs [26] and, thus, differentiation.

In conclusion, this study shows that the described variant of the SRSF4 gene causes
reduced protein expression, leading to the impairment of mitochondrial biogenesis and
dynamics. Although we have not found a direct relation between this genetic defect and
bone marrow failure, our results support the hypothesis that the SRSF4 mutation could
substantially contribute to the clinical phenotype observed in our patients.

4. Materials and Methods
4.1. Patients

A 8-year-old patient (referred to in the Results Section as Pt2), was admitted to the
hematology unit in IRCCS Istituto Giannina Gaslini, Genoa, Italy, because of leukopenia
with a history of lymphopenia and neutropenia lasting for 3 years. Two ancestors from
the maternal branch had died due to bone marrow failure and leukemia, respectively.
The mother herself (referred to as Pt1), suffered from chronic leuko-neutropenia with a
white blood cell (WBC) and neutrophil (N) count of 2900/uL (range 2100–3700/uL) and
1200/uL (range 1000–1500/uL), respectively, over a period of 30 years with no relevant
infection history.

Pt2 had neither malformation nor development or growth delay. At the age of five,
a full blood count (FBC) performed after a cytomegalovirus (CMV) infection showed
leukopenia (WBC 2800/uL) and moderate neutropenia (N 660/uL) that, although atten-
uated, persisted at the age of 8 (WBC 3560/uL, N 1390/uL), along with raised vitamin
B12 (1043 pg/mL). Anti-neutrophil antibody testing and a complete diagnostic work upfor
other immune-dysregulation features resulted negative. Initial bone marrow aspiration,
cytogenetics analysis, trephine biopsy, telomere length measurement in granulocytes and
lymphocytes, diepoxybutane (DEB) testing, cell cycle, and cell survival analysis after ex-
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position to mitomycin C yielded normal results. However, during a 6-year follow-up,
leuko-neutropenia persisted and a trephine biopsy showed a progressive reduction in
hematopoietic cellularity (30–40%).

4.2. Informed Consent

Experiments and molecular genetic analyses were performed following informed
consent and approval from the Institute Review Board of IRCCS Istituto Giannina Gaslini
(Liguria Regional Ethics Committee Register number: 4966).

4.3. Genetic Analysis

Whole-genome sequencing was performed at the Genomics Facility of the Istituto
Italiano di Tecnologia (Genoa, Italy), using an Illumina NovaSeq 6000 system, and the data
obtained were further analyzed in the Clinical Bioinformatics Unit of the Istituto Giannina
Gaslini (Genoa, Italy). A targeted analysis of the coding regions of 315 genes related to BMF
and primary immunodeficiencies [31] was initially performed, but no pathogenic variants
were found. Then, whole-genome sequencing (WGS) on the proband and his mother was
performed. The whole coding part of the genome, including a 100 bp segment flanking all
the exons, has been taken into consideration for the second tier of analysis.

Given the maternal transmission of the clinical phenotype, both an autosomal domi-
nant and an X-linked inheritance were considered. Heterozygous non-synonymous and
splicing variants at ±2 bp, present in both patients, were taken into account and selected
based on their allele frequency (variants unreported or reported variants with a frequency
<1% in the general healthy population). The identified SRSF4 variant was validated via
Sanger sequencing both in the proband and in his mother.

4.4. Cell Culture and Transfection

Primary lymphocytes and Epstein–Barr-virus (EBV)-immortalized lymphoblasts from
patients and a healthy donor (HD) were cultured in RPMI medium (#21875091,Thermo
Fisher Scientific, Waltham, MA, USA) with 10% fetal calf serum (FCS; #ECS0160L, Euro-
clone, Pero (MI), Italy). Lymphoblast cells were transfected with SRSF4 cDNA-containing
expression vector or empty vector using Lipofectamine 3000 (#13778150, Thermo Fisher
Scientific, Waltham, MA, USA) according to the manufacturer’s instructions. Cells were
harvested after 24 h for subsequent RNA extraction and after 48 h for metabolic and
biochemical analysis.

4.5. RNA Extraction, Retrotranscription, and Expression of the SRSF4 Gene

The efficiency of transfection was determined via the real-time PCR testing of the
SRSF4 expression level in transfected lymphoblasts. For this purpose, RNA from trans-
fected cells was extracted using the RNeasy mini kit (#74104,Qiagen, Hilden, Germany),
and RNA was reverse-transcribed using the SuperScript VILO IV cDNA Synthesis Kit
(#11756050, Invitrogen, Waltham, MA, USA). The expression of the SRSF4 gene was eval-
uated using a specific TaqMan Gene expression Assay as described by the manufacturer
(catalog number 4331182, assay ID: Hs00194538_m1Applied Biosystems, Waltham, MA,
USA). Gene expression was normalized to the GAPDH expression. Experiments were
performed in triplicate.

4.6. Evaluation of Aerobic Metabolism Function

To measure the function of OxPhos, the OCR and the F0F1-ATPsynthase activity
were assayed.

Anamperometric electrode (UnisenseMicrorespiration, Aarhus, Denmark) was used
to measure the OCR in a closed chamber. For each experiment, 105 cells, permeabilized
prior for 1 min with 0.03 mg/mL digitonin, were used. Then, 10 mM pyruvate with 5 mM
malate (#P4562 and #M8304, respectively, Merck, Darmstadt, Germany) or 20 mM succinate
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(#S7501, Merck, Darmstadt, Germany) were added to promote the respiratory pathway
driven by Complexes I or II, respectively [10].

The F0F1-ATP synthase activity was measured in 105 cells resuspended in a solution
containing 50 mM Tris-HCl (pH 7.4; #T1503, Merck, Darmstadt, Germany), 50 mMKCl
(#P9333, Merck, Darmstadt, Germany), 1 mM EGTA (#03777, Merck, Darmstadt, Germany),
2 mM MgCl2 (#M2670, Merck, Darmstadt, Germany), 0.6 mM ouabain (#O0200000, Merck,
Darmstadt, Germany), 0.25 mM di(adenosine)-5-penta-phosphate (an adenylate kinase
inhibitor, #D1387, Merck, Darmstadt, Germany), and 25 µg/mL ampicillin (#A9393, Merck,
Darmstadt, Germany) for 10 min. An amount of 10 mM pyruvate and 5 mM malate (#P4562
and #M8304, respectively, Merck, Darmstadt, Germany) or 20 mM succinate (#S7501,
Merck, Darmstadt, Germany) were added to stimulate the pathway led by Complex I or II,
respectively. Using a luminometer (GloMax® 20/20 Luminometer, Promega Italia, Milan,
Italy) and the luciferin/luciferase chemiluminescent method (luciferin/luciferase ATP
bioluminescence assay kit CLS II, #11699695001Roche, Basel, Switzerland), ATP production
was measured for 2 min at intervals of 30 s. ATP standard solutions with concentrations
between 10−8 and 10−5 M were employed for the calibration [10].

To evaluate the OxPhos efficiency, the ratio between the aerobic synthesized ATP and
the consumed oxygen (P/O) was calculated. Efficient mitochondria display a P/O value of
around 2.5 or 1.5 [31] when stimulated with pyruvate and malate or succinate, respectively.
A P/O ratio lower than these values indicates that oxygen is not completely used for energy
production but contributes to ROS formation [14].

4.7. Assessment of the Cellular Energy Status

To evaluate the cellular energy status, the intracellular ATP and AMP concentrations
were assayed in 50 µg of total protein to calculate the ATP/AMP ratio. ATP content
spectrophotometric analysis was performed following NADP+ reduction at 340 nm. The
assay solution contained 100 mM Tris-HCl (pH 8.0; #T1503, Merck, Darmstadt, Germany),
0.2 mM NADP+ (N5755, Merck, Darmstadt, Germany), 5 mM MgCl2 (#M2670, Merck,
Darmstadt, Germany), 50 mM glucose (#1.04074, Merck, Darmstadt, Germany), and 3 µg
of pure hexokinase and glucose-6-phosphate dehydrogenase (#HKG6PDH-RO, Merck,
Darmstadt, Germany).

AMP was measured spectrophotometrically following the oxidation of NADH at
340 nm. The reaction medium was composed of 100 mM Tris-HCl (pH 8.0; #T1503, Merck,
Darmstadt, Germany), 5 mM MgCl2 (#M2670, Merck, Darmstadt, Germany), 0.2 mM ATP
(#A26209, Merck, Darmstadt, Germany), 10 mM phosphoenolpyruvate (#10108294001,
Merck, Darmstadt, Germany), 0.15 mM NADH (#N6005, Merck, Darmstadt, Germany),
10 IU adenylate kinase, 25 IU pyruvate kinase, and 15 IU lactate dehydrogenase (#P0294,
Merck, Darmstadt, Germany) [10].

4.8. Evaluation of Lipid Peroxidation

The thiobarbituric acid reactive substance (TBARS) assay was used to measure the
malondialdehyde (MDA) concentration as a lipid peroxidation marker. The TBARS so-
lution was composed of 0.25 M HCl (#1.37007, Merck, Darmstadt, Germany), 0.25 mM
trichloroacetic acid (#T9159, Merck, Darmstadt, Germany), and 26 mM thiobarbituric acid
(#T5500, Merck, Darmstadt, Germany). An amount of 50 µg of total protein dissolved in
300 µL of Milli-Q water was added along with 600 µL of TBARS solution. For 1 h, the
mixture was incubated at 95 ◦C and evaluated spectrophotometrically at 532 nm. MDA
(#63287, Merck, Darmstadt, Germany) standard solutions with concentrations between 1
and 20 µM were employed for the calibration [32].

4.9. Assay of the Electron Transfer Chain Complexes

All assays were performed in 50 µg of cell homogenate. Complex I (NADH-ubiquinone
oxidoreductase) and Complex II (Succinate-coenzyme Q reductase) activities were mea-
sured spectrophotometrically following ferricyanide reduction at 420 nm. For both assays,
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the medium contained 50 mM Tris–HCl (pH 7.4; #T1503, Merck, Darmstadt, Germany),
50 mMKCl (#P9333, Merck, Darmstadt, Germany), 5 mM MgCl2 (#M2670, Merck, Darm-
stadt, Germany), 1 mM EGTA (#03777, Merck, Darmstadt, Germany), 0.8 mM ferrocyanide
(#13425, Merck, Darmstadt, Germany), and 50 µM antimycin A (#A8674, Merck, Darmstadt,
Germany). The reaction was started via the addition of 0.6 mM NADH (#N6005,Merck,
Darmstadt, Germany) or 10 mM succinate (#S7501, Merck, Darmstadt, Germany), for
Complexes I or II, respectively.

Complex III (Coenzyme Q-cytochrome c reductase) activity was measured spectropho-
tometrically following the reduction of oxidized cytochrome c (cytc) at 550 nm. The assay
medium contained 50 mM Tris-HCl (pH 7.4; #T1503, Merck, Darmstadt, Germany), 5 mM
KCl (#P9333, Merck, Darmstadt, Germany), 2 mM MgCl2 (#M2670, Merck, Darmstadt, Ger-
many), 0.5 M NaCN (#380970, Merck, Darmstadt, Germany), 0.03% oxidized cytc (#C5499,
Merck, Darmstadt, Germany), 0.6 mM NADH (#N6005, Merck, Darmstadt, Germany), and
20 mM succinate (#S7501, Merck, Darmstadt, Germany).

Complex IV (cytochrome c oxidase) activity was measured spectrophotometrically
following the oxidation of reduced cytc at 550 nm. The assay medium contained 50 mM Tris-
HCl (pH 7.4; #T1503, Merck, Darmstadt, Germany), 5 mM KCl (#P9333, Merck, Darmstadt,
Germany), 2 mM MgCl2 (#M2670, Merck, Darmstadt, Germany), and 0.03% reduced cytc
(#C5499, Merck, Darmstadt, Germany).

4.10. Western Blot Analysis

Denaturing electrophoresis (SDS-PAGE) was performed on 30 µg of proteins employ-
ing a 4–20% gradient gel (#4561094, BioRad, Hercules, CA, USA). The following primary
antibodies were used: anti-SRSF4 (#PA5-36366, ThermoFisher Scientific, Waltham, MA,
USA), anti-phospho-mammalian target of rapamycin (mTOR, #5536S, Cell Signaling Tech-
nology, Danvers, MA, USA), anti-mTOR (#2983S, Cell Signaling Technology, Danvers, MA,
USA), anti-clustered mitochondria homolog (CLUH, #A301-764A, Bethyl Laboratories,
Montgomery, TX, USA), anti-OPA1 (#HPA036926, Merck, Darmstadt, Germany), anti-DRP1
(#ab184247, Abcam, Cambridge, UK), and anti-Actin (#MA1-140, ThermoFisher Scientific,
Waltham, MA, USA). All primary antibodies were diluted following the manufacturer’s
instructions in PBS plus 0.15% Tween 20 (PBSt; #11332465001, Roche, Basel, Switzerland).
Specific secondary antibodies were employed (#A0168 and #SAB3700870, Merck, Darm-
stadt, Germany), all diluted 1:10,000 in PBSt. Bands were detected in the presence of an
enhanced chemiluminescence substrate (ECL, #1705061, BioRad, Hercules, CA, USA) using
a chemiluminescence system (Alliance 6.7 WL 20M, UVITEC, Cambridge, UK). Band inten-
sity was evaluated with Uvitec-1D 2015 software (UVITEC, Cambridge, UK). All bands of
interest were normalized versus the actin signal detected on the same membrane.

4.11. Statistical Analysis

Data were analyzed using one-way ANOVA followed by Tukey’s multiple comparison
test using Prism 8 Software (GraphPad Software Inc., Boston, MA, USA). Data are expressed
as mean ± SD and are representative of at least three independent experiments. An error
with a probability of p < 0.05 was considered significant.
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