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Abstract: The tunica muscularis of mammalian esophagi is composed of striated muscle and smooth
muscle. Contraction of the esophageal striated muscle portion is mainly controlled by cholinergic
neurons. On the other hand, smooth muscle contraction and relaxation are controlled not only by
cholinergic components but also by non-cholinergic components in the esophagus. Adenosine triphos-
phate (ATP) is known to regulate smooth muscle contraction and relaxation in the gastrointestinal
tract via purinergic receptors. However, the precise mechanism of purinergic regulation in the esoph-
agus is still unclear. Therefore, the aim of the present study was to clarify the effects of ATP on the
mechanical responses of the esophageal muscle in mice. An isolated segment of the mouse esophagus
was placed in a Magnus’s tube and longitudinal mechanical responses were recorded. Exogenous
application of ATP induced contractile responses in the esophageal preparations. Tetrodotoxin, a
blocker of voltage-dependent sodium channels in neurons and striated muscle, did not affect the
ATP-induced contraction. The ATP-evoked contraction was blocked by pretreatment with suramin,
a purinergic receptor antagonist. RT-PCR revealed the expression of mRNA of purinergic receptor
genes in the mouse esophageal tissue. The findings suggest that purinergic signaling might regulate
the motor activity of mouse esophageal smooth muscle.
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1. Introduction

Motor functions of the gastrointestinal tract are regulated by various transmitters
including purines such as adenosine, adenosine diphosphate (ADP) and adenosine triphos-
phate (ATP) [1–5]. There are two types of purine receptors: one type are P1 receptors for
adenosine and the other type are P2 receptors for ATP and ADP [1,2,6,7]. P2 receptors
include P2X receptors and P2Y receptors. P2X receptors are ligand-gated ion channels and
P2Y receptors are G protein-coupled receptors (GPCRs) [1,2,6,7]. At present, seven P2X
(P2X1-7) and eight P2Y (P2Y1, 2, 4, 6, and 11–14) receptor subtypes have been identified [8].
However, there are also some reports that rodents such as rats and mice do not have P2Y11
receptors [9]. P2 receptors are expressed in the gastrointestinal tract, including the esoph-
agus [2,8,10–13]. Previous studies have demonstrated that purines cause excitatory and
inhibitory responses in the smooth muscle cells of the gastrointestinal tract [2,8,11,14,15].

The tunica muscularis of mammalian esophagi contains not only smooth muscle fibers
but also striated muscle fibers [16,17]. For example, the upper portion is composed of
striated muscle fibers, the lower portion is composed of smooth muscle fibers, and the
middle portion is a mixed composition of these fibers in human and cat esophagi [17]. On
the other hand, in dogs, ruminants, and rodents, including mice, rats and hamsters, the
muscle layer of the esophagus consists largely of striated muscle fibers [17]. The motility of
the esophagus is controlled by extrinsic cholinergic vagal neurons [18,19] and by intrinsic
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myenteric neurons releasing various neurotransmitters such as acetylcholine, tachykinins,
nitric oxide, and galanin [17,19–22]. In the case of striated muscles, cholinergic receptors are
nicotinic receptors, while in the case of smooth muscles, they are muscarinic receptors. In
addition, the esophagus has longitudinal smooth muscle fibers in the muscularis mucosae
even in mammals that have a striated muscle esophagus [23,24]. The mouse esophagus
also contains a smooth muscle layer in the muscularis mucosae. The esophageal muscularis
mucosa is used for the study of smooth muscle contractility in the esophagus [23–27].

Purinergic receptors have been detected histologically in the esophagus [11,12]. Al-
though there have been functional studies on the purinergic regulation of esophageal
smooth muscle [27,28], the precise mechanism is still unclear. Therefore, the aim of the
present study was to determine the characteristics of mechanical responses induced by
ATP in the mouse esophagus.

2. Results
2.1. Molecular Identification of P2 Receptors in the Mouse Esophagus

We examined the expression of subtypes of P2 receptors in mouse esophageal tissues
by using reverse transcription polymerase chain reaction (RT-PCR). Amplified products of
mRNA of P2X1, 2, 3, 4, 5, and 7 receptors and P2Y1, 2, 4, 6, 12, 13, and 14 receptors were
observed in appropriate sizes (Figure 1).
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Figure 1. Expression of subtypes of P2 receptors in the mouse esophageal tissue determined by
RT-PCR. Amplified products of mRNA of P2X1, P2X2, P2X3, P2X4, P2X5, P2X6, P2X7, P2Y1, P2Y2,
P2Y4, P2Y6, P2Y12, P2Y13, P2Y14, and β-actin were detected in appropriate sizes (n = 3). (A) Shows
expression of P2X receptors and β-actin. (B) Shows expression of P2Y receptors and β-actin.

2.2. Effects of ATP on the Mechanical Activity of Mouse Esophageal Segments

Exogenous application of ATP (100 µM) induced a transient contraction in a longitu-
dinal direction of the mouse esophageal segments (Figure 2A). The contractile responses
increased in a concentration-dependent manner (Figure 2B). On the other hand, tetrodotoxin
(1 µM) did not affect the ATP-induced contractions of the mouse esophagus (Figure 3).
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Figure 2. ATP-evoked contractions in the mouse esophagus. (A) A representative trace demonstrat-
ing the effect of ATP on longitudinal tension of the mouse esophagus is shown. (B) Dose-depend-
ency of the contractile responses evoked by ATP in the mouse esophagus is summarized (n = 6). The 
values of contractile responses are normalized as percentages of KCl (60 mM)-induced contractions. 
Each bar represents the mean of data ± standard error of the mean (S.E.M.). * p < 0.05. 

  

Figure 3. Effects of tetrodotoxin on ATP-evoked contraction in the mouse esophagus. (A) Repre-
sentative traces of the contraction induced by ATP (100 µM) of the mouse esophagus in the absence 
or presence of tetrodotoxin (1 µM) are shown. (B) Summarized bar graphs of contraction evoked by 
ATP (100 µM) of the mouse esophagus in the absence (−) or presence (+) of tetrodotoxin (1 µM) are 
shown (n = 5). The values of contractile responses are normalized as percentages of KCl (60 mM)-
induced contractions. Each bar graph represents the mean of data ± S.E.M. 
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the P2Y receptor. Pretreatment with cibacron blue F3GA (CBF3GA) (200 µM), a P2Y re-
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Figure 2. ATP-evoked contractions in the mouse esophagus. (A) A representative trace demonstrating
the effect of ATP on longitudinal tension of the mouse esophagus is shown. (B) Dose-dependency of
the contractile responses evoked by ATP in the mouse esophagus is summarized (n = 6). The values
of contractile responses are normalized as percentages of KCl (60 mM)-induced contractions. Each
bar represents the mean of data ± standard error of the mean (S.E.M.). * p < 0.05.
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Figure 3. Effects of tetrodotoxin on ATP-evoked contraction in the mouse esophagus. (A) Representa-
tive traces of the contraction induced by ATP (100 µM) of the mouse esophagus in the absence or
presence of tetrodotoxin (1 µM) are shown. (B) Summarized bar graphs of contraction evoked by ATP
(100 µM) of the mouse esophagus in the absence (−) or presence (+) of tetrodotoxin (1 µM) are shown
(n = 5). The values of contractile responses are normalized as percentages of KCl (60 mM)-induced
contractions. Each bar graph represents the mean of data ± S.E.M.

2.3. Effects of Purinoceptor Antagonists on ATP-Evoked Contractions in the Mouse Esophagus

To determine whether ATP-evoked contractions are mediated via purinoceptors, we
examined the effects of antagonists for purinoceptors. Pretreatment with suramin (200 µM),
a non-selective P2 receptor antagonist, blocked the ATP (100 µM)-induced contractions
in mouse esophageal segments (Figure 4). Next, we tested a selective antagonist for the
P2Y receptor. Pretreatment with cibacron blue F3GA (CBF3GA) (200 µM), a P2Y receptor
antagonist, inhibited the ATP-evoked contractions (Figure 5).
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Figure 4. Effects of a non-selective antagonist for P2 receptors on ATP-evoked contraction in
the mouse esophagus. (A) Representative tracings demonstrating the contraction induced by
ATP (100 µM) in the mouse esophagus under the absence or presence of suramin (200 µM) are
shown. (B) Summarized bar graphs of contraction evoked by ATP (100 µM) of the mouse esophagus
in the absence (−) or presence (+) of suramin (200 µM) are shown (n = 5). The values of contractile
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responses are normalized as percentages of KCl (60 mM)-induced contractions. Each bar represents
the mean of data ± S.E.M. * p < 0.05, compared to the control.
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Figure 5. Effects of a selective antagonist for P2Y receptors on ATP-evoked contraction in the mouse
esophagus. (A) Representative tracings demonstrating the contraction induced by ATP (100 µM) of
the mouse esophagus in the absence or presence of CBF3GA (200 µM) are shown. (B) Summarized bar
graphs of contraction evoked by ATP (100 µM) of the mouse esophagus in the absence (−) or presence
(+) of CBF3GA (200 µM) are shown (n = 5). The values of contractile responses are normalized as
percentages of KCl (60 mM)-induced contractions. Each bar represents the mean of data ± S.E.M.
* p < 0.05, compared to the control.

3. Discussion

In the present study, we investigated the characteristics of mechanical responses in-
duced by ATP in the mouse esophagus. Our major findings are: (1) we detected expression
of P2 receptors in the mouse esophagus, (2) exogenous application of ATP evoked contrac-
tions of the esophageal smooth muscle, and (3) pretreatment with a selective P2Y receptor
antagonist inhibited the ATP-induced contraction. These findings suggest that ATP is
involved in excitatory regulation of the longitudinal smooth muscle in the muscularis
mucosae of the mouse esophagus via P2Y receptors.

The muscle composition of the tunica muscularis is striated muscle fiber in the
mouse esophagus [17]. In addition, the mouse esophagus also contains a smooth muscle
layer in the muscularis mucosae. The smooth muscle layer in the muscularis mucosae is
longitudinally arranged and thus can express longitudinal mechanical responses exclu-
sively [23,29,30]. Our results showed that application of ATP evoked contraction longitudi-
nally in the esophageal segments. To determine whether ATP acts on smooth muscle or
striated muscle, we used tetrodotoxin, which can inhibit contractile activity of striated mus-
cle via blockade of voltage-dependent sodium channels. Pretreatment with tetrodotoxin
did not affect the ATP-induced contraction. The concentration of tetrodotoxin used in this
study (1 µM) is enough to abolish esophageal striated muscle contractility [23]. Hence, it
is reasonable that ATP-induced contraction in the mouse esophagus is a smooth muscle
activity in the muscularis mucosae. In addition, since tetrodotoxin can block neuronal
activity, the possibility of involvement of neurons in ATP-induced contraction also might
be ruled out.

Pretreatment with application of a P2Y receptor antagonist inhibited the ATP-induced
contraction in the mouse esophagus. The results indicate that P2Y receptors are involved
in ATP-induced contraction of the mouse esophagus. It is known that ATP causes ex-
citatory responses in the smooth muscle cells of other gastrointestinal tracts [2,8,14,15].
The esophagus might have a similar regulation system via P2Y receptors. P2Y receptors
are GPCRs [1,2,6,7]. P2Y1, 2, 4, and 6 are coupled preferentially with Gq/11 protein [1],
which can activate phospholipase C, generate inositol trisphosphate, increase intracellular
calcium, or generate diacylglycerol, and activate protein kinase C and then lead to smooth
muscle contractions [29]. ATP acts on several P2Y receptors with high affinity [1]. Further
investigation is required to identify the subtype of P2Y receptors involved in the excitatory
regulation by ATP in esophageal motility.

In previous studies, the mouse esophagus contained P2X3 receptors in the myen-
teric neurons [12]. If exogenous application of ATP acts on the P2X3 receptors, P2X3
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receptor-positive myenteric neurons might be activated, which might induce responses
in the esophagus. In this study, however, ATP-induced contractile responses were not
affected by pretreatment with tetrodotoxin, which is a blocker of voltage-dependent sodium
channels in the neurons. In addition, ATP-induced contractile responses were inhibited by
pretreatment with the P2Y receptor antagonist. The results show that our obtained data are
not associated with the biological activity of P2X3 receptors in the myenteric neurons. In
future, examination of the roles of P2X receptors in the esophagus should be performed to
advance studies on purinergic regulation of esophageal motor functions.

In this study, we did not identify endogenous sources of ATP in the mouse esophagus.
Interestingly, Mihara et al. reported that ATP is released from epithelial keratinocytes in
the mouse esophagus in response to TRPV4 activation [31,32]. We therefore consider that
epithelial cells are candidate sources. However, it should be noted that we cannot exclude
neurons, glial cells, and muscle cells as sources of ATP. Indeed, it is known that skeletal
muscle releases ATP via pannexin channels during repetitive contraction [33].

We have identified various regulatory factors in esophageal motility including
tachykinins, nitric oxide, galanin, serotonin [20,22–24], and purines in this study. Generally,
it is important to control contraction and/or relaxation in the longitudinal direction sep-
arately from those in the circular direction for effective peristalsis of the gastrointestinal
tract [3,34]. In esophageal peristaltic activity, the longitudinal motor response plays an
important role and assists effective propulsion [35]. Our findings suggest that the puriner-
gic system may contribute to effective propulsion in the esophagus: whereas, it should
be noted that our experiments were performed using isolated esophageal segments in the
organ bath. To advance investigation of purinergic regulation of esophageal motility, an
in vivo experimental system is necessary. This is because esophageal motility is caused by
the vagus nerve reflex that is integrated in the medulla oblongata [18,19]. We devised an
in vivo system for recording esophageal motor activity [36], and this system can be used
for further experiments.

In the human esophagus, the upper portion is composed of striated muscle fibers,
the lower portion is composed of smooth muscle fibers, and the middle portion is a
mixed composition of these fibers [17]. In mice, on the other hand, the muscle layer
of the esophagus consists largely of striated muscle fibers [17]. However, longitudinal
smooth muscle fibers in the muscularis mucosae commonly exist in both the human and
mouse esophagus [18,19]. So, the findings obtained in this study can be applied to human
healthcare.

In conclusion, the present study clarified that ATP induces contractile responses of
longitudinal smooth muscle in the muscularis mucosae of the mouse esophagus via P2Y
receptors. This purinergic regulation might contribute to esophageal motility.

4. Materials and Methods
4.1. Animals

Male ddY mice (Mus musculus, 8–12 weeks of age, 30–40 g in weight) were purchased
from Japan SLC (Shizuoka, Japan). The number of animals used was 23. They were
maintained in plastic cages at 24 ± 2 ◦C with a 12:12 h light–dark cycle (light on at
07:00–19:00) and given free access to laboratory chow and water. The experiments were
approved by the Gifu University Animal Care and Use Committee and were conducted in
accordance with the committee guidelines on animal care and use (permission numbers:
H30-183, 2019-239, 2020-252). The issuance and expiry date of the license are 1 April 2019
and 31 March 2022, respectively.

4.2. Esophageal Tissue Preparations

The mice were anesthetized with isoflurane and were exsanguinated via axillary
arteries. We isolated a 1 cm long segment from the middle thoracic part of the esophagus.
The segment of the esophagus was immediately immersed in Krebs’s solution (see below)
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at room temperature, and the intraluminal contents of the excised segment were flushed
using a small cannula containing Krebs’s solution.

4.3. Recording of Mechanical Activity in Esophageal Segments

To record contractile responses in the longitudinal direction, the whole segment was
mounted in a Magnus’s tube (10 mL in capacity) filled with Krebs’s solution (pH 7.4).
One end of the esophageal segment was tied to the Magnus’s tube and the other end was se-
cured with a silk thread to an isometric force transducer (T7-8-240, Orientec,
Tokyo, Japan). The Krebs’s solution was continuously bubbled with a 95% O2 + 5% CO2 gas
mixture and maintained at 37 ◦C. Mechanical responses, which were filtered and amplified
by an amplifier (NEC, AS1202, Tokyo, Japan), were recorded using a PowerLab system
(AD Instruments, Bella Vista, NSW, Australia). An initial resting tension of 1.0 g was added
to the esophageal segment, which was subsequently allowed to equilibrate for at least
30 min. The esophageal segments were used for experiments for at least 6 h.

4.4. Solutions and Drugs

During the experiments, tissues were maintained in Krebs’s solution consisting of
(mM): NaCl 118.4, KCl 4.7, CaCl2 2.5, MgSO4 1.2, KH2PO4 1.2, NaHCO3 25, and glucose
11.7. ATP was obtained from Tokyo Chemical Industry (Tokyo, Japan). Tetrodotoxin was
obtained from FUJIFILM Wako (Osaka, Japan). Suramin and CBF3GA, which were used as
antagonists for purinergic receptors [37,38], were obtained from Sigma-Aldrich (St Louis,
MO, USA). The drugs were dissolved in distilled water. We confirmed that the highest
concentration of vehicles (0.1%) for the drugs alone had no effect on the basal tone and
contractile responses at the concentrations used. Final concentrations in the bath solution
were described as the concentrations of drugs.

4.5. RNA Isolation and RT-PCR

The expression of P2 receptor gene mRNAs was assessed by RT-PCR. Total cellular
RNA was extracted from homogenates of the mouse esophageal mucosa tissue using
TRI Reagent (Molecular Research Center, Cincinnati, OH, USA). First-strand cDNA was
synthesized from 2 µg of total RNA by using SuperScript III Reverse Transcriptase (Thermo
Fisher Scientific, Waltham, MA, USA) and Random primers (Thermo Fisher Scientific).
PCR was performed with Platinum Taq DNA Polymerase High Fidelity (Thermo Fisher
Scientific). The primer sets are shown in Table 1. All primers were designed according
to previous reports [39,40] and obtained from Thermo Fisher Scientific. Amplifications
were performed by 35 cycles. The reaction products were electrophoresed on 1.5% agarose
gels and stained with ethidium bromide (0.8 µg/mL). The gels were imaged with a UV
transilluminator (UVP Laboratory Products, Upland, CA, USA) and photographed.

Table 1. List of primers for RT-PCR.

Gene Sequence (5′-3′) Predicted Size (bp)

P2X1 Forward CATTGTGCAGAGAACCCAGAA
Reverse ATGTCCTCCGCATACTTGAAC 776

P2X2 Forward ACGTTCATGAACAAAAACAAG
Reverse TCAAAGTTGGGCCAAACCTTTGG 360

P2X3 Forward AAGAGTGGGCAGTTACAAGGG
Reverse GAAAACCCACCCCACAAAGT 576

P2X4 Forward GAGAATGACGCTGGTGTGCC
Reverse TTGGTGAGTGTGCGTTGCTC 437

P2X5 Forward TAGTTAATGGCAAGGCGGGA
Reverse AGCTCTGGCTACGTCTTCAC 409

P2X6 Forward TACGTACTAACAGACGCA
Reverse ATATCAGGGTTCTTTGGG 254

P2X7 Forward TGTTTCCTTTGGCTGCTCCT
Reverse CGCTCACCAAAGCAAAGCTAAT 239
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Table 1. Cont.

Gene Sequence (5′-3′) Predicted Size (bp)

P2Y1 Forward TGGCGTGGTGTACCCTCTCAAGTC
Reverse CGGGACAGTCTCCTTCTGAATGTA 558

P2Y2 Forward CTCACGCGCACCCTCTACTA
Reverse TCGGGTGCACTGCCTTTCTT 549

P2Y4 Forward CTTTGGCTTTCCCTTCTTGA
Reverse GTCCGCCCACCTGCTGAT 427

P2Y6 Forward GCCCTGTGCTGGAGACCTTC
Reverse CATGGCCCCAGTGACAAACA 226

P2Y12 Forward CAGTGCAAGGGGTGGCATCT
Reverse TGGCACACCAAGGTTCTCAG 618

P2Y13 Forward GAAGAGAGGCACATGCAACA
Reverse TTACTAATGCCAGGCCAACC 345

P2Y14 Forward CAGTGCATGGAGCTCAAAAA
Reverse GCAGCCGAGAGTAGCAGAGT 347

β-actin Forward TGACCCTGAAGTACCCCATTG
Reverse TCAGGATCTTCATGAGGTAG 387

4.6. Data Analysis

Data are presented as means ± standard error of the mean (S.E.M.). n indicates the
number of separate preparations. The values of contractile responses are maximum ampli-
tudes of contractions induced by application of ATP that are normalized as percentages of
KCl (60 mM)-induced contractions in the same preparations. KCl was applied into Krebs’s
solution at the latest time point of each experiment. The significance of differences be-
tween mean values was determined by one-way analysis of variance followed by the
Turkey–Kramer test for the comparison of multiple groups or by the paired t-test for com-
parison of two groups. A p value less than 0.05 denotes the presence of a statistically
significant difference.
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