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Abstract: The concept of cis-regulatory modules located in gene promoters represents today’s vision
of the organization of gene transcriptional regulation. Such modules are a combination of two or more
single, short DNA motifs. The bioinformatic identification of such modules belongs to so-called NP-
hard problems with extreme computational complexity, and therefore, simplifications, assumptions,
and heuristics are usually deployed to tackle the problem. In practice, this requires, first, many
parameters to be set before the search, and second, it leads to the identification of locally optimal
results. Here, a novel method is presented, aimed at identifying the cis-regulatory elements in gene
promoters based on an exhaustive search of all the feasible modules’ configurations. All required
parameters are automatically estimated using positive and negative datasets. To be computationally
efficient, the search is accelerated using a multidimensional hash function, allowing the search to
complete in a few hours on a regular laptop (for example, a CPU Intel i7, 3.2 GH, 32 Gb RAM). Tests
on an established benchmark and real data show better performance of BestCRM compared to the
available methods according to several metrics like specificity, sensitivity, AUC, etc. A great practical
advantage of the method is its minimum number of input parameters—apart from positive and
negative promoters, only a desired level of module presence in promoters is required.
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1. Introduction

The process of gene regulation involves transcription factors (TFs) binding to specific
regions of the genome, such as proximal promoters or distal enhancers, to control gene
expression [1]. TF binding to its target sites (TFBS) often occurs cooperatively, forming cis-
regulatory modules (CRMs) that are essential for effective and highly specific transcriptional
regulation [2]. Collaborations between TFs, whether synergistic or antagonistic, impact
gene specificity and regulatory flexibility during processes like tissue development or
response to stimuli [3].

The experimental identification of single motifs and CRMs is labor-intensive, leading to
the development of computational discovery methods [4]. The basic structures comprising
the CRMs are short motifs, which are categorized as structural or sequence motifs [5,6].
The bioinformatic identification of such motifs can be based on sequence statistics [7,8],
Chip-seq data [9,10], phylogenetic conservation [11], libraries of known motifs [12,13], and
others. Altogether, there are over 150 motif-discovery programs covering a wide spectrum
of methodological ideas, types of experimental data, and heuristics (see reviews [14–17]).

Today, computational motif discovery has shifted toward identifying entire regulatory
modules, termed “composite motifs” or “cis-regulatory modules”. In the literature, both of
the terms are used similarly, but in this paper, we will differentiate between modules found
based on similarity to experimentally identified modules [18,19] and modules found by
evaluating the statistical properties of DNA sequences, for example, overrepresented motif
clusters [20,21], which we call CRMs.
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Numerous computational algorithms have been developed to identify CRMs by de-
termining potential interactions between TFs based on their co-location [22,23]. Many of
these methods, however, require prior knowledge of a TF pair, focus only on statistically
overrepresented single motifs, and need pre-defined parameters like thresholds for position
weight matrices (PWMs) [21,24,25]. Recent efforts aimed to overcome these limitations by
employing various strategies, such as searching for clusters of binding sites, comparing
functional conservation between species, and applying complex statistical methods like the
hypergeometric test [20,21,26,27].

The general challenge of module discovery involves inferring both the model repre-
senting a module and identifying its locations on sequences. Most methods require users to
provide candidate single motif models, typically in the form of IUPAC consensus strings or
PWMs [28]. Some, like Co-Bind [29], LOGOS [30], and CisModule [31], infer the module’s
structure and location without stringent input requirements. Others, like Hexdiff [32],
necessitate known CRMs for training. The definition of what a significant combination is
varies across methods—MSCAN [33] searches for regions with unusually high densities of
binding sites, and ModuleSearcher [34] and CREME [35] look for specific combinations of
motifs that co-occur in regulatory regions of related genes.

Efforts to improve existing methods involve approaches like Fuzzy Clustering [20], Co-
occurring Pattern Search (COPS) [21], and randomized occurrence frequency [26]. However,
these approaches may face limitations in running time and memory consumption, making
them less applicable to large and complex genomes. Additionally, some methods, such
as those by Nandi et al. [26] and Hu et al. [27], require many user-specified (and mostly
unknown) parameters, potentially impacting their performance. One notable method,
MatrixCatch [36], focuses on experimentally verified regulatory elements and recognizes
composite elements similar to those stored in the TRANSCompel database [19]. While
MatrixCatch outperforms statistical methods, it has limitations in detecting novel TF pairs.

The presented method aimed to target the following several challenges: detect novel
motif combinations; minimize the number of input parameters from the user by estimating
them using input DNA sequences; perform an exhaustive search to find the most significant
CRMs; and finally, be computationally effective. The exhaustive search (also called brute
force search) is the examination of all combinations of motif types, thresholds, and distances
between motifs. The computational efficacy is achieved using the special hash function
to organize the space of potential modules, followed by a reduction in search space using
limitations on the module’s presence in datasets. Schematically, the method is represented
in Figure 1.
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Figure 1. Schematic representation of the method. Exhaustive search (also called brute-force search)
is a simple enumeration of all the possible motif pairs. Acceleration using the four-dimensional hash
function allows the search to be completed in several hours.

2. Results

Testing of performance is a critical step, describing the general advantages of a method
and also specific cases where a method can be of the most use. The following principles
were suggested in [37]: testing should use the same datasets and metrics as previous
methods so the results are directly comparable; the selection of comparative methods
should be objective and the number of methods substantial; and finally, self-made datasets
and user-defined performance metrics are used only in addition to the above to show
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a method’s superiority in specific applications. Accordingly, performance testing was
performed using the established datasets [5] containing known CRMs as targets and a
dataset of tissue-specific promoters [38] with unknown CRMs.

2.1. Performance of the Method on Recognition of Known CRMs

For the evaluation of BestCRM performance, we utilized an established benchmark
dataset [39] and our previous program MatrixCatch [36]. As a metric of quality, we opted for
the nucleotide-level correlation coefficient (nCC) rather than binary true/false predictions,
upon which measures like true positives (TPs), false negatives (FNs), etc., are calculated.
This choice was made because the values of true/false predictions did not effectively
address scenarios where a predicted module only slightly overlaps with a real one or is
considerably longer than a real one [39]. For single, short motifs, it can be accepted when
a slight overlap is counted as a true prediction, but for longer CRMs, it will mislead the
search. For example, MCAST [40] identified in the 500 bp breast dataset [36] a module of
355 bp long with 23 motifs as a top hit. Clearly, programs predicting very long modules
(hundreds of nucleotides) will have higher chances to make “correct” predictions just by
chance if a slight overlap is counted as a true hit. In contrast, nCC assesses how many
nucleotides were actually predicted correctly, and on this basis. it calculates measures like
sensitivity (Sn), specificity (Sp), positive predictive value (PPV), and others.

The chosen benchmark [39] comprises known CRMs together with PWMs and pro-
moter sequences associated with them. This benchmark consists of several datasets with
true PWMs along with additional “noise” matrices. The higher the noise, the more difficult
it is to identify the true modules. BestCRM was executed with its default parameters on all
datasets, and the results were submitted for evaluation, as described in [39]. Additionally,
we included our previous program MatrixCatch, designed specifically to detect known
CRMs, in the comparison.

The results are presented in Figure 2 (Figure 2B,C depicts the 75% noise level, and data
for all noise levels are depicted in Figure S3 in the Supplementary). BestCRMs outperforms
other statistical methods like CMA, ModuleSearcher, Stubb, MSCAN, MCAST, Cister, and
Cluster-Buster, for all noise levels according to nCC and other performance characteristics
like Sn SP, PPV, AUC, etc., except for ModuleSearcher at the point “99% noise” (Figure 2A,B).
One of the important properties of BestCRM is its stable performance over different classes
of TFs, while most other methods show a strong bias in performance toward particular
classes of TFs. For example, a pair IRF-NFkB is reliably detected by all the methods,
while Ebox-Ets is quite difficult to detect (Figure 2C). Interestingly, for Cister, the module
Ebox-Ets is the second-best at recognition. BestCRM and MatrixCatch show more uniform
performance over different classes of transcription factors.

BestCRM constantly performs above all the statistical methods and slightly below Ma-
trixCatch. The reason for that is the distinct nature of these methods (de novo identification
and library-based), which require a detailed explanation of this point. MatrixCatch uses a
library of known CRMs based on the TRANSCOMPEL database [19], and the test dataset
also uses the same database together with the original data collected by the authors [39].
Obviously, MatrixCatch has an advantage over methods utilizing only the statistical proper-
ties of DNA sequences. The quality of CRM identification in non-annotated DNA sequences
will be discussed in the next section.
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Figure 2. Comparative testing of BestCRM on the dataset from [38]. (A). Performance over different
noise levels. nCC (nucleotide correlation coefficient) shows how many nucleotides within CRM
on average were predicted correctly. (B). Different parameters reflect the quality of predictions:
Sn—sensitivity; SP—specificity; PPV—positive predictive value; PC—performance coefficient; ASP—
average site performance. (C). nCC values over different classes of transcription factors. (D). Receiver
operating characteristic (ROC) and area under curve (AUC) of recognition methods. (A–C) produced
by evaluation software [39].

2.2. Tests on Recognition of Novel CRMs

An experimental investigation of gene expression across diverse human tissues re-
vealed significant variations in transcription, including transcriptions initiated by alterna-
tive promoters [38], making the identified tissue-specific promoters (i.e., promoters driving
similar expression patterns) ideal candidates for bioinformatics analysis. Our objective is
to explore the presence of potential regulatory modules using several approaches.

To uncover CRMs, we selected the methods used above and one new method, PC-
Traff [41]. Among eight programs, two (MSCAN and Stubb) were unavailable; Cluster-
Buster and Cister could not be applied due to other input sequence requirements. MCAST
identified lengthy modules with numerous motifs (as mentioned above, a module of 355
bp long with 23 motifs), which, from a biological perspective, has no meaning. PC-Traff
identified too many modules with highly similar motifs (the problem of self-correlated
motifs is discussed later) and was also excluded. Ultimately, only five programs—BestCRM,
MatrixCatch, CisModule, ModuleSearcher, and CMA—were employed for the analysis.
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All of the programs were run with default parameters and adjustments: CMA, Module-
Searcher, and CisModule, with a maximum of two motifs per CRM, and in ModuleSearcher,
the “Number of top scoring modules to return” was set to 10. CMA was set to output five
CRMs (maximum allowed) and optimize the distance of a module. The resulting modules
were optimized in order to maximize the ratio C+

CRM/C−
CRM (these and the following values

are introduced in the Material and Methods section), provided that the boundary condi-
tions C+

CRM ≥ C+
min, and C−

CRM ≤ C−
max hold true, by varying thresholds for both PWMs.

The CRM with the highest ratio is reported as a top hit for each program. Various sets
of boundary conditions

(
C+

min, C−
max

)
were used: (0.90, 0.50), (0.75, 0.50), (0.66, 0.50), (0.50,

0.25), and (0.33, 0.15), which can be interpreted as a search for regulatory modules that are
common to most of the promoters or to a small subgroup.

The results are presented in Tables 1 and S1 in Supplementary. As it can be seen,
in each specificity group, BestCRM found modules in more datasets compared to other
methods. For example, in the top group (C+

CRM ≥ 0.90 and C−
CRM ≤ 0.50), BestCRM found

regulatory modules in breast- and prostate-specific promoters, while MatrixCatch only
found regulatory modules in prostate-specific promoters. Other programs failed to identify
any CRMs with such stringent criteria.

Table 1. Recognition of regulatory modules in tissue-specific promoters. The values represent the
number of datasets in which respective programs found at least one CRM with the required level
of presence in positive

(
C+

min
)

and negative
(
C−

max
)

promoters. BestCRM identifies CRMs in more
datasets for all settings of motif presence.

Boundary Conditions: (C+
min/C−

max)

0.90/0.50 0.75/0.50 0.66/0.50 0.50/0.25 0.33/0.15

BestCRM 2 6 7 5 7

MatrixCatch 1 4 6 4 5

CMA 0 1 3 0 1

ModuleSearcher 0 1 6 1 3

CisModule 0 0 1 1 2

The CRM found in the breast dataset consists of motifs for interferon-regulatory factors
(IRFs) and nuclear factor-κB (NFKB), found by respective PWMs with the thresholds 0.92
and 0.68, respectively, and located at a maximum distance of 130 bp (Figure 3). The family
of IRF plays an important role in defense against intracellular pathogens, including the
expression of intrinsic anti-microbial defense and the production of interleukin-12 (IL12),
which are essential for the priming of early T cell-mediated immune responses [42]. Second,
TF-NFκB consists of a family of transcription factors that play a critical role in inflammation,
immunity, cell proliferation, and survival [43]. So, based on our statistical analysis of motif
combinations in promoters active in breast tissue, a novel potential CRM was found with
functionally relevant transcription factors.
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The second CRM, found by both BestCRM and MatrixCatch in prostate-specific pro-
moters, is a known module composed of two copies of C/EBP motifs located at a distance
of up to 35 nucleotides and bound by C/EBP-related proteins [44]. C/EBP transcription
factors were found to upregulate metastatic gene expression in human prostate cancer
cells [45,46], which demonstrates that BestCRM without any prior knowledge is able to
identify regulatory modules, the functionality of which has been confirmed by several
independent studies. MatrixCatch found this CRM because it was in the library used for
the search. Other programs could not identify any modules in the prostate dataset.

The above example clearly demonstrates the differences between BestCRM and
MatrixCatch—the later uses the library of known regulatory modules and detects new
instances of these modules using a complex measure of similarity. BestCRM makes an
exhaustive search of all the possible combinations of single motifs located at different
distances and, therefore, is able to reveal novel combinations based on the statistics of motif
presence in positive versus negative promoters.

Altogether, MatrixCatch is able to accurately identify the regulatory modules and shows
a slightly higher recognition performance (Figure 2), but it is limited to the known modules.
In contrast, BestCRM can identify new combinations with a recognition power comparable
to MatrixCatch, and it is much more precise compared to other statistical methods.

The different nature of the two algorithms also explains why MatrixCatch reports so
many modules (Table S1 in Supplementary). For example, in breast datasets, MatrixCatch
reports 67 CRMs in the group (C+

CRM ≥ 0.66 and C−
CRM ≤ 0.50) because it outputs each

match between the sequence and every example in the library. Assuming that some CRMs
have dozens of examples, the output from MatrixCatch can be quite exhaustive. BestCRM
searches for the most optimal configuration for each type of CRM, and therefore, the output
is more concise.

3. Discussion

The exploration of gene transcriptional regulation through bioinformatic techniques is
a common practice in biomedical research, and the method presented here significantly
contributes to this field. The program BestCRM is aimed at the discovery of cis-regulatory
modules in gene promoters and enhancers, and it is equipped with several motif libraries,
test datasets, and examples. The program imposes no restrictions on the size and number
of the promoters/enhancers, and it is suitable for analyzing small and short DNA loci
or extensive datasets representing entire genomes. The stringency of the search can be
easily adjusted using a minimal and maximal presence of CRMs, which has a clear bio-
logical interpretation of transcriptional co-regulation. Testing according to the guidelines
for objective comparison [37], including the recognition of known CRMs and comparison
with other programs using established datasets, showed that BestCRM consistently out-
performs alternative methods. In a specific study focusing on tissue-specific promoters,
the program successfully pinpointed a candidate regulatory module unique to breast- and
prostate-active promoters, offering a promising avenue for further investigation. In con-
trast, alternative methods exhibited lower specificity, with some failing to identify CRMs in
promoters for many tissues.

The exhaustive search deployed in BestCRM represents a class of computational
problems with NP complexity, with computational time growing exponentially with the
number of parameters. Usually, one would require a kind of heuristic or simplification
to speed up computations, which always leads to finding only local optima. Here, we
showed that by constructing a special hash function and reducing the search space, it
is possible to verify all combinations of parameters with a dimensionality of three. Our
investigations show that it is feasible to increase the dimensionality up to four and maintain
a still-acceptable computational time. For example, additional parameter such as a minimal
distance, composite score, or a third motif can be introduced. The composite score is the
most promising as it represents cooperativity between protein factors, which is observed in
real modules [36]. This effect consists in stabilizing the binding of the second protein factor
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on a weaker DNA motif (also called co-motif) via protein–protein interactions with a first
factor, thus, forming a stable dimer–DNA complex. This idea was realized in MatrixCatch,
and it can be added to BestCRM, but this would require some additional optimizations
for use in modern multicore and multiprocessor systems to achieve effective parallel
computations. Another promising direction for further development is the use of different
maximization functions. For example, the presence of positive promoters C+

CRM can be
maximized rather than the ratio C+

CRM/C−
CRM. Coupling the optimization with numerical

gene expression values can also refocus the search to give more weight to genes with high
levels of expression.

Another very important feature of the new method is its tolerance to the correlated
PWMs. The libraries of motifs often contain similar PWMs, for example, describing different
subsets of known motifs sorted by experimental evidence. These highly similar PWMs
have different names, and they are accepted by search programs as unrelated. This results
in identifying artificially coupled motif pairs, which have nothing to do with biological
co-regulation or collaboration between respective transcription factors. Another issue is
when two unrelated transcription factors indeed share similar DNA binding motifs. This
is often when the protein factors actually compete for the same binding motif, displacing
each other on a DNA sequence, but this contradicts the concept of CRM. This problem
is exemplified by the PC-TraFF [41] program applied to the breast dataset. The program
outputs a number of significant modules, and the top five of them consist of fully correlated
motifs (Figure S4 in Supplementary). Indeed, the top module for TFs PU1 and ETS consists
of motifs GAGGAAG and CTTCCTC, which are exact reverse complements to each other.
The next four modules are similarly artificially correlated (Figure S4 in Supplementary).

The concept of contrasting positive and negative sets realized in BestCRM automat-
ically solves the described problem—correlated PWMs stay correlated in any sequence,
and their presence in negative promoters will be above the allowed maximum C−

max. This
removes the need for removing redundant PWMs, clustering similar motifs, adopting spe-
cific codon usage [47], or post-filtering results, which has been realized in some methods.
BestCRM only outputs motif pairs that are specific to the dataset of interest.

For practical investigations of gene promoters, the following workflow could be
suggested: First, with a set of positive promoters of co-regulated genes, programs like
MatrixCatch are best to be applied to find out if there are any known regulatory modules.
Modules similar to the known ones will give immediate biological explanations of the
possible regulation mechanisms. Next, statistical approaches like BestCRM can be applied
that will show if promoters share common modules. These modules can then be mapped
to databases to obtain a functional view of the possible mechanisms of regulation.

4. Materials and Methods
4.1. Basic Definitions

A CRM consists of a pair of single DNA motifs defined by two PWMs (PWM1, PWM2)
with respective thresholds (Thr1, Thr2) for a minimal PWM score, and it is located at
maximum distance D (graphically represented in Figure S1 in Supplementary). Let S+ be a
set of promoter sequences with a positive response in some experiment and S− with no
or negative response; n+/− is a number of sequences in S+/−. We say that a CRM has a
presence C+

CRM on S+ if it can be identified on n+·C+
CRM sequences. In other words, C+

CRM
is a share of sequences that contain at least one module.

4.2. Problem Definition

By varying the types of single motifs, thresholds and distance a combination should be
found so that the presence of the CRM is above some minimal value on positive sequences,
below some value on negative, and the ratio between these values is maximized. Formally, it
looks as follows: C+

CRM ≥ C+
min, C−

CRM ≤ C−
max, C+

CRM/C−
CRM → max , where C+

min and C−
max

are the boundary conditions (by default, we set these values to C+
min = 0.75 and C−

max = 0.5).
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4.3. Accelerating by the Hash Function

By default, the ratio C+
CRM/C−

CRM should be calculated for all combinations of Thr1,
Thr2, and D, and for all pairs of motifs, which represent a class of so-called NP-hard
problems, and it is computationally very intensive. Fortunately, this procedure can be
optimized using the following idea: Let us assume a hash function H (Thr1, Thr2, D) that
shows how many sequences in our set contain at least one CRM found with parameters
(Thr1, Thr2, D). The major property of this function is that it is monotonically increasing
with the decrease in the PWM thresholds and the increase in D. Indeed, if a CRM is found
with a Thr1 = 0.9, then it will also be found with a Thr1 = 0.89, 0.88, 087, and so on (same
for Thr2). Reducing the thresholds will only increase the number of CRMs and, hence, the
number of promoters with them. The same is valid for the length D. Normalizing H with
the number of promoters in a set will give the presence value CCRM. Further we will always
use the normalized H.

Therefore, starting from the point (Thr1 = 1.0, Thr2 = 1.0, D = 0) and consecutively
decreasing thresholds, one needs to find a point where C+

CRM ≥ C+
min. From this point, one

would need to control how many modules the negative promoters contain (if C−
CRM ≤ C−

max),
when further decreasing the thresholds. The area where both conditions are met defines
the parameter range of the possible solutions.

Figure 4 gives an example of the above idea using prokaryotic PWMs for TFs REX
and FUR from the PRODORIC database [48] and Bacillus subtilis promoters as a positive
set versus random genomic sequences as a negative (all datasets are given on the program
website). So, at the point (Thr1 = 1.0, Thr2 = 1.0), neither B. subtilis promoters nor random
sequences contain a CRM. By reducing the thresholds more and more, promoters contain
the module, and at values (Thr1 = 0.65, Thr2 = 0.8) more than 0.75 (C+

min) of the positive set
contain the CRM. This indicates that from this point and toward lower thresholds, positive
promoters will always have a higher number of CRMs, which defines the area of possible
values for Thr1 and Thr2 (red mesh at 0.75 (C+

min) Figure 4). After further decreasing the
thresholds, the number of random sequences containing the CRM increases, reaching the
limit of 0.5 at Thr1 = 0.425 and Thr2 = 0.7, which in turn, defines the area of possible values
based on the negative set (red mesh at 0.5 (C−

max), Figure 4). The overlap of those areas
defines the parameter range where the ratio C+

CRM/C−
CRM should be maximized, which

is only a tiny part of all the possible parameter ranges (red area on the bottom, Figure 4).
Therefore, using the described idea, one can significantly increase computational efficiency
and make an exhaustive search practically feasible on a regular PC (as used in this work—
CPU Intel i7, 3.2 GH, 32 Gb RAM). Of note, here, the parameter distance between motifs D
is not assumed to simplify explanations and make it possible to draw the surfaces in 3D,
but in the program, the calculations are performed for three parameters: Thr1, Thr2, and D.

Overall, the entire algorithm consists of several steps and is repeated for each possible
motif pair: dynamically build a hash function for the positive set and define the area where
the boundary constraint C+

CRM ≥ C+
min is met; then, on that area, build the function for the

negative set controlling C−
CRM ≤ C−

max, and finally, maximize the ratio C+
CRM/C−

CRM for all
valid parameter combinations.

More detailed descriptions with formulas are given in the Supplementary including
another example of the hash function for prokaryotic transcription factors (Figure S2).
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4.4. Datasets Used for Performance Testing

The method was tested according to the principles suggested in [37]. Accordingly,
the performance testing was performed using the established datasets [5] and a dataset of
tissue-specific promoters [38]. The first dataset [5] contains ten sets of DNA promoters with
CRMs of different types, each set varying from 7 to 16 promoters. To simulate different
complexity levels, the dataset contains 60 sets of Transfac PWMs with different ratios of
PWMs related to the target CRMs and “noise” PWMs. An evaluation of the prediction
results was performed remotely on the website [5].

The second dataset contains promoters driving specific gene expression in 11 human
tissues [39]. A total of 22 datasets of positive and negative promoters of lengths 500 bp
and 1 kb, covering regions (−400 to +100) and (−900 to +100) around the Transcription
Start Site (TSS), respectively, were generated (all datasets are available on the program
website). The number of sequences ranges from 17 for prostate-specific promoters to 761
for cerebellum-specific promoters, with an average of 184 promoters per set.

5. Conclusions

Here, we have presented a novel method, BestCRM, for the identification of cis-
regulatory modules in gene promoters and enhancers. The software is supplied with
several PWM libraries and can be easily extended by the user. The performance of the
method is shown on the established benchmark data and on the real task of promoter
analysis of co-expressed genes. Implementation of the exhaustive search through the entire
parameter space guarantees the identification of globally optimal CRM once it exists. The
program source code executables for Windows and Linux, together with all the required
libraries and examples, are freely available at https://github.com/Deyneko/BestCRM
(accessed on 25 January 2024).

https://github.com/Deyneko/BestCRM
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