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Abstract: From the point of view of the search for new pharmaceuticals, pyridazinone derivatives
are a very promising group of compounds. In our previous works, we have proved that newly
synthesized ligands from this group have desirable biological and pharmacokinetic properties.
Therefore, we decided to continue the research evaluating the activity of pyrrolo[3,4-dpyridazinone
derivatives. In this work, we focused on the interactions of five pyridazinone derivatives with the
following biomolecules: DNA and two plasma proteins: orosomucoid and gamma globulin. Using
several of spectroscopic methods, such as UV-Vis, CD, and fluorescence spectroscopy, we proved that
the tested compounds form stable complexes with all biomacromolecules selected for analysis. These
findings were also confirmed by the results obtained by molecular modeling. All tested pyridazinone
derivatives bind to the ctDNA molecule via groove binding mechanisms. All these molecules can
also be bound and transported by the tested plasma proteins; however, the stability of the complexes
formed is lower than those formed with serum albumin.

Keywords: CD spectroscopy; DNA; fluorescence spectroscopy; molecular modelling; plasma proteins;
pyridazinone derivatives

1. Introduction

Mono- and bi(hetero)cyclic pyridazinone derivatives have been an interesting subject
of research in medicine and pharmacy for many years. Pyridazinone ring is present in
compounds that have a wide spectrum of desirable properties, including anti-inflammatory,
analgesic, and anticancer. This group of compounds also has cardiovascular, antinocicep-
tive, antidiabetic, anti-asthmatic, anticonvulsant, and antidepressant activities [1–5].

In our previous study, we described the synthesis and biological evaluation of new
fourteen pyrrolo[3,4-d]pyridazinone derivatives [1]. The results obtained were promising
and showed the antioxidant and anti-inflammatory effects of the tested compounds. All
of them also formed stable complexes with the serum albumin molecule. Subsequent
studies confirmed the anti-inflammatory and analgesic effects of these derivatives [6–8].
For this reason, we decided to continue research on this group of compounds. In this
study, we have chosen five pyridazinone derivatives, named, respectively, with consecutive
numbers 1–5 (Figure 1). As part of this work, compounds that showed the best in vitro
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properties, based on the results of MCDA (multiple criteria decision analysis), were further
analyzed [1].
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The DNA double helix is a molecular target for many drugs and drug candidates.
Often, to cure a disease or limit its effects, it is necessary to inhibit or change DNA function.
The interaction of small molecules with this macromolecule leads to the desired effect [9,10].
Many anticancer drugs work this way. For this reason, testing the interaction with DNA
in the case of new substances is extremely important from the point of view of designing
new pharmaceuticals. Many compounds derived from pyridazinone that have anticancer
properties have been described in the literature so far [5]. On the other hand, the analysis
of the interaction of potential drugs with DNA can help determine their toxicity. Drugs
that are toxic to the human body may have a significant impact on the structure of the
DNA molecule and permanently and strongly deform or damage it. Therefore, testing
compounds 1–5 for their interaction with the DNA molecule seems justified. Small ligands
can bind to the DNA molecule by forming covalent bonds or by noncovalent interactions.
In the case of the second of the mentioned methods of interaction, three basic mechanisms
can be distinguished: electrostatic interaction, intercalation, and groove binding (minor and
major) [10]. Often, a mixed mechanism of impact can be observed. The use of a number
of spectroscopic methods combined with molecular modeling studies allow to determine
which mechanism is dominant.

It is well known that the analysis of the interaction of new compounds with plasma
proteins is important in the search for new pharmaceuticals. The method and strength of
interaction with proteins have a significant impact on the distribution of drugs in the human
body. In our previous study, we have shown that all analyzed pirydazinone derivatives
can bind to serum albumin molecules [1]. Although albumin is the protein with the highest
concentration in plasma, it is not the only one that could potentially transport and bind
drugs. The study of interactions with proteins other than albumin becomes even more
important in the case of pathological conditions, e.g., inflammation, in which plasma
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protein concentrations may differ significantly from those in a healthy organism. For this
reason, we decided to analyze the interaction of the tested compounds with two additional
plasma proteins: α1-acid-glycoprotein (AAG), and gamma globulins (GG). AAG is an
acute-phase protein, which binds lots of pharmaceuticals, especially basic substances [11].
Its concentration increases several times in the case of inflammation, cancer, and other
diseases [12]. In turn, GG belongs to proteins related to the immune system. Similarly to
AAG, it can also bind metabolites, drugs, and other molecules [13,14]. Therefore, testing
the interaction of new drug candidates with these two proteins seems to be justified.

Spectroscopic methods are extremely useful for studying interactions between biomacro-
molecules and small ligands. In this project, we combined the use of several spectroscopic
methods such as UV-Vis, circular dichroism, and fluorescence with molecular modeling.
This selection of research techniques allowed us to describe precisely the interactions
occurring in the studied systems.

2. Results and Discussion
2.1. Interaction with ctDNA
2.1.1. Molecular Docking Studies

To determine whether compounds 1–5 can interact with DNA, and what is the mech-
anism of interaction, molecular docking studies were performed. The structure of the
studied compounds (due to long-chain) suggests interactions with DNA in the major or
minor groove. Moreover, the compounds have planar ring moieties at the ends of the
molecule which, in a preferred conformation, could be an intercalator. As a result, the
mechanism of interaction with DNA would be mixed. The main part of the molecule
could interact in a groove, and planar moiety in an appropriate position, after rotation,
could intercalate between base pairs. The B-DNA structure was used for the simulation,
PBD: ID 1vzk [15]. The grid box was set to whole DNA. Figure 2 shows the position
of compound 1, with a phenyl ring in the arylpiperazine group, compound 3, with two
phenyls, one in pyrrolo[3,4-d]pyridazinone moiety, second in the arylpiperazine group,
and compound 5, with substituted phenyl ring in arylpiperazine group. All compounds
interact with DNA in the minor groove (compounds 2 and 4 take a similar position in the
minor groove). Figures 3–5 present the interaction mode, for a pose with more negative
energy scoring function. Hydrogen bonds are formed: two for interaction with molecule
1, one with molecule 3, and four for molecule 5. Cytosine DC9 and DC11, guanine DG12,
adenine DA17, and pyrrolo[3,4-d]pyridazinone moiety, 2-thioxo-1,3,4-oxadiazole ring, and
4-chlorophenyl-4-hydroxypiperidyl moiety are involved in hydrogen bonds. Additionally,
the complexes are stabilized by a series of hydrophobic interactions, π-alkyl, π-anion, and
π-donor. The binding modes for other systems with molecules 2 and 4 are included in
the Supplementary File (Figure S1a,b). It is difficult to clearly determine whether the
studied molecules interact with DNA only in a minor groove or whether intercalation is
also possible. This requires experimental studies. However, molecular docking has shown
that all compounds interact with DNA to form stable complexes with a negative energy
scoring function (Table 1). The most negative was calculated for complex with molecule 5,
−10.7 kcal/mol.

Table 1. The energy scoring function (kcal/mol) for the interaction of compounds 1–5 with DNA,
α1-acid glycoprotein (AAG), and gamma globulin (GG).

DNA AAG GG

1 −9.5 −9.5 −7.7
2 −8.8 −9.7 −7.6
3 −10.4 −10.6 −7.9
4 −10.1 −10.6 −8.8
5 −10.7 −10.9 −9.0
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2.1.2. Spectroscopic Studies
UV-Vis Spectroscopy

The monitoring of the electronic absorption band during titration experiments shows
the mechanism of interaction between compounds and ctDNA. In this study, we monitored
the changes in the UV-Vis spectra of analyzed compounds with and without ctDNA
solution (Figure 6). The titration of pyridazinone ligands by DNA helps to determine the
mechanism by which drug derivatives and macromolecules interact with each other. In the
case of strong interactions, the intensity and position of the absorption bands change. The
intercalation mechanism of interaction causes hypochromic and bathochromic shifts [10,16].

In the recorded spectra for all tested compounds, a hyperchrome effect can be observed,
without shifting the position of the maximum of the absorption bands (Figure 6).

In Table 2, we have collected all parameters calculated from UV-Vis spectroscopy
results: the percentage of chromism, apparent association constants, and the standard of
free energy Gibbs changes.

Table 2. The binding parameters calculated from UV-Vis spectra.

Compound Kapp [M−1] ∆G [kJmol] %H

1 2.82 × 103 −1.97 × 104 6.64
2 8.30 × 102 −1.67 × 104 5.97
3 6.71 × 103 −2.18 × 104 7.33
4 7.02 × 103 −2.19 × 104 11.61
5 3.06 × 103 −1.99 × 104 9.92
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Benesi–Hildbrand plot.

The percent of chromism effect (%H) was calculated according to Equation (1):

%H =
A0 − A

A0
·100% (1)
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where A0 is the absorption of the absence of ctDNA, and A is absorption with a maximum
concentration of titration components. The apparent association constants (Kapp) were
estimated by the Benesi–Hildebrand Equation (2) [17]:

Aobs = (1 − α)c0εl + αc0εcl (2)

where Aobs is the absorbance of the ctDNA solution with a different molar ratio of the
compound, and ε, εc are the molar absorptivity for ctDNA and the complex with the
studied compound, respectively, c0 is the concentration of ctDNA, and l is the optical path
length. The α is the association degree between interacting molecules and can be expressed
as Equation (3):

α =
Kapp[compound]

1 + Kapp[compound]
(3)

According to Lambert Beer’s law (4):

A=cεl (4)

the final relationship between the absorbance changes and the Kapp constant can be a linear
function specified in the following form (5):

1
Aobs − A0

=
1

Ac − A0
+

1
Kapp(Ac − A0)[compound]

(5)

where A0 is the absorbance of the ctDNA solution and Aobs is the absorbance of the ctDNA
with a different molar ratio of the compound solution, Ac is the absorbance of the complex,
and [compound] is the molar concentration of the compound [18].

In the next step, the free energy change was calculated, with the use of Equation (6):

∆G
◦
= −RTlnKapp (6)

where Kapp is the binding constant, R is the gas constant, and ∆G◦ is free energy change.
Obtained results suggest that analyzed pyridazinone derivatives can bind to ctDNA

molecules, but intercalation is not the dominant mechanism of interaction. The chromism
effect is small, and the values of Kapp, of order 102–103, are also too low for intercalation [19].
The highest value of the constant was obtained for compound 4, so it can be concluded
that in this case the most stable complex is formed. For example, in the case of ethidium
bromide, which is a typical intercalator, the value of Kapp is equal to 1.23 × 105 [20], and
it is significantly higher than those excluded in this work. It can therefore be concluded
that the groove binding mechanism of interaction dominates here [21]. These results are
consistent with the results obtained using molecular modeling, which indicate rather the
dominance of the groove binding. However, it is necessary to assess the mechanism of
interaction using other spectroscopic methods, such as fluorescence spectroscopy or CD.

Fluorescence Spectroscopy

Competitive binding between ethidium bromide (EB) with ctDNA and studied compounds
The competitive binding experiments of the EB/ctDNA complex with additional

investigated compounds were monitored by fluorescence spectroscopy. The EB is the most
widely used nucleic acid dye and it is an intercalating agent [22–24]. The phenanthridine
rings from EB interact with stacked base pairs of double-stranded DNA by van der Walls
forces and by the hydrophobic interior of the DNA molecule. The titration of EB/ctDNA
complex by examined compounds was performed, and the emission spectra of absent- and
present ligands were recorded. The emission signal was observed at 603 nm (Figure 7).
The increasing concentrations of compounds 1, 2, 3, 4, and 5 led to a decrease in the
fluorescence intensity (Figure 7). It suggests that intercalating mechanisms of interaction
between studied ligands and ctDNA occur. These observations confirmed the replacement
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of EB in the ctDNA complex by 1, 2, 3, 4, and 5 molecules. The percentage of exchange of
EB by the compound was calculated by following Equation (7):

%Ex =
F0 − F

F0
·100% (7)

where F0 is the fluorescence intensity of complex ctDNA with EB, and F is the fluorescence
intensity upon adding the studied compound. Calculated values are collected in Table 3.
Over 20% EB exchange was observed in the examined concentration range, greatest for
compounds 4 and 5. By assessing the percentage of exchange, it can be concluded that it is
not spectacularly large. The fluorescence results were also analyzed by the Stern–Volmer
Equation (8) with inner filter correction (9):

F0

F
= 1 + kqτ[Q] = 1 + KSV (8)

where F0 is the protein fluorescence intensity, F—protein fluorescence intensities in with
the quencher, kq is the quenching rate constant, τ0 the average fluorescence lifetime of the
biomolecule, [Q] is the quencher concentration, and Ksv is the Stern–Volmer constant.

F = Fobs10
(Aex+Aem)

2 (9)

where F and Fobs are the corrected and observed fluorescence intensities, respectively, and
Aex and Aem are the absorbance values at excitation and emission wavelengths, respectively.

Table 3. The binding parameters KSV and % of displacement for exchanging EB by studied com-
pounds in ctDNA complexes.

Compound KSV × 103 [M−1] % Displacement (Ex)

1 3.35 24.72
2 3.28 25.82
3 3.85 27.86
4 3.96 28.08
5 3.41 29.06

For all compounds, the Stern–Volmer constants have similar values, in the range of
3.28–3.96 × 103 M−1 (Table 3). Therefore, it can be assumed that the mechanism of impact
is rather mixed, with the predominance of other than intercalation, which is in accordance
with previously described results.

The influence of KI quenching behavior of studied compounds with present and absent ctDNA
The next step in the study of the mechanism of interaction between ctDNA and

analyzed pirydazinone derivatives was fluorescence spectroscopy with the presence of KI
in the solution. In this experiment, we have measured the spectra for studied compounds
and KI in the absence and presence of ctDNA (Figure 8). The comparison of Stern–Volmer
constant values of both systems can suggest the type of interaction’s mechanism [25–27]. It
was not possible to perform this experiment for compound 4 because its molecule does not
have the fluorescence phenomenon. Therefore, compounds 1, 2, 3, and 5 were analyzed in
this way.

The highest degree of protection against the electronegative fluorophore, i.e., the I−

ion, is observed for intercalation, and lower for groove binding. This means that in the
case of intercalation, the Stern–Volmer constant in the presence of ctDNA, should decrease
significantly compared to the constant for the tested ligand only with KI. As shown in
Figure 8 and Table 4, the smallest change in the magnitudes of the Stern–Volmer constants
is observed for compound 1. The percent of reduction is equal to 4.5% in this case. For
the remaining three compounds, this change is slightly greater but does not exceed 45%.
Therefore, based on the literature data, it can be suspected that in the case of all derivatives,
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groove binding or a mixed mechanism dominates [25–27], which is consistent with the
results of previous experiments.
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Figure 7. The fluorescence spectra of the competition binding between EB/ctDNA complex and
compound: (a) 1, (b) 2, (c) 3, (d) 4, (e) 5 at 298 K, c (EB) = 10 µM, c (ctDNA) = 50 µM, c
(compound) = 0–100 µM. (f) The plot of F0/F versus quencher concentration.
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Figure 8. The Stern—Volmer plots for the fluorescence quenching of compounds by KI titra-
tion in with presence (green) and absence (blue) of ctDNA. The concentration of compounds and
ctDNA was 50 µM and the concentration of KI was in the range 0–100 µM, the excitation wave-
length (λex) were: (a) 240 nm—compound 1, (b) 280 nm—compound 2, (c) 243 nm—compound 3,
(d) 280 nm—compound 5.

Table 4. The KSV constants for studied compounds with KI titration with present and absent
of ctDNA.

Compound
KSV × 103 [M−1]

% Reduction in KSV
Absent ctDNA Present ctDNA

1 33.77 32.24 4.5
2 7.78 5.02 35.5
3 16.83 9.39 44.2
5 15.53 9.24 40.5

The influence of the ionic strength of studied compounds with ctDNA
The electrostatic binding mode between pyridazinone derivatives and ctDNA can be

inspected by controlling the fluorescence intensity in various ionic strengths. In case of
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significant influence of electrostatic interaction in the binding mechanism, an increase in
fluorescence intensity should be observed [28].

Compounds 2 and 5 exhibit decreased fluorescence intensity with increasing ionic
strength (Figure 9). Therefore, they do not bind to the ctDNA strand electrostatically. A
slight decrease was also observed for compound 1. However, compound 3 showed an
increase in fluorescence intensity with increasing NaCl concentration. It suggests the share
of electrostatic binding out of the groove (Figure 9) [28].
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Figure 9. The plot of the variation in the relative fluorescence intensity (F/F0) of the com-
pound/ctDNA complexes as a function of increasing concentration of NaCl from 0.112 M, compound
1—black, compound 2—red, compound 3—green, compound 5—cyan.

Circular Dichroism Spectroscopy

Circular dichroism spectroscopy (CD) is a commonly used technique to monitor the
conformation structure of peptides, proteins, or other biological fluids. The UV wavelength
range gives the most valuable information. The CD spectra of the ctDNA solution can be
characterized by two major peaks. The negative one at 247 nm is caused by a stacking
interaction between the base pairs, and the positive peak at 278 nm is due to helicity strands
(Figure 10) [29]. It is in good agreement with B conformation of DNA of double helical
strand [30,31]. The DNA morphology can be changed and transformed to other forms upon
interaction with small molecules, e.g., drugs. Obtained spectra are characteristic of ctDNA
(Figure 10). The addition of all analyzed compounds to the ctDNA solution resulted in
slightly increased noise in the CD spectra. It could be connected with distortion in the
ctDNA structure which is caused by the binding reaction. However, it is worth noting that
all the changes described here are small, and have a minor impact on the course of the
spectra and the intensity and location of the observed bands. The very weak impact on CD
signals is connected with a minor groove binding mode or an electrostatic interaction [31,32].
The presence of the intercalator has a stronger impact on the CD spectrum and causes
changes within both bands [25]. It is evident that the interaction of all analyzed compounds
with ctDNA does not lead to significant perturbation in the conformation of ctDNA and
confirms the minor groove binding and/or an electrostatic binding manner (Figure 10).
Obtained results are in agreement with UV-Vis and fluorescence study, and also with
molecular modeling effects.

2.2. Interaction with Plasma Proteins
2.2.1. Molecular Docking Studies

To determine a binding mode for interactions of studied compounds with α1-acid
glycoprotein and gamma globulin inside active pocket, molecular docking simulation was
made. The crystal structure from Protein Data Bank, 3kq0 (α1-acid glycoprotein) [33], and
1aj7 (gamma globulin) [34], were used. The energy scoring function for interactions is given
in Table 1. For all complexes, for both AAG and GG, the energy is negative, indicating the
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formation of stable systems. The strongest interactions were found for molecule 5, with a
value of −10.9 kcal/mol for AAG and −9.0 for GG. For the other complexes, the energy
scoring function is slightly smaller (Table 1). Moreover, systems with α1-acid glycoprotein
are more stable.
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Figure 10. The CD spectra of ctDNA (1 × 10−4 mol/dm3) in 0.01 mol/dm3 phosphate buffer (pH 7.4)
with the addition of varying molar ratio (0.25, 0.5, 0.75, 1.0) of: (a) 1, (b) 2, (c) 3, (d) 4, and (e) 5.

Figures 11 and 12 show the molecule 5 orientation in the α1-acid glycoprotein pocket
and a 2D plot of interactions, respectively. No hydrogen bonds were found. The system is
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stabilized by hydrophobic interactions. Several contact types have been found. The phenyl-
pyrrolo[3,4-d]pyridazinone moiety interacts by alkyl, π-alkyl, π-π T-shaped, and π-cation
contacts. 2-thioxo-1,3,4-oxadiazole ring and the chlorophenyl-4-hydroxy-1-piperidyl moiety
interact by π-alkyl, alkyl, and π-donor contacts. The binding mode for other complexes is
included in the Supplementary File (Figure S2a–d).
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Figures 13 and 14 present the compound 5 orientation in the gamma globulin pocket
and 2D plot of interactions, respectively. The molecule partially goes inside the pocket.
The second part, with phenyl- pyrrolo[3,4-d]pyridazinone moiety interacting with the GG
outside. The hydrogen bond between Arg96 and -OH group from chlorophenyl-4-hydroxy-
1-piperidyl moiety was found. The -Cl substituted phenyl ring interacts by hydrophobic
contacts inside the pocket: π-cation with His35, π-sigma with Leu89, π-π stacked with
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His35, and π-alkyl with Tyr91, Tyr98, Tyr99, and Arg96. The 2-thioxo-1,3,4-oxadiazol ring
via π-π T-shaped with Tyr98. Outside the pocket there are hydrophobic interactions with
Tyr94 (π-π T-shaped and π-alkyl), Ala92, and Ser93 (π-alkyl). The types of interactions for
other systems are included in the Supplementary File (Figure S3a–d).
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2.2.2. Spectroscopic Studies
Fluorescence Spectroscopy

Trp and Tyr are mainly responsible for the phenomenon of fluorescence in protein
molecules, but the effect from the first of these amino acids is dominant. The proteins
selected by us for analysis also contain tryptophanyl residues in their molecules. AAG has
three Trp: Trp-25 (inside the β-barrel), Trp-122 (in the entrance to the drug-binding pocket),
and Trp-166 (on the surface of the protein) [35,36], while the GG molecule contains as many
as 20 Trp residues [37].

An experiment was carried out during which it was observed how the fluorescence
intensity of the analyzed proteins changed under the influence of the increased concen-
tration of compounds 1–5. In the case of all tested systems, the fluorescence intensity
decreased (Figures 15 and 16). Furthermore, in the case of AAG-1, AAG-3, GG-1, and
GG-3 significant hypsochromic shift of maximum emission was observed. It means that
the amino acid residues are less exposed to the solvent and located in a more hydrophobic
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environment [38]. Based on the obtained results, it can be concluded that all pyridazinone
derivatives interact with the two tested plasma proteins.
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Figure 15. Fluorescence quenching spectra of AAG in the presence of different concentrations of
compounds 1–5 ((a–e), respectively, T-297 K, λex = 280 nm). The concentration of AAG was 1.0 µM,
and the concentration of 1–5, was: 0–2.0 µM, in the 0.2 step.
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Figure 16. Fluorescence quenching spectra of GG in the presence of different concentrations of
compounds 1–5 ((a–e), respectively, T-297 K, λex = 280 nm). The concentration of GG was 1.0 µM,
and the concentration of 1–5, was: 0–2.0 µM, in the 0.2 step.



Int. J. Mol. Sci. 2024, 25, 1784 17 of 27

To determine the mechanism of the above-mentioned effects, further analysis of the
obtained results was carried out. Therefore, the fluorescence results were analyzed by
the Stern–Volmer Equation (8) with inner filter correction (9). The Stern Volmer constants
KSV and the quenching rate constants kq are collected in Tables 5 and 6. The average
fluorescence lifetime (τ0) of the biomolecule, used in the calculation, was equal to 6 ns
for all proteins [39,40]. The Stern–Volmer plots are shown in Figures 17 and 18 for the
AAG and GG systems, respectively. The analysis of the obtained results is intended to
determine whether the quenching of the fluorescence phenomenon occurs as a result of
collisions of molecules in the solution (dynamic quenching) or by the formation of stable
complexes between protein molecules and the analyzed compounds (static mechanism).
For this purpose calculated kq values can be compared with the maximum value of the
quenching rate constant for the dynamic mechanism of fluorescence quenching in an
aqueous solution, equal to 2 × 1010 L·mol−1·s−1 [41,42]. For all analyzed systems, both
for AAG and GG, the obtained values are greater than the given reference value. It can
therefore be concluded that all tested pyridazinone derivatives form complexes with the
analyzed proteins. Moreover, analyzing the obtained results, collected in Tables 5 and 6, it
can be seen that the values of KSV and kq decrease with increasing temperature, which also
confirms the static mechanism of fluorescence quenching.

Table 5. The Stern–Volmer constant Ksv and the quenching rate constant kq, binding constants Kb

and number of binding sites n, thermodynamic parameters for the interaction of AAG with studied
compounds at different temperatures.

Quenching Binding Thermodynamic

T
[K]

Ksv·104

[dm3·mol−1]
kq·1012

[dm3·mol−1·s−1]
logKb

Kb·104

[dm3·mol−1]
n ∆G◦

[kJ·mol−1]
∆H◦

[kJ·mol−1]
∆S◦

[J·mol−1·K−1]

1
297 6.60 ± 0.10 11.0 4.49 ± 0.07 3.09 0.94 ± 0.01

−27.11 −155.65 −432.83303 4.94 ± 0.18 8.23 4.10 ± 0.30 1.26 0.90 ± 0.05
308 3.55 ± 0.27 5.92 3.49 ± 0.29 0.31 0.82 ± 0.08

2
297 26.15 ± 0.53 43.58 4.66 ± 0.10 4.57 0.87 ± 0.02

−26.17 −109.55 −280.76303 13.58 ± 0.59 22.63 4.17 ± 0.15 1.48 0.83 ± 0.03
308 13.45 ± 0.68 22.42 3.98 ± 0.20 0.95 0.84 ± 0.02

3
297 26.12 ± 0.56 43.53 4.66 ± 0.10 4.57 0.87 ± 0.02

−25.40 −159.25 −450.70303 13.68 ± 0.57 22.80 3.91 ± 0.26 0.81 0.79 ± 0.04
308 12.30 ± 0.86 20.50 3.47 ± 0.30 0.29 0.71 ± 0.08

4
297 43.26 ± 1.24 72.10 4.70 ± 0.07 5.01 0.83 ± 0.02

−26.78 −80.00 −165.70303 23.88 ± 1.40 39.80 4.47 ± 0.23 2.95 0.84 ± 0.04
308 20.21 ± 1.37 33.68 4.22 ± 0.18 1.66 0.81 ± 0.03

5
297 55.71± 2.78 92.85 4.15 ± 0.07 1.41 0.72 ± 0.02

−23.77 −93.87 −236.03303 23.91 ± 1.43 39.85 3.95 ± 0.13 0.89 0.76 ± 0.02
308 22.56 ± 1.82 37.6 3.54 ± 0.12 0.35 0.69 ± 0.02

Table 6. The Stern–Volmer constant Ksv and the quenching rate constant kq, binding constants Kb

and number of binding sites n, thermodynamic parameters for the interaction of GG with studied
compounds at different temperatures.

Quenching Binding Thermodynamic

T
[K]

Ksv·104

[dm3·mol−1]
kq·1012

[dm3·mol−1·s−1]
logKb

Kb·104

[dm3·mol−1]
n ∆G◦

[kJ·mol−1]
∆H◦

[kJ·mol−1]
∆S◦

[J·mol−1·K−1]

1
297 10.24 ± 0.36 17.07 5.19 ± 0.17 15.48 1.03 ± 0.03

−29.44 −155.02 −422.85303 9.29 ± 0.33 15.48 4.60 ± 0.14 3.98 0.94 ± 0.04
308 7.14 ± 0.22 11.90 4.22 ± 0.15 1.66 0.89 ± 0.03
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Table 6. Cont.

Quenching Binding Thermodynamic

T
[K]

Ksv·104

[dm3·mol−1]
kq·1012

[dm3·mol−1·s−1]
logKb

Kb·104

[dm3·mol−1]
n ∆G◦

[kJ·mol−1]
∆H◦

[kJ·mol−1]
∆S◦

[J·mol−1·K−1]

2
297 18.81 ± 0.49 31.35 5.19 ± 0.20 15.49 0.99 ± 0.04

−29.67 −97.62 −228.80303 11.15 ± 0.39 18.58 4.94 ± 0.24 8.71 0.98 ± 0.03
308 7.21 ± 0.20 12.02 4.57 ± 0.23 3.72 0.95 ± 0.04

3
297 9.65 ± 0.11 16.08 4.57 ± 0.09 3.72 0.93 ± 0.02

−26.13 −78.71 −177.09303 9.20 ± 0.41 15.33 4.37 ± 0.10 2.34 0.90 ± 0.03
308 7.11 ± 0.34 11.85 4.07 ± 0.13 1.17 0.86 ± 0.04

4
297 20.01 ± 0.48 33.35 5.34 ± 0.13 21.88 1.01 ± 0.02

−30.32 −71.87 −139.92303 16.00 ± 0.46 26.67 5.07 ± 0.21 11.75 0.98 ± 0.04
308 14.67 ± 0.55 24.45 4.89 ± 0.17 7.76 0.95 ± 0.03

5
297 18.68± 0.33 31.13 6.01 ± 0.08 102.33 1.12 ± 0.02

−34.12 −54.02 −67.01303 16.05 ± 0.44 26.75 5.83 ± 0.20 67.61 1.11 ± 0.04
308 12.94 ± 0.74 21.57 5.66 ± 0.23 45.71 1.10 ± 0.04
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In the next step, the fluorescence results obtained were analyzed by double logarithm
regression plots, in accordance with Equation (10):

log
F0 − F

F
= logKb + nlog[Q] (10)

The obtained curves are presented in Figures 17 and 18. The use of the above formula
for the analysis allows to determine the number of binding sites n in proteins for the
analyzed compounds and the values of binding constants Kb (Tables 5 and 6). For all tested
connections between AAG and GG, and compounds 1–5, the calculated values of n are
values of n for all experiments approached 1, consistent with the double-logarithm model.
When it comes to the values of Kb constants, it can be seen that for most compounds, more
stable complexes are formed in systems with GG. Only for derivative 3, this value is higher
for the complex with AAG. Among the orosomucoid systems, the most stable complex is
formed with compound 4, and the least stable with compound 1. As for complexes with
GG, derivative 5 binds most strongly to this protein, and 3 the least. However, it is worth
noting here that all obtained Kb are smaller than those obtained for interactions with serum
albumin reported in our previous work [1].

The use of the fluorescence spectroscopy method also made it possible to determine
the thermodynamic parameters for the ongoing processes of complex formation. Obtained
values of ∆G◦, ∆H◦, and ∆S◦ are collected in Tables 5 and 6. These parameters were
calculated based on the following Equations (11) and (12):

logKb = −∆H
◦

RT
+

∆S
◦

R
(11)

∆G
◦
= ∆H

◦ − T∆S
◦
= −RTlnKb (12)

where Kb is the binding constant, R is the gas constant, ∆H◦, ∆S◦, and ∆G◦ are enthalpy
change, entropy change, and free energy change, respectively.

The analysis of the parameters described above allows to identify the type of interac-
tions involved in the formation of complexes between proteins and the tested pyridazinone
derivatives [43,44]. Negative values of ∆G◦ suggest the spontaneous course of reaction of
the studied complexes formation. In turn, the obtained negative values of ∆H◦, and ∆S◦

indicate the participation of hydrogen bonds and van der Waals interactions in the binding
of the analyzed pyridazinone derivatives to protein molecules.

Circular Dichroism Spectroscopy

For all analyzed systems with proteins and pirydazinone derivatives, we used circular
dichroism spectroscopy. Similar to the studies performed for ctDNA, the spectra measured
both for solutions of proteins themselves and after adding appropriate amounts of the
analyzed compounds were intended to show the influence of pyridazinone derivatives
on the secondary structure of proteins. Figures 19 and 20 show that spectra characteristic
of both tested proteins were obtained. The analysis of the results carried out using Jasco
software (Spectra Manager Version 2, CD Multivariate SSE Version 2.03.00) showed that for
both AAG and GG, the dominant secondary structure is the β-sheet (Tables 7 and 8). Both
the course of the spectra and the percentage of individual secondary structures practically
do not change with the increase in the concentration of the analyzed compounds in protein
solutions. It can therefore be concluded that the formation of complexes between the tested
plasma proteins and pyridazinone derivatives does not significantly affect the structure of
AAG and GG macromolecules.
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Figure 19. The CD spectra of AAG (1 × 10−6 mol/dm3) in 0.01 mol/dm3 phosphate buffer (pH 7.4)
with the addition of varying molar ratio (0, 1.0, 2.0) of: (a) 1, (b) 2, (c) 3, (d) 4, (e) 5.
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Figure 20. The CD spectra of GG (1 × 10−6 mol/dm3) in 0.01 mol/dm3 phosphate buffer (pH 7.4) with 
the addition of varying molar ratio (0, 1.0, 2.0) of: (a) 1, (b) 2, (c) 3, (d) 4, (e) 5. 
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Figure 20. The CD spectra of GG (1 × 10−6 mol/dm3) in 0.01 mol/dm3 phosphate buffer (pH 7.4)
with the addition of varying molar ratio (0, 1.0, 2.0) of: (a) 1, (b) 2, (c) 3, (d) 4, (e) 5.

Table 7. The percentage of content of the secondary structure elements in AAG in the absence and
presence of analyzed pyridazinone derivatives 1–5 and Root Mean Square Deviation (RMSD) for
all analyzed systems. The RMSD was determined based on the experimental spectra and those
calculated in CD Multivariate SSE program.

AAG: Analyzed
Compound
Molar Ratio

% α-Helix % β-Sheet % β-Turn % Other RMSD

Compound 1

1:0 21.5 35.9 10.7 31.8 0.0025
1:1 21.0 36.1 10.7 32.2 0.0022
1:2 21.0 36.1 10.7 32.1 0.0023
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Table 7. Cont.

AAG: Analyzed
Compound
Molar Ratio

% α-Helix % β-Sheet % β-Turn % Other RMSD

Compound 2

1:0 22.2 35.6 10.9 31.3 0.0024
1:1 22.0 35.8 10.9 31.3 0.0025
1:2 22.1 35.7 10.9 31.3 0.0024

Compound 3

1:0 21.3 36.6 10.6 31.6 0.0024
1:1 21.2 36.3 10.6 31.9 0.0024
1:2 21.2 36.3 10.6 32.0 0.0025

Compound 4

1:0 21.6 35.9 10.8 31.6 0.0024
1:1 21.9 35.9 10.8 31.4 0.0026
1:2 21.8 36.0 10.8 31.3 0.0023

Compound 5

1:0 21.2 36.4 10.5 31.8 0.0020
1:1 21.4 36.3 10.5 31.8 0.0023
1:2 21.3 36.5 10.5 31.7 0.0024

Table 8. The percentage of content of the secondary structure elements in GG in the absence and
presence of analyzed pyridazinone derivatives 1–5 and Root Mean Square Deviation (RMSD) for
all analyzed systems. The RMSD was determined based on the experimental spectra and those
calculated in CD Multivariate SSE program.

GG: Analyzed
Compound
Molar Ratio

% α-Helix % B-Sheet % β-Turn % Other RMSD

Compound 1

1:0 9.4% 38.0% 13.3% 39.3% 0.0021
1:1 9.3% 38.2% 13.3% 39.2% 0.0020
1:2 9.3% 38.1% 13.3% 39.2% 0.0023

Compound 2

1:0 9.1% 38.1% 13.3% 39.4% 0.0020
1:1 8.9% 38.0% 13.4% 39.7% 0.0022
1:2 8.8% 38.1% 13.4% 39.7% 0.0018

Compound 3

1:0 9.2% 38.0% 13.4% 39.4% 0.0023
1:1 9.1% 38.0% 13.4% 39.5% 0.0022
1:2 9.1% 38.2% 13.3% 39.3% 0.0022

Compound 4

1:0 8.9% 38.1% 13.3% 39.6% 0.0022
1:1 8.8% 37.9% 13.4% 40.0% 0.0020
1:2 8.8% 38.4% 13.3% 39.5% 0.0018

Compound 5

1:0 9.2% 38.1% 13.3% 39.3% 0.0022
1:1 9.0% 38.0% 13.4% 39.5% 0.0023
1:2 9.0% 38.1% 13.4% 39.5% 0.0021
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3. Materials and Methods
3.1. Materials

The synthesis of pyridazinone derivatives 1, 2, 3, 4, and 5 was described in our
previous work [1]. All tested derivatives, based on their NMR and MS spectra and their
physical properties, were determined to have purity of >95%. UV-Vis and fluorescence
spectra of analyzed compounds are presented in Supplementary Materials (Figure S4).
Studied double-stranded calf thymus DNA (ctDNA, powder), proteins: AAG and GG
(powders), and 0.01 M phosphate buffer tablets were bought from Sigma-Aldrich Chemie
GmbH, (St. Louis, MO, USA). Protein solutions of a given concentration were prepared
by dissolving an appropriate amount of reagent in the form of powder in a phosphate
buffer solution. For ctDNA, we prepared the stock solution with a concentration equal
to 1 mg/mL, in phosphate buffer as a solvent. We have checked if ctDNA is free from
protein. For this purpose, the absorbance in 260 and 280 nm was measured. The value
of A260/A280 was higher than 1.8, which confirmed the purity of ctDNA [45]. The actual
concentration of the solution was determined from Beer–Lambert law by measuring the
absorbance at 260 nm and calculating it using the molar absorption coefficient equal to
6600 L/mol·cm [46]. The prepared solution was stored in a freezer, thawed, and diluted
with buffer to appropriate concentrations before measurement.

3.2. Molecular Docking

Geometry optimization of compounds 1–5 was performed using DFT with a B3LYP/6-
31 + G (d.p) basis set [47–49]. Computation was performed by the Gaussian 2016 C.01
software package [50]. The following DNA and protein structures were used: B-DNA-
1vzk [15], AAG—3kq0 [33], and GG-1aj7 [34]. Ligands, DNA, and proteins were prepared
using AutoDock Tools 1.5.6 [51]. Co-crystallized molecules of ligands and water were
eliminated. Kollman partial charges and nonpolar hydrogens were also added. Compounds
1–5 were prepared by the standard procedure: rotatable bonds were ascribed, nonpolar
hydrogens were merged, and partial charges were added. The molecular docking study
was conducted using AutoDockVina 1.1.2 [52]. Exhaustiveness values were set as 8, 16, 24,
and 60. The center of the grid box was set according to the binding pocket site in the crystal
structure of the protein and to the whole DNA molecule. The docking protocol was first
validated by self-docking of the crystallized ligands. The visualizations were performed
using ChimeraX 1.4 software [53] and LigPlot + v.2.2 software [54].

3.3. Spectroscopic Studies
3.3.1. Fluorescence Spectroscopy

Fluorescence spectra were measured on a Cary Eclipse 500 spectrophotometer (Agilent,
Santa Clara, CA, USA).

Studies with Proteins

The concentrations of proteins and pirydazinone derivatives were 1.0 µM and 1.0 mM,
respectively. AAG and GG solutions were prepared in phosphate buffer (pH 7.4), while
the analyzed ligands were diluted in EtOH. 3 mL of a solution of each protein were used
and we added a small portion of pirydazinone analogs. Experiments were performed at
three temperatures: 297, 303, and 308 K. We used the following measurement parameters:
280 nm for excitation wavelength, 300–500 nm emission wavelength, and 10 mm path
length. The molar ratio of compound to protein was 0.1–2.0 with 0.2 steps in all analyzed
systems. All measured spectra were corrected with an inner filter during analysis. For this
purpose, values were read from the UV-Vis spectra for the tested systems at the excitation
and emission wavelengths. Corresponding UV-Vis spectra were measured in a quartz
cuvette with a path length of 10 mm.
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Studies with ctDNA

The emission spectra were recorded in the wavelength range of 500–700 nm and the
excitation was at 525 nm. The samples were prepared in phosphate buffer (Sigma Aldrich,
St. Louis, MO, USA), the final concentration of ctDNA (calf-thymus DNA, Sigma Aldrich,
USA) was 50 µM, and EB (ethidium bromide, Sigma Aldrich, USA) was 20 µM. The solvents
were mixed with appropriately studied compounds with a stock solutions concentration
were 1 mM to achieve a molar ratio from 0.5 to 2.0 with 0.5 increments in relation to ctDNA.

The iodide potassium (KI) quenching measurements were performed for all studied
pyridazinone compounds excluding compound 4, which does not exhibit fluorescence.
The exciting wavelengths were 240, 280, 243, and 280 nm for compounds 1, 2, 3, and 5,
respectively. The fluorescence emission spectra were measured in the range of 300–500 nm.
The final concentration of compounds and ctDNA in the mixture was 50 µM. The stock
solution of KI (1 mM) was added dropwise to each mixture and then the spectra were
recorded. The measurements for each compound were carried out in two layouts with and
without ctDNA.

The ionic strength measurements were carried out for compounds 1, 2, 3, and 5, which
are characterized by the phenomenon of fluorescence. The concentration of compounds
and ctDNA was 50 µM. The NaCl (1 M) solution was added dropwise to obtain the final
concentration in the mixture in the range of 0–0.112 M. Then the samples were left for
10 min to equilibrate the mixture and the emission spectra were recorded in the wavelength
range 300–500 nm.

3.3.2. Circular Dichroism Spectroscopy

The Jasco J-1500 magnetic circular dichroism spectrometer (JASCO International CO.,
Tokyo, Japan) was used for recording the CD spectra. The method of preparing the solutions
of proteins and pyridazinone analogs was the same as in the fluorescence spectroscopy.
The following measurement parameters were applied: the range was 205–250 nm, the scan
speed rate was equal to 50 nm/min, with a response time of 1 s, path length—10 mm. The
molar ratios of proteins and ligands were equal to 1:0, 1:1, and 1:2. For the analysis of the
secondary structure elements we used the CD Multivariate Calibration Creation and CD
Multivariate SSE programs (JASCO International CO., Tokyo, Japan). For this purpose,
protein concentrations were expressed as mean residue molar concentrations.

The measurements with ctDNA were taken at wavelengths between 230 and 320 nm
with 0.1 nm resolution and averaged over two scans recorded at a speed of 100 nm/min. The
quartz cuvette with a path length of 10 mm was used. The ctDNA solution concentration
was 100 µM in phosphate buffer (0.01 M, pH = 7.4). The sample of ctDNA was titrated by
an appropriate amount of studied compounds: 1, 2, 3, 4, and 5 to achieve 0.5 and 1.0 molar
ratios. The stock solutions of compounds have a 1 mM concentration. The mix samples
were prepared at room temperature 297 K.

3.3.3. UV-Vis Spectroscopy

The electronic spectra were recorded on UV-Vis a Jasco spectrophotometer (Jasco,
Japan) over the range 190–400 nm at 0.1 nm intervals. The spectra were collected in a quartz
cuvette at room temperature 297 K. The samples were prepared in phosphate buffer saline
(0.01 M, pH = 7.4) and the baseline correction was made. The titration measurements were
carried out increasing the ctDNA concentration with an interval of 0.25 mol and the final
molar ratio was 1.5. The final ctDNA concentration was equal to 75 µM.

4. Conclusions

Five mono- and bi(hetero)cyclic pirydazinone derivatives, with proven anti-inflammatory
and antioxidant properties, were analyzed in this study. We showed that all these molecules
can form stable complexes with ctDNA, and two plasma proteins: AAG, and GG. In the
case of interaction with DNA molecules, all obtained results suggest that the minor groove
is a dominating mode of binding. A small contribution of the intercalation mechanism is
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also possible. Experimental results showed that the most stable complex is formed with
compound 4. However, for all studied pyridazinone derivatives the DNA molecule can
be a molecular target. It should be emphasized that all compounds do not significantly
deform the structure of the DNA molecule, so this suggests their lack of toxicity. As for
the interaction with plasma proteins, more stable complexes are formed with the GG
protein than with the AAG, except for compound 3, for which the situation is the opposite.
As in the case of DNA systems, compound 4 forms the strongest connections with the
orosomucoid. The gamma globulin molecule interacts most strongly with derivative 5.
However, it should be emphasized that in the case of both proteins, all complexes formed
are less stable than those formed with the albumin molecule. The obtained results are
consistent with the previous literature reports. It has been proven that commonly used
NSAIDs bind strongly to plasma proteins, especially albumin [55–57]. As for the bond with
AAG, it is weaker for this group of compounds than in the case of albumin [58]. This does
not change the fact that the interaction with AAG and GG may be important from the point
of view of the pharmacodynamics and pharmacokinetics of the tested compounds.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms25031784/s1.

Author Contributions: Conceptualization, A.K., E.K. and A.M.; methodology, A.K., E.K. and A.M.;
software, A.K., E.K. and A.M.; formal analysis, A.K., E.K., J.M., J.Ż., M.W. and A.M.; investigation
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