
Citation: Gooran, N.; Kopra, K.

Fluorescence-Based Protein Stability

Monitoring—A Review. Int. J. Mol.

Sci. 2024, 25, 1764. https://doi.org/

10.3390/ijms25031764

Academic Editor: Salah-Eddine

Stiriba

Received: 31 December 2023

Revised: 26 January 2024

Accepted: 29 January 2024

Published: 1 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Fluorescence-Based Protein Stability Monitoring—A Review
Negin Gooran and Kari Kopra *

Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland; negin.gooran@utu.fi
* Correspondence: khkopr@utu.fi

Abstract: Proteins are large biomolecules with a specific structure that is composed of one or more
long amino acid chains. Correct protein structures are directly linked to their correct function, and
many environmental factors can have either positive or negative effects on this structure. Thus, there
is a clear need for methods enabling the study of proteins, their correct folding, and components
affecting protein stability. There is a significant number of label-free methods to study protein
stability. In this review, we provide a general overview of these methods, but the main focus is
on fluorescence-based low-instrument and -expertise-demand techniques. Different aspects related
to thermal shift assays (TSAs), also called differential scanning fluorimetry (DSF) or ThermoFluor,
are introduced and compared to isothermal chemical denaturation (ICD). Finally, we discuss the
challenges and comparative aspects related to these methods, as well as future opportunities and
assay development directions.

Keywords: protein stability; fluorescence; intrinsic fluorescence; SYPRO Orange; thermal shift assay
(TSA); isothermal chemical denaturation (ICD); Protein–Probe; urea; melting temperature (Tm);
differential scanning fluorimetry (DSF); external dye; Gibbs free energy

1. Introduction

Proteins are involved in every aspect of physiology, and to correctly play their role, they
need to be folded in a specific way. The structure and stability of these macromolecules are
important factors to preserve their activity and function. Keeping the structure of a protein
in a stable state is crucial in drug development, drug delivery, and fundamental research [1].
The structural stability of a protein is directly related to the environmental conditions [2] and
buffer formulation, which vary from one protein to another. These factors relate to protein
structure and amino acid sequence, defining how compact the protein is and what, for
example, the isoelectric point (pI) is. These parameters thereafter determine the optimum
storage conditions by defining the optimal pH, ions, and temperature. The structure of
a protein under different conditions and with different additives should be studied to
provide insight into its function and optimize the conditions. This is especially important
in the case of biologics [3,4]. Protein engineering facilitates protein therapeutics, which
can be categorized based on the type of the molecule [5]. The largest and fastest-growing
subsection is antibody-based drugs. In this class of proteins, monoclonal antibodies (mAbs)
are receiving attention from major pharmaceutical and biotechnology companies. Most
of the mAb polypeptide chains can fold into a specific shape, which is critical for the
functionality and stability of the protein. Keeping and delivering the mAbs in the correct
shape is one of the major focuses of the pharmaceutical R&D section [6], and this relates
not only to protein stability but also to its tendency to aggregate [7].

There are both label-free and label-based methods to study proteins, their structural
stability, and interactions. Förster resonance energy transfer (FRET), and especially time-
resolved FRET (TR-FRET)-based techniques utilizing two labeled macromolecules, is one of
the most extensively used examples of label-based methods [8]. The disadvantages of these
methods are high costs due to the labeling step needed for every target protein studied, and
sometimes, the use of two labels might change the protein function, or the assay is difficult
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to construct [9–11]. Thus, label-free methods have gained greater interest, especially due to
their flexibility and suitability for different protein targets without extensive optimizations.
Label-free methods are generally easier to use and have greater accuracy than label-based
techniques in the context of protein stability [12]. Thus, the most ideal method should be
operated in a label-free manner, to detect minor changes in the stability of protein, and
enable automation by measuring numerous samples synchronously [13]. However, there
are numerous analytical parameters that regulate the success of a method such as the
sensitivity, detection limit, high-throughput capability, and range of applicability [14]. For
example, to be able to detect small changes in protein stability, the assay needs to have high
sensitivity and a suitable resolution [15,16].

Even still, most protein stability assays are performed in a highly controlled manner
using a single protein in a buffer, and different types of approaches are used. The cellular
thermal shift assay (CETSA) is a practical example of using the principle of a label-free
method in drug development in a cell environment [17]. In this method, the shift in the
melting curve indicates the binding of the designed drug with the target protein [18]. On
the other hand, methods creating high amounts of data, like mass spectrometry-based
thermal proteome profiling (TPP), have gained interest, which gives insight at a proteome-
wide level. TTP-type methods are like CESTA and can provide information regarding the
state of the protein and interactions, which is used to recognize the off-target effects of
the drugs [19–21]. Another practical example of CESTA is to determine the stability of
the membrane protein without detergents. The other methods use detergents to make the
membrane protein soluble, but the presence of the detergent affects the background [22,23].

In vitro label-free protein stability assays, such as differential scanning fluorimetry
(DSF), have gained popularity, especially due to their simplicity and low instrumental
demands [24,25]. DSF is based on adding an external probe fluorophore with a low
fluorescence signal in a polar environment, such as in an aqueous solution, and monitoring
fluorescence signal increases when this dye enters more nonpolar environments upon
protein denaturation. DSF has many advantages over the gold-standard method for protein
stability, differential scanning calorimetry (DSC) [26,27]. DSC can provide high-quality
information regarding protein thermal stability and interactions between proteins and
other molecules, but its throughput is limited. Similar to many other methods used for
stability assessment, DSC is equipment-demanding, not having a similar applicability to
various types of laboratories as DSF [28]. In this review, we briefly introduce some of the
equipment-demanding techniques for protein stability monitoring, but the main focus is
on non-equipment-limited methodologies with high-throughput (HT) capabilities. We look
at the application of the methods, such as studying protein–ligand interaction (PLI) and
formulation, basic principles, and the parameters, and discuss future trends, especially
those related to DSF and isothermal chemical denaturation (ICD) techniques.

1.1. Usability of Protein Stability Assays

Analytical techniques like DSC have a low throughput, but in the case of DSF, the
throughput is already increased. Low-throughput methods cannot fill the void of an
assay for screening the immense number of compounds collected in pharmaceuticals [29],
but their advantages are elsewhere. Thus, the selection of the correct method is of high
importance. Research that grants multiple measurements of molecules simultaneously
with the possibility of repetition has high throughput. HT methods are usually performed
in 96- to 1536-well plates, and these methods have been extensively used for the last few
decades [30,31]. HT techniques are well suited for biophysical characterization, buffer
optimization, and studying PLIs and protein–protein interactions (PPIs). They are usually
easy to perform and automate, with low demands on expertise [32]. One of the leading
measurement methods in HT screening are fluorescence-based assays. They are favored
due to primitiveness, their ability to adapt, high sensitivity, and low to zero damage to the
target while analyzing it [29].
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In the context of protein stability assays, HT methods can be categorized in two ways:
(1) aiming to measure the protein properties under physiological conditions (e.g., 37 ◦C)
and interpret the stability based on the measurements which are more favorable for study-
ing human diseases at molecular levels, and (2) incomplete distressing and disturbing
of the protein to measure the stability accurately [33]. There is research regarding devel-
oping an HT method independent of the target function and/or enzymatic activity to
widen its range of applications, as the central point of failure of these approaches is the
limited range of applications [34]. In the following part, we introduce some of the most
important stability parameters and introduce the usability in the context of interaction
monitoring utilizing protein stability assays. We also give a quick look at the methods with
low throughput and high equipment demands, but those methods are more thoroughly
introduced elsewhere [28,35–37].

1.2. Stability Parameters

There are several important parameters which can help scientists not only to interpret
their results, but also to plan their research. Before the intended assay, one should have
some prior knowledge about the studied protein or interaction. This information often
relates to the protein environment, e.g., the buffer pH, structural features in secondary
structures, aggregation properties, and so on [38,39]. By having information about the
protein and given conditions, more reliable thermodynamic parameters can be obtained.

Among the thermodynamic parameters of protein unfolding, the Gibbs free energy of
unfolding (∆G) is a precise measure of protein stability. ∆G indicates the stability of the
protein. A positive, large ∆G means that a protein is stable. The melting temperature (Tm)
is also used to show the stability of the protein [40,41]. At Tm, the ∆G of the folded and un-
folded states are equivalent, and the Tm defines the approximate temperature at which the
protein is 50% folded. In thermal unfolding events, other parameters like Ton, the beginning
of the unfolding event, and Tturb, the beginning of aggregation, can be given [42]. When ∆G
is paired with Tm, one can extract the enthalpy of unfolding (∆H) and the entropy of unfold-
ing (∆S). These parameters are related to each other—(−RTlnK) = ∆G = ∆H − T∆S—where
R is the gas constant, K is the equilibrium constant, and T is the absolute temperature [43].
All of these parameters are often used in the context of methods like DSC and DSF, and
there are several papers in regard to thermodynamic properties and their relationship to
each other, which is outside the scope of this review paper [44–48].

1.3. Interaction Monitoring

Protein stability assays are most often utilized for protein formulation and interaction
monitoring. In particular, PLI assays are performed in all types of laboratories, from basic
research in academia to screening in pharma. Among the factors that may influence protein
stability are generic ingredients like buffers, salts, and detergents, whose interactions with
the protein are not always specific for a single pocket in the protein structure. These factors
are the main interest in formulation, as ligands that bind to the protein at a specific site
have different types of effect. In addition to their effect as protein stabilizers, PLIs can
be of high value for functional studies such as substrate specificity and for identifying
allosteric effectors that would help in providing better protein annotations. Moreover, a
treasured starting point in drug development is ligand identification [49]. Formulation
and PLI assays also have different demands on the assay. Following the growth of the
usage of proteins in the pharmaceutical industry and the importance of understanding
their structure, the analysis of molecular interactions between ligands and their target
molecules is currently in the spotlight, and the number of methods is also increasing [50].
Understanding the mechanisms of the interaction of proteins and ligands can speed up
the process of drug discovery and development, and depending on the method used, the
resolution of the gained information varies significantly [51,52]. X-ray crystallography,
NMR, and cryo-electron microscopy are a few examples of the many experimental tech-
niques that can be used to investigate PLIs in high resolution [53–55]. They can provide
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atomic-resolution or near-atomic-resolution structures of the unbound proteins and the
protein–ligand complexes, which can be used to study the changes in structure and/or
dynamics when binding happens, along with between relevant free and bound forms [56].
However, a high resolution is not always needed, as protein-level resolution might give the
needed information [57].

The binding affinity may not be correctly determined without a complete thermody-
namic profile and thermodynamic properties. This information cannot be achieved using
only the structural and dynamic data, no matter how accurate and practical the compu-
tational methods are [58]. There is a need for a technique that can provide quantitative
thermodynamic data that can be used to study the complex stability and elucidate the bind-
ing driving forces. DSC is one of the methods that can predict the stability of protein–ligand
complexes via measuring the enthalpy and the heat capacity of thermal denaturation, but
its usage in biochemistry laboratories is limited due to its expansive instruments that can
only be used to denature proteins. Fluorescence spectroscopy-based techniques enable
the reliable study of PLIs due to their high sensitivity and relative simplicity [59]. In this
method, the fluorescence of the solution is monitored while the solution is heated, and
when the protein chain begins to unfold, the hydrophobic core becomes exposed, leading
to an increase in the signal until all protein molecules are fully denatured. Generally, the
protein stability is increased by ligand binding, meaning that the Tm value increases [60].
Ligand binding often causes a relatively low shift in Tm (∆Tm), as in the case of the well-
studied model protein, carbonic anhydrase [61]. As ligand binding-induced changes in Tm
might be very small, methods must be able to reliably measure these changes. Depending
on the method, a ∆Tm over 1 ◦C can be counted as significant, but not all interactions give
this high of a change. However, especially some covalent binders and other high-affinity
interactions might cause a ∆Tm of 10–30 ◦C or even higher, as in the case of the streptavidin–
biotin pair [62,63]. These extreme stabilizers can cause their own problem, related to the
high temperatures needed for denaturation. Other disadvantages, such as a relatively high
protein consumption, which hides functional data in assays with high-affinity ligands,
might cause interferences with some proteins and ligands with a limited usability at high
concentrations, for example, because of their low solubility. Thus, new external dyes for
protein unfolding are constantly developed [64–66].

Numerous protein targets and protein-based drugs have been identified in recent
times, with an anticipation that approximately a dozen therapeutic proteins per year will
receive regulatory approval in the upcoming decade [67]. For effective product devel-
opment, the formulation scientist must have a good understanding of the mechanism
of degradation of the macromolecule of interest and its potential impact on such areas
as its biological activity, metabolic half-life, and immunogenicity [68]. Before evaluating
safety, toxicity, absorption, distribution, metabolism, excretion (ADME), and pharmacology
and conducting assessments of biological activity in animals, it is imperative to conduct
protein formulation screening [67]. Fluorescence spectroscopy, particularly in combination
with microscopy, is a powerful tool often used in a spectacular manner to study biological
processes occurring in living cells [69]. In the field of therapeutic protein development,
fluorescence spectroscopy is one of the most rapidly advancing areas [70]. One of the
important steps in mAb formulation is the determination of the thermal unfolding of the
antibody. This can readily be undertaken with the help of polymerase chain reaction (PCR)
instruments. Instead of detecting the presence of amplified nucleotides, a fluorescence dye
is used to detect binding associated with the appearance of solvent-exposed hydrophobic
regions after unfolding [69].

1.4. Non-Luminescent Methods

Not all methods have equal suitability for all proteins and areas of interest. In addition,
not all methods are available for researchers, and here, we give a short introduction to
more equipment-demanding techniques for protein stability. The most used method to
destabilize proteins of interest is heat. In these thermal stability methods, the sample is
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heated and the changes in experimental stability parameters are recorded. Thereafter,
the properties and quantities of the native and denatured proteins, and potentially other
stability parameters, can be determined using these records. The gold-standard technique
in thermal stability analysis is DSC (Figure 1A) [71]. Other label-free methods that are
often used are circular dichroism (CD) (Figure 1B) and nuclear magnetic resonance (NMR)
spectroscopy. The common aspect of these three techniques, as well as multiple other
applicable methods, like mass spectrometry (MS) and isothermal titration calorimetry, is
the need for specialized instruments and scientists with expertise to perform these assays
and interpret the results [72,73].
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Figure 1. Typical data obtained using differential scanning calorimetry (DSC) and circular dichroism
(CD). (A) Typical DSC thermogram of a small globular protein provides Tm at maximum when the
heat capacity (Cp) changes during the temperature increase, causing native (N) protein unfolding
to denatured (D) form. (B) Typical circular dichroism (CD) spectra of proteins’ most important
secondary structures, and comparison between folded and unfolded protein spectra.

DSC is a dominant technique and can provide information on the unfolding process
of macromolecules in terms of the structure, as well as changes in the protein environment
and ligand binding (Figure 1A). This method is flexible and can be used for all soluble
proteins, unlike DSF, in which unwanted dye binding to the native protein might affect
measurements, but also for membrane proteins. DSC provides the excess heat capacity of
macromolecules as a function of temperature; as a related technique, ITC measures the
temperature change during ligand titration [74]. These two methods are the only ones that
directly determine the ∆H. DSC enables the collection of valuable information, including
(i) the absolute partial heat capacity of a molecule, (ii) the comprehensive thermodynamic
parameters linked to a temperature-induced transition, and (iii) the partition function.
Additionally, it facilitates the simultaneous determination of the population of intermediate
states and their corresponding thermodynamic parameters. Generally, DSC cannot be used
for small molecules, except when used as a protein ligand. Usual DSC measurements can
be performed using low mg amounts of protein, and a typical scan takes 10 to 60 min,
depending on the scan and equipment used [75,76].

CD is a well-established method to swiftly analyze the secondary structure of the
protein (Figure 1B). It also provides insight for changes that happen during biological pro-
cesses such as folding and interactions. This method needs a 0.05–0.5 mg/mL concentration
of protein. CD falls under the category of absorption spectroscopy, as distinct structural
elements show different absorption in the left- and right-circularly polarized light. Intrinsic
CD counts as a label-free method since its probe is a part of the protein structure that can ab-
sorb light, called chromophores [77,78]. Examining the thermodynamic parameters linked
to protein unfolding induced by heat, osmolytes, denaturants, or ligands through CD is
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achievable. CD finds diverse applications, including assessing the integrity of membrane
proteins during extraction. Typically, CD is more time-consuming than DSC, taking a few
hours to collect the data, but with the new and more advanced CD equipment, the assay
can be performed in even less than an hour. CD can be used to give an estimate of the
secondary structural composition of proteins, but it does not give similar residue-specific
information to X-ray crystallography and NMR [79].

NMR is the second method besides X-ray diffraction in single crystals to determine
protein structures at an atomic resolution. NMR provides data that are compatible with
X-ray crystallography, thus helping to better understand the relation between structure and
function. NMR spectroscopy is an important technique for studying time-dependent phe-
nomena, including reaction kinetics and the intramolecular dynamics of macromolecules,
along with weak protein–protein interaction, as it does not require crystallization [80,81]. To
mention a few applications of NMR, we can point out the investigation of protein conforma-
tion changes, weak protein–protein interactions, and denaturation [81,82]. On top of these,
NMR has the ability to quantify dynamics under equilibrium conditions without external
perturbations, using many probes simultaneously and over large time intervals [83,84].
However, NMR studies are performed only in special situations needing high-resolution
data, as the analysis takes a significant amount of material, time, and expertise [85].

2. Luminescence-Based Thermal Shift Assays (TSAs)

An ideal assay for universal use for varying sizes of laboratories is simple, cost-efficient,
and does not need specialized instruments. Many of the fluorescence-based assays fill
these criteria, and thus are often used when highly accurate and special information for
protein stability is not needed. The thermal shift assay (TSA), also referred to as DSF or
ThermoFluorTM, is a cost-effective, parallelizable, practical, and accessible biophysical
technique (Figure 2). Thus, it is widely used as a method to track both the protein folding
state and stability, as well as interactions [31]. DSF is a method that involves incubating
naturally folded proteins with environment change-sensing fluorescent dye in a multiwell
plate. As the temperature gradually increases, the fluorescence emission of the dye is
monitored in real time. These recordings discriminate the properties and populations
of native and denatured conformers. The introduction of fluorescence-based TSA has
significantly enhanced the ease of identifying conditions that enhance protein stability, as
most of the used external dyes are compatible with commonly available real-time PCR
machines. In comparison to most of the other methods, DSF is fast (20–120 min) [86]. It also
can be used for multiple things, e.g., to identify stabilizing conditions, additives, and small-
molecule ligands for purified recombinant proteins along with cofactors. Data collected can
be directly used to study protein properties, but also to indicate favorable crystallization
or storage conditions or aid in assigning functionality. The TSA’s high-throughput nature
allows for the quick discovery of protein-stabilizing solutions through the sparse matrix
screening of various solution conditions, such as the buffer identity, solution pH, and
ionic strength. Typically, DSF assays are performed in 20 µL volumes in 96- or 384-well
plates, with 5–10 µM of protein in the final volume, and requires minimal specialized
instrumentation [87]. Given these advantages, DSF is used widely in laboratories in
academia, the government, and industry alike. To pinpoint a candidate that is capable of
binding with the target protein while disregarding enzymatic activity, high-throughput
DSF screens are employed. Additionally, these screens prove invaluable in constructing
chemical libraries for drug development and formulating biotherapeutics [46]. The cause of
many misfolding diseases, including cystic fibrosis, Gaucher’s disease, and Fabry’s disease,
are genetically destabilized proteins [88].
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Figure 2. Typical thermal stability assay (TSA) data using external fluorescent dye. (A) Increase in
temperature causes protein unfolding, enabling dye binding and increase in fluorescence. Melting
temperature (Tm) is observed as a half-maximum signal, and further increase in temperature leads
to dye dissociation due to protein aggregation. (B) Data can be additionally plotted as a slope of
the fluorescence curve (dF/dT) vs. temperature to improve visualization. Tm is shown as a peak
and ∆Tm can be obtained as a distance between the peaks of a ligand-bound (red) and non-bound
(black) protein.

The exploration of small-molecule correctors is possible via DSF. DSF has been applied
to overcome the challenges of sample preparations Notably, DSF has been adapted to
furnish data even in unpurified chemical reactions, exemplifying its utility in complex
solutions [31]. Further enhancements to the methodology have resulted in the usage of dyes
with superior spectral properties, analyzing the data with generic tools, and recommended
protocols for preliminary screening [49]. Although DSF has a wide range of application in
studying PLIs (Figure 2B), just a limited number of studies have successfully determined
dissociation constants for the investigated PLIs [89,90]. These studies often involve detailed
equations describing protein unfolding, necessitating the fitting of numerous parameters to
sparse data or, in some cases, estimation. The importance of such techniques shows itself in
the study of tightly binding compounds or proteins exhibiting unconventional transitions.

In this section, different types of intrinsic or external TSA dyes, the effect of used
buffers for assay optimization, and equipment demands are explained. In addition, a brief
summary of analyzing TSA data and a comparison of the results, accuracy, and sensitivity
of TSA with other methods are given.

2.1. Fluorescent Dyes vs. Intrinsic Fluorescence

In all DSF-type assays, the first and most important step is to select a suitable readout
method. The specialized fluorescent dyes often used in DSF are defined as compounds that
both absorb light and emit strongly in the visible region (Figure 3) [91]. The fluorescent
dyes suitable for DSF exhibit high fluorescence intensity when in a nonpolar environment,
such as the hydrophobic sites found on unfolded proteins. In contrast, their fluorescence is
quenched in an aqueous solution. The optical properties of the dyes may vary, especially
in terms of the fluorescence quantum yield [92], which is affected by their binding to
denatured proteins [93]. In some label-free methods, the more complex external probe is
used to detect the structural integrity and interactions of the target protein. In addition, the
intrinsic fluorescence of a studied protein might be applied [2].
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Figure 3. Typical external fluorescence dye structures used to study proteins. (A) SYPRO Orange is
typical and most often used DSF dye; Ex: 470 nm; Em: 570 nm. (B) Nile Red is a polarity-sensitive
fluorescent probe; Ex: 550 nm; Em: 635 nm. (C) ANS is a fluorescent molecular probe binding to
hydrophobic regions of target protein undergoing fluorescence blue-shift upon binding; Ex: 350 nm
(free); Em: 520 nm (free). (D) ThT dye is used to visualize and quantify the presence of misfolded
protein aggregates; Ex: 450 nm; Em: 485 nm. (E) DCVJ is a rotor dye, with which quantum yield
increases by decreasing free rotation upon binding; Ex: 450 nm; Em: 500 nm.

Commercial dyes such as 4,4′-bis(phenylamino)-[1,1′-binaphthalene]-5,5′-disulfonic
acid dipotassium salt (bis-ANS) and Nile Red (Figure 3B) have been used for decades,
despite the fact that, in the presence of a folded protein, they might have a high signal
background [31]. SYPRO Orange (Figure 3A) is the most favorable dye for DSF thanks to
its high signal-to-background (S/B) ratio. Its spectral properties make it suitable for qPCR
equipment, as its excitation is 488 nm and its emission range is 500–610 nm [31]. These
wavelengths also are less prone to interferences, as most small molecules typically have
absorption maxima at shorter wavelengths. In comparison, many compounds interfere
with the spectral properties of another commonly used DSF dye, 1-anilino-8-naphthalene
sulfonate (1,8-ANS), whose excitation maximum is at ∼350 nm (Figure 3C). Even 1,8-ANS
has a number of advantages over some other probes, e.g., good solubility, a relatively small
effect on protein structure and stability, convenient fluorescence properties, and suitable
affinity for most proteins, excitation in the UV area is a major shortcoming ruling out
most of the qPCR equipment [94]. Still, ANS together with SYPRO Orange are usually
the first probes to be tested [94]. The GloMeltTM kit, which includes GloMeltTM dye, is
commercially available for determining protein stability through TSAs, with an excitation
of 468 nm and an emission of 507 nm. The advantage over SYPRO Orange is that GloMelt™
dye is slightly more sensitive, but especially that these assays can be performed at high de-
tergent concentrations. Despite all the advantages of SYPRO Orange and other typical DSF
dyes, not all proteins can be analyzed using these external probes [49]. As an illustration,
SYPRO Orange, Nile Red, and 8-ANS all attach to hydrophobic regions within the protein.
In contrast, Thioflavin T (ThT) and similar dyes preferentially bind to the “beta-pleated
stack” and related motifs found in misfolded, refolded, or aggregated protein species
formed during the unfolding process [95]. ThT and its modifications, used, for example,
in the ProteoStat Kit, are rarely used to measure protein stability directly, but for aggrega-
tion monitoring (Figure 3D). The so-called “molecular rotor” microviscosity probe, e.g.,
9-(dicyanovinyl)julolidine (DCVJ) and 9-(2-carboxy-2-cyanovinyl)julolidine (CCVJ), has
also been applied in DSF monitoring (Figure 3E) [95]. Their extreme sensitivity, structural
specificity, and versatility make extrinsic probes useful for high-throughput screening,
especially related to formulation studies [95,96]. These dyes can tolerate detergents and
surfactants even better than GloMelt™ dye, but due to the different mechanism of action,
these dyes do not monitor Tm similar to dyes like SYPRO Orange, but rather protein ag-
gregation properties (Tagg) at higher temperatures [97]. A new class of external probes for
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aggregation and stability studies are the Protein–Probe family of peptide-targeted time-
resolved luminescence (TRL) probes [64]. In these methods, one or two peptides are used
to monitor proteins, and the advantage of these techniques is their extreme sensitivity at
low nanomolar levels of protein. Three variations of this method have been published, all
utilizing different detection principles and varying suitability [26,64]. Unfortunately, due
to the TRL readout, none of these methods can be monitored using qPCR equipment.

External probes must always be added to the protein solution, and thus, there is always
a possibility for interferences due to the used dye. Another source of fluorescence originates
from the protein sample itself. Intrinsic protein fluorescence deriving from the naturally
fluorescent amino acid tryptophan (excitation at ∼280 nm, emission at ∼350 nm) [98],
and, to a lesser extent, from low-quantum-yield phenylalanine and from often-quenched
tyrosine (excitation at ∼275 nm, emission at ∼304 nm) [99], can provide information on
the conformational changes of proteins [100]. Tryptophan emission proves to be especially
sensitive to the polarity of the local environment, making it suitable for reporting on the
local-specific conformational changes as the protein unfolds [101]. The usual observation
related to the unfolding is for the fluorescence emission maximum to undergo a red shift
(toward a longer emission wavelength, from 330 nm to above 350 nm). This corresponds
to the increased exposure of the tryptophan groups to the solvent in the unfolded state.
Tyrosine fluorescence is generally only used for proteins that do not contain tryptophan,
and it affects the assay sensitivity [102]. Thus, intrinsic fluorescence is most powerful
for proteins with tryptophan by following protein unfolding using progressive redshifts
on tryptophan fluorescence emission due to the changes in the indole ring microenviron-
ment [103,104]. NanoDSF (nDSF) is a modern method that is also used for monitoring
changes in intrinsic tryptophan fluorescence. Unfortunately, these assays are still out of
reach for many scientists, as the specialized devices used for nDSF are still not universally
found and their usage is quite expensive in comparison to conventional DSF [105].

Even though intrinsic fluorescence and external probes are the most widely used
techniques due to their label-free nature, sometimes, target protein labeling might be a
rational option. Schaeffer’s lab introduced an innovative method that utilized a green
fluorescent protein (GFP) to quantitatively assess the stability of a target protein [31]. In
these experiments, a GFP tag was fused to the targeted protein through a peptide linker,
establishing a reporter system for tracking the unfolding and aggregation of the protein.
The fluorescence signal emitted by the GFP was responsive to its immediate surroundings,
allowing it to be employed for tracking the unfolding process of the linked protein. At
around 75 ◦C, the GFP starts to lose fluorescence; hence, the stability of the GFP is higher
than a lot of proteins [31]. The method further developed into a GFP thermal shift (GFP-TS)
assay, which is a form of chromatography, excluding the size, as a streamlined adaptation of
fluorescence detection. The hybrid approach integrates the adaptability of the sample that
is inherent in the above-mentioned chromatography, with the high-throughput capacity
of dye-based thermal shift assays. GFP-TS, in this context, proves effective for discerning
specific ligand interactions within solute carrier transporter fusions and quantifying their
affinities in crude detergent-solubilized membranes. Also, purified SLC transporter fusions
can be investigated by GFP-TS in order to discover specific lipid–protein interactions.
Similar to nDSF, spectral shift assays have also been used with labeled proteins [106]. By
attaching a specific spectral shifting dye, sensing the microenvironment, to the studied
protein, the assay affinity can be significantly increased to a sub-nanomolar level, similar
to the Protein–Probe approach. The use of near-infrared dyes does not need to be site-
specifically conjugated to the target, but only the labeling degree must be optimized. Target
protein labeling is especially useful for those targets that are typically difficult to study, and
in those cases, assay costs often do not limit the research.

As there are often multiple areas of interest, especially with mAb drugs, lately, some
combinatory systems have been created. One of these systems is the Uncle protein stability
screening platform [107]. Uncle boasts three detection methods—full-spectrum fluores-
cence, static light scattering (SLS), and dynamic light scattering (DLS)—to profile protein
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stability. With full-spectrum fluorescence detection (250–720 nm), protein intrinsic flu-
orescence and dyes like SYPRO Orange can be scoped to assess protein unfolding and
denaturation parameters. Simultaneously, SLS tracks the formation of large and small
aggregates, while DLS takes care of sizing and size distributions [108]. This type of com-
binatory system increases the speed of protein analysis, as multiple parameters can be
obtained simultaneously. However, even if up to 48 samples are assayed simultaneously,
quartz cuvette chambers and the need for special instrument makes the system limited.

2.2. Equipment Demands

In optimal cases, assays should not have any specific demands related to instrumen-
tation. However, for example, CD has its own spectroscopy devices, which are supplied
with their own data-processing software packages for data handling. To precisely ascertain
the secondary structure of a protein using circular dichroism (CD) data, the collected data
must encompass a spectral range that includes wavelengths between 240 and 190 nm [109].
Fortunately, this wavelength range is accommodated by CD instruments [110,111]. TSA
is far less equipment-demanding, as in order to collect thermal shift data, only qPCR
instruments are recommended. A TSA can be performed using separate PCR and plate
reader options if a suitable qPCR is not available [112,113]. However, this is laborious and
might cause variation with high sample numbers if the signal is monitored in a well-to-well
fashion. Also, the temperature gradient is not constant, potentially affecting the Tm, but on
the other hand, detection sensitivity might be improved due to the higher performance of
the used plate reader in comparison to qPCR measurement.

The optimization of protocols for each instrument will depend on its specific soft-
ware. Researchers should consult the user manual and technical documentation of their
particular instrument to understand the available options and recommended protocols for
protein thermal denaturation using the TSA [112]. Instruments also offer different usable
wavelength ranges and have different sensitivities, partly depending on the use of filters,
monochromators, or CCD cameras to detect the signal. Especially in filter-based systems,
sensitivity might be significantly reduced if the used filter setting does not fully match the
spectra of the used dye. In addition, the excitation can be based on laser, LED, halogen,
or xenon lamps, all having varying properties. For example, LightCycler® Real-Time PCR
only supports wavelength areas of 430–630 nm, ruling out the suitability for ANS-based
TSA assays [114]. Similarly, Anitoa Maverick supports a 460-to-670 nm excitation range
and a 510-to-720 nm emission range [115]. On the other hand, the ABI Prism 7000 (Applied
Biosystems, Foster City, CA, USA) and Stratagene devices Mx4000 and Mx3000P, for ex-
ample, can also be used for ANS, as the excitation range is wide (350–750 nm) thanks to
the tungsten–halogen lamp used. Related to equipment, a passive reference dye is often
used to improve data quality. Usually, ROX (carboxy-X-rhodamine) is used as the passive
reference dye when this is needed depending on the qPCR equipment. The main reason to
use ROX is to equalize fluorescence levels among wells.

Some instruments might offer built-in templates or preconfigured settings for these
assays, simplifying the optimization process [116]. However, if no specific templates are
available, researchers may need to customize the protocols based on the instrument’s
capabilities and the desired experimental parameters (e.g., temperature range, ramp rate,
and data acquisition intervals) [117]. Parameter selection is important to be able to produce
comparable data, as these parameters have a known effect on the measured Tm. Regular
calibration and quality control of the real-time PCR instrument is also essential to ensure
accurate and reproducible results during protein thermal denaturation experiments [118].
Conducting pilot experiments with known protein standards can also help to fine-tune the
protocol and confirm the instrument’s suitability for specific research needs, especially in
terms of sensitivity. Overall, proper optimization and understanding of the real-time PCR
instrument’s software are crucial for obtaining reliable and informative thermal shift data
for protein stability analysis [112].
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A promising new variation of DSF that overcomes some of the qPCR-related problems
is based on intrinsic fluorescence detection in capillaries (Figure 4). Platforms from Nan-
oTemper Technologies use a capillary-based system in conjunction with a UV detection
system designed specifically to monitor shifts in the fluorescence emission of tryptophan
by monitoring two wavelengths (330/350 nm) [119]. It can be applied over a wide concen-
tration range (5 µg to 150 mg/mL) and can accommodate for up to 48 samples per run.
This device generates high-resolution thermal unfolding curves, enabling the detection
and analysis of transitions linked to a multidomain protein [95]. By performing nDSF with
Prometheus NT.48, material consumption is significantly lower in comparison to typical
DSF, and also, the assay is performed within few minutes in comparison to DSF typically
taking an hour. Though powerful, the system costs exceed the budget limit of multiple
laboratories. Microscale thermophoresis (MST) is another powerful technique to quantify
biomolecular interactions. Although thermophoresis is not a protein thermal stability
method, it can be used to determine thermodynamic parameters like ∆G, ∆H, and ∆S by
measuring Kd at different temperatures. It can also give information about protein–ligand
interactions similar to SPR and ITC, making it quite a versatile technique. Thermophoresis
shows the directed movement of molecules in a temperature gradient. Size, charge, and
conformation along with other molecular properties can be determined based on this move-
ment [120]. Each binding changes at least one these parameters, and as a result, a small
volume (~20 µL) of biomolecules is enough for this measurement. This method can be
applied to small molecules as well as large macromolecular complexes. A positive aspect is
the wide suitability for standard buffers and complex mixtures such as liposomes, deter-
gent, serum, and cell lysates. The Monolith X instrument combines MST with spectral shift,
and it is equipped with dual-emission detection optics (NanoTemper Technologies GmbH,
München, Germany). This system enables the use of environment-sensitive near-infrared
dyes with an emission maximum at around 660 nm, and as with Prometheus NT.48, the
measurement step is fast. Also, in this case, the price of the equipment and consumables
makes this system suitable for more specialized laboratories or shared facilities.
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Figure 4. NanoDSF (nDSF) principle and typical data observed. (A) nDSF assays are performed in
small capillaries and the assay enables the detection of conformational stability, fluorescence scan us-
ing 330 and 350 nm wavelengths, and colloidal stability by monitoring back-reflection light scattering
simultaneously. (B) nDSF fluorescence measurement at two wavelengths, 330 and 350 nm, provides a
typical TSA melting curve based on the changes in the tryptophan environment. Aggregation (blue)
typically occurs at higher temperatures in comparison to unfolding (red) and reliable data are only
observed at higher concentrations, approximately 20× above the DSF sensitivity limit.
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2.3. Buffer Components and Interferences

It has been seen that a loss of function and lower stability occurs for many target
proteins in standard sample buffer conditions, and it is essential to identify the components
that are necessary to recover the integrity and activity of the protein [121]. The selection
of solution conditions for screening by using TSA is heavily reliant on the specific protein
being tested and the intended downstream biochemical assays or structural biological
approaches [112]. Theoretically, any combination of solution conditions can be tested using
the TSA. However, it is essential to consider how different biological buffers may alter
the pH with increasing temperature to accurately determine the relationship between pH
and protein stability [122,123]. For example, a common problem in DSF experiments is the
presence of protein aggregates in the starting sample [46]. The binding and activation of dye
by the contaminating aggregate results in high initial fluorescence. Filtering can help, as it
removes the interfering signal and the aggregation [46]. The folded protein may be detected
by the dye, or it can detect the aggregation in the used assay buffer. To mitigate the impact
of this event, adjustments to buffer conditions are sometimes made to stabilize the protein
and/or obstruct the dye binding sites [46,124]. In some cases, the assay functionality can
be improved by adding co-factors such as Adenosine diphosphate working as endogenous
ligand or coordinating metals such as LiCl, or MnCl2. Also, optimizing the ionic strength
of the buffer and/or including DMSO or sucrose as additives can help to stabilize the
protein [46].

TSA can be used to optimize pH/salt in plates to determine the appropriate buffer
type, pH, and ionic strength for protein stability studies [125]. The data from different
conditions in plates is used to make decisions about these variables, considering a wide
range of values while maintaining biological relevance [126]. The profiling is useful in
biopharmaceutical protein development and fragment-based drug discovery assays, aiding
in identifying optimal buffer conditions for different proteins [127]. Successful formulations
also require a balance between protein storage conditions and administration requirements.
The matrix of buffer conditions can be applicable to multiple proteins, with individual
components further explored to ascertain the ideal buffer condition for a specific protein
of interest [128]. pH is the most critical factor for protein formulation because it has a
greater effect on protein stability than any other factor, and even other buffer components
have an effect on the thermal stability of proteins [123]. One example is the difference
in propensity for protein unfolding and aggregation between the sodium acetate and the
sodium citrate buffers at the same pH, as reported in stability studies with anti-streptavidin
and anti-CD20 monoclonal antibodies [105]. Therefore, both pH and buffer species are key
factors to consider when selecting the appropriate buffer for protein formulation [129].

Also, fluorescent dyes are sensitive to their environment, and buffer components
might disrupt TSA functionality; thus, the assay must be carefully optimized [87]. pH
and presence of detergents and some salts can significantly affect the fluorescent inten-
sity, as observed with fluorescein [130]. Related to typical TSA dyes, it has been shown
that EDTA can associate with SYPRO Orange at alkaline pH, thus causing artefacts. Low
and high pH are also known to quench its signal [131,132]. Additionally, SYPRO Orange
is very sensitive to surfactants and detergents, losing its ability to follow thermal sta-
bility changes. Studying protein in buffers containing different concentrations of NaCl,
with or without PIPES, showed that different combinations of buffer affect the thermo-
dynamic properties. Stability is also dependent on ionic strength, as was shown with
cFMS protein (∆Tm = +2.7 ◦C), by increasing the NaCl concentration from 100 to 500 mM at
pH 7 [133]. Also, Tm values obtained with buffers of higher molarity were generally lower
than those obtained with lower-molarity buffers [134]. In addition to this, some proteins
are heavily stabilized in the presence of ions. RASs, for example, carry over magnesium
ions from the storage buffer, which might cause changes in stability [26]. In addition to
ions, glycerol, which is often used in storage buffers at high concentrations, can increase
the protein stability in an assay [135]. Thus, storage buffer conditions have to not only
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preserve the sample protein, but also to obtain comparable data, especially in case of
low-concentration stocks.

2.4. Functionality Comparison to Other Methods

The comparison of DSF and microscale DSC (µDSC) to determine the Tm for freeze-
dried alpha-1-protease inhibitor (A1PI) showed that comparable results can be obtained,
and that both methods show similar trends for the different excipient choices. The results
using conventional DSC were also in agreement with these trends, although the measured
values were several degrees higher [136]. Sviben et al. confirmed the satisfactory correlation
of DSF and DSC, and although DSF is generally less favorable because of the need for a
reporter dye, it is superior to DSC with respect to throughput (time per sample in DSC:
∼90 min) [49,134,137]. DSF was compared to ITC; it became evident that DSF has the
capability to swiftly and reliably furnish estimates of the dissociation constant for a given
protein–ligand combination [138]. In these experiments, the protein consumption was
also similar, but the overall assay time with DSF was, again, significantly shorter [138].
In typical DSF assays, protein concentrations of 5–10 µM in a ~20 µL volume are often
used [87]. The dyes used are the main limiting factor; for example, SYPRO Orange cannot
detect protein at concentration levels below 500 nM, and to obtain a reasonable S/B ratio,
usually, a 10-fold-higher protein concentration is used [87]. Using the Protein–Probe family
of external peptide-based probes, sensitivity can be lowered down to low nM levels, similar
to nDSF. However, these methods cannot reach a similar throughput to SYPRO Orange due
to equipment limitations [64].

Traditional DSF has its limitations, including the potential for false positives and false
negatives. Assorted methods have been suggested for calculating Kd from TSA data, but
these approaches still suffer from drawbacks [124]. Moreover, the restricted sensitivity of
traditional DSF methods hinders precise Kd determination for ligands with affinities falling
below the micromolar range.

2.5. Data Analysis

Changes in the globular protein due to thermal denaturation can be studied using
TSAs. Also, the effect of buffers and small molecules on the protein stability can be in-
vestigated using TSAs [112]. Nonetheless, it is essential to highlight that not every folded
protein will exhibit ideal profiles during thermal denaturation, complicating the analysis of
protein stability. Approximately 15–25% of recombinant proteins may produce non-ideal
denaturation curves [139], characterized by high fluorescence at the room temperature
baseline and/or a lack of a sigmoidal transition to the unfolded state. Several factors can
contribute to non-ideal denaturation profiles [112], including (i) the lack of a compact,
globular fold, such as in proteins with intrinsic disorder [140]; (ii) the absence of a hy-
drophobic core and/or hydrophobic patches on the solvent-exposed surface of the folded
protein [141]; and (iii) poor protein stability at room temperature [142]. In cases where these
factors are present, the TSA cannot reliably provide information about protein stability or
the data are difficult to interpret. Dye selection can help to provide better information, as
they have different interaction properties and mechanisms of action, but also, data analysis
has an important role [26,113].

The molten globule state is achieved by gradually heating the folded protein. The
molten globule is a partially unfolded state of the protein resembling a native-like secondary
structure with a loose tertiary structure [89]. The stability of a protein relies on its Gibbs
free energy of unfolding, denoted as ∆Gu, which varies with temperature. In general, as the
temperature rises, most proteins become less stable, leading to a decrease in ∆Gu until it
reaches zero at equilibrium, Tm, where the concentrations of folded and unfolded proteins
are balanced. Melting curve analysis is utilized to ascertain the melting temperature,
Tm [143,144]. A shift in Tm under various conditions indicates alterations in stability.
Equilibrium thermodynamics models apply when the protein unfolds in a reversible two-
state manner. When a compound binds to a protein, the free energy contribution from the
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ligand binding typically increases the ∆Gu, potentially elevating the Tm, and this change is
called ∆Tm [145]. Studies have shown that the stabilizing effect of ligand binding is directly
related to the concentration and affinity of the ligands [146]. Although not all proteins
undergo reversible (equilibrium) monomolecular two-state reactions during unfolding,
assuming equilibrium conditions still allows a reasonable approximation of protein stability,
facilitating comparisons under different circumstances [147].

For example, in the case of kinases, the ∆Tm of the protein and of the ligand–protein
complex has been shown previously to correlate to measures of the ligand’s concentration
and binding affinity. In this manner, a melting curve is generated, the Tm is determined, and
the change (∆Tm) induced by prospective binding ligands can be calculated. However, it has
been shown that Tm shifts do not correlate with protein aggregation propensity; therefore,
TSAs cannot be useful regarding information on polymerization [134]. Also, TSAs are
not suitable for enveloped viruses, since they are large, biomolecular, multistructured
complexes. Although the stabilizing potential of solutions was found to be similar for
different proteins, it was found to have different effects on enveloped viruses. It can be
concluded that the value of TSAs is great for protein purification and crystallization studies;
however, they do not provide information regarding protein polymerization or possible
enveloped virus stability [134,148,149].

Depending on the equipment used, there might be a readymade program for data
handling in qPCR. In principle, data analysis is fairly simple, but especially for larger sample
panels, it can be very time-consuming. Luckily, there are some tools to help with data
processing, but most of these tools involve proprietary software and need programming,
still only designed for output files from specific instruments. Lately, free and more widely
usable software for data handling have been also published [113,150,151]. These methods
can easily determine the basic parameters of, e.g., Tm and ∆Tm based on fitting equations,
ranking the stability data, and so on.

3. Isothermal Chemical Denaturation (ICD) Assays

Although DSF is heavily used, heating can sometimes cause unwanted effects or not
serve as a suitable model to study interactions that need near-physiological conditions [152].
Isothermal chemical denaturation (ICD) is a method used to assess the physical stability of
proteins in different formulations either without or with a mild heating step (Figure 5). Thus,
ICD is a complementary technique to DSC and DSF based on the thermal denaturation
of proteins, and it has been one of the most widely used techniques in academic research
laboratories for over 40 years [153,154]. In an ICD experiment, protein samples with
increasing concentrations of denaturant (e.g., guanidinium hydrochloride or urea) are
prepared, and after incubation, reach equilibrium. Thereafter, denaturation is monitored,
often by intrinsic fluorescence, to determine in which denaturant condition the protein
unfolding occurs. ICD data are more reliable than DSF regarding the studied protein;
however, there remains a need to examine the variation in ∆G across different protein
concentrations under identical formulation conditions to evaluate their propensity for
aggregation [155]. In denaturation experiments carried out with constant temperatures,
it is common for the signal intensity to rise as the protein undergoes unfolding, similar
to the signal increase in DSF upon temperature increase [156]. Various factors can affect
the observed signal intensity in ICD measurements; for example, for sufficiently dilute
samples, the signal increases linearly with the protein concentration, but also, solvent
conditions can affect the intensity by changing the electrostatic environment of exposed
tryptophan (Figure 5) [156]. Within a typical biopharmaceutical pH range, the pH can have
a small, nonlinear effect on fluorescence intensity, and also, protein aggregation is known
to decrease the observed signal [156,157].
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Figure 5. Protein intrinsic fluorescence and isothermal chemical denaturation (ICD). (A) The use
of intrinsic fluorescence detection is the most powerful for proteins with tryptophan moieties with
the best fluorescence properties, followed by tyrosine and phenylalanine, which limit not only the
quantum yield, but also low-wavelength emission and excitation. Red shift in tryptophan fluorescence
typically occurs during protein denaturation and its fluorescence is also affected by nearby tyrosine.
(B) ICD is performed in a selected temperature, typically RT or 37 ◦C, performing denaturant titration
with each sample and monitoring the signal at equilibrium. Often, chemical denaturation is reversible,
unlike temperature-induced unfolding, which in many cases is irreversible.

In principle, both thermal and chemical denaturation techniques may be used to
determine ∆G as a measure of a protein’s intrinsic conformational stability. However, in
practice, a limitation of thermal unfolding techniques can be the irreversibility of denat-
uration due to aggregation and precipitation invalidating thermodynamic analysis [95].
Formulation studies may be significantly aided by using chemical denaturation as a reliable
technique for measuring ∆G and its response to pH, ionic strength, excipients, and protein
concentration. ICD consumes a higher volume of samples and has a lower throughput
than DSF, which make it less favorable in biopharmaceutical screening settings [156]. A
cutting-edge HTS instrument based on ICD has recently been developed. This instrument
is capable of automatically preparing and measuring protein samples that encompass a
range of denaturant concentrations [153].

DSF and thermal denaturation techniques in general can give inaccurate insights into
formulations due to several reasons, such as changes in pH during heating. Therefore,
it is preferred to use both ICD and DSF in combination to evaluate the physical stability
of protein in formulations. Investigations with mAbs have shown that the concentration
dependence of ∆Gu determined by ICD could be used for understanding the physical
stability of a protein in different formulations along with DSF [158]. One other drawback
of ICD is the long incubation period, and also that measurements are taken one by one at
specific denaturant concentrations [159]. Nonetheless, this enables access to the complete
emission spectra, unlike in DSF, providing the opportunity to employ advanced data
analysis methods. This allows for (a) a more in-depth examination of the fluorescence
peak shift, (b) a more precise characterization of the shift and unfolding ratio, and (c) an
enhanced ability to differentiate between various unfolding transitions [156]. One way
of analyzing the data from ICD experiments is to measure the ∆G values of samples by
collecting and analyzing 32-point denaturation curves on a HUNKY system (Unchained
Labs, Pleasanton, CA, USA) [153]. As an example, each sample can be denatured with a
linear gradient of urea from 1.5 to 6.5 M at 25 ◦C by incubating samples for 3 h prior to
fluorescence data acquisition (F350/330). Denaturation curves are thereafter analyzed with
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the HUNKY analysis software (https://www.unchainedlabs.com/), using the barycentric
mean (BCM) fluorescence analysis method and a three-state fitting model [153].

3.1. Fluorescent Dyes vs. Intrinsic Fluorescence

External fluorescent probes are used more frequently in DSF assays than intrinsic
fluorescence, but in ICD, the situation turns the other way around. In intrinsic ICD, protein
unfolding is characterized by measuring the ratio between the exposed solvent and the
buried tryptophan fluorescence signal peak shapes equal to DSF (Figure 5A) [156]. These
residues can be excited at wavelengths in the range of 260–280 nm and with emission
spectra starting from 320 nm. On a per residue basis, the tryptophan fluorescence is the
predominant contributor to the total intrinsic fluorescence, and usually, a 330-to-350 nm
ratio is used for the final results due to the expected spectral red shift. As an example, mAbs
typically contain approximately 20 tryptophan residues, and thus, they can be efficiently
studied using intrinsic fluorescence. However, some proteins might have no tryptophan
moiety, which severely limits the use and sensitivity of intrinsic fluorescence and might
prevent measurements completely.

In some special scenarios, intrinsic FRET (iFRET), a technique which utilizes trypto-
phan residues of the target proteins and an added target-specific acceptor probe, could
be a usable option, but this cannot overcome the problem if the assay functionality is
weak due to the lack of tryptophan. Thus, there has been attempts to use DSF dyes in
ICD experiments. Different fluorescent dyes have been tested for ICD, such as 1,8-ANS,
Dapoxylbutyl sulfonamide (DBS), Nano Orange, SYPRO Orange, and SYPRO red. Based
on these results, Nano Orange fluorescence provided a viable option for model proteins
thymidylate kinase and stromelysin. This was because it had the lowest background fluo-
rescence of any of the dyes listed [160]. It is also observed that adding dye to the denatured
protein results in an instantaneous increase in the fluorescence. Using this sharp peak,
kinetic studies are feasible [160]. Unfortunately, the denaturant effect on DSF dyes reduces
their usability. It is known that pH, used also as a denaturant, affects, e.g., SYPRO Orange
signals [161]. Using bovine serum albumin (BSA) it has also been shown that the ANS
fluorescence lifetime is reduced in the presence of guanidine hydrochloride (GdnHCl), a
second, often used denaturant. Similar GdnHCl-induced effects are also reported with Nile
Red and human serum albumin (HSA). In this scenario, the fluorescence intensity peaked
between 0.25 and 1.5 M of GdnHCl, subsequently decreasing beyond 1.5 M of GdnHCl.
This decrease was accompanied by a red shift in the emission maximum, transitioning from
620 to 645 nm [100]. These effects at high denaturant concentrations not only complicate
assay result interpretation and cause uncertainty, but also might avoid assays with the most
stable proteins.

An interesting approach to combine good properties of DSF and ICD was recently
introduced by using a FRET-Probe [162]. This assay is suitable mainly for PLI studies,
and unlike typical ICD, it is performed in a single optimized denaturant concentration
following the denaturation process over time. It was shown that pH, alcohols, and urea
can be used as denaturants, and binding information for even mid-nM affinity binders
can be easily obtained. However, the FRET-Probe seems not to tolerate harsh denaturant
conditions, which limits the assay use for the most stable proteins. The FRET-Probe was
shown to also enable DSF-type monitoring using temperature for denaturation, but this
approach is limited due to a lack of qPCR enabling TR-FRET signal monitoring.

3.2. Denaturants and Their Function

Unsurprisingly, denaturant selection is major step in ICD assay optimization. Different
denaturants have different mechanism of action, and thus, some proteins are more tolerant
to one denaturant than to others. Guanidine salts, especially GdnHCl and guanidine thio-
cyanate, are commonly used denaturants, as well as urea, which is a nonionic and milder
alternative for denaturation [163,164]. These denaturants can also be used as ultra-strong
thiourea, but also, milder options like alcohols and pH have been used [165–167]. In the
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presence of chemical denaturants such as urea and GdnHCl, the Gibbs energy has been
experimentally shown to follow a simple linear dependence on the denaturant concentra-
tion [168]. A positive ∆G indicates that the native state is more stable than the denatured
state. The denaturation midpoint corresponds to the denaturant concentration at which
∆G equals zero. Chemical denaturation experiments provide three key parameters: ∆G◦,
the m value, and Cm. Among these, Cm stands out as the parameter that can be deter-
mined with the least experimental error [169]. Chemical denaturation in general and urea
denaturation in particular allow for the identification of solvent conditions that maximize
the structural stability of a protein. Shifting the denaturation curves for higher Cm values,
higher urea concentrations, or higher ∆G◦ values mean increasing protein stability, which
can be achieved with several parameters such as pH, salts, ligands, and excipients [154].
The denaturation process initiated by urea involves essential steps: the solvation of the
protein backbone through hydrogen bonding, a predilection for electrostatic interaction
with hydrophilic residues, and a dispersion interaction with hydrophobic residues. These
interactions collectively contribute to the intrusion of urea into the protein core and subse-
quent denaturation [170]. Using human placental cystatin as an example, Cm is observed at
1.5 M of GdnHCl or 3 M of urea, and it greatly loses its structure at 6 M of urea, completely
forming a random coil structure at an 8 M concentration [171]. As another example, in a
urea assay with carbonic anhydrase (CA) and its inhibitor trifluoromethanesulfonamide
(TFMSA), the curve shifted to higher urea concentrations consistent with the stabilization of
the CA. Chemical denaturation experiments, especially urea denaturation, which does not
affect ionic strength as GdnHCl does, provide a way to decouple temperature from solvent
effects in irreversible denaturation [154]. Proteins susceptible to irreversible denaturation
at elevated temperatures often exhibit a propensity for undergoing reversible denaturation
when exposed to urea at lower temperatures [172].

Urea causes protein unfolding, either directly through interactions with protein hy-
drophobic parts and water molecules, or indirectly through alterations to the solvent
composition [170,173,174]. Alcohols such as ethanol, methanol, propanol, and butanol
have been proposed for the chemical denaturation of proteins due to their high content
of hydrocarbon and water miscibility. These properties facilitate the unfolding of native
structures at a relatively low dose [162]. Less used denaturants in the context of ICD are pH
and SDS. SDS is often used as a denaturant in gel electrophoresis, but its chemical nature
as a surfactant makes SDS difficult for ICD due to the formation of micelles. The buffer pH
is known to have a significant effect on protein stability, which needs to be additionally
considered in all assay designs [162]. In specific cases, investigations at various pH levels
can give valuable information, as shown, for example, with cytochrome c (cyt c). It was
shown that the Cm increases at higher pH values, but also that cyt c can recover its native
structure after exposure to extremely low pH [154,175]. The use of pH can also be combined
with other denaturants like urea and GdnHCl, as shown with cyt c [176]. Sodium dodecyl
sulfate (SDS), an anionic surfactant that is commonly used to mimic hydrophobic binding
environments such as cell membranes, is known to denature some native-state proteins,
including cyt c [177]. SDS denatures proteins by forming protein-decorated micelles and,
similar to urea, it breaks non-covalent interactions [178]. Sodium sulfite and sodium hydro-
gen sulfite (SHS) induce denaturation by breaking disulfide bonds, and the reduction in
chemical crosslinking exposes the protein to denaturation. These and other denaturants
are, however, not widely used.

3.3. ICD Comparison to TSA

When ICD and TSA are compared, ICD is mainly used in research when TSA is not a
suitable option [179]. Especially in case of ligand binding studies, TSA is more often used.
ICD does not offer the same throughput capabilities as TSA, but it provides more precise
information about protein stability and interactions, and thus, in cases of formulation,
it is often a valuable option. ICD has a limited sensitivity and micromolar range which
is similar to DSF-type assays. However, whilst DSF is performed in a single condition,
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ICD measurements are made by titrating the denaturant using varying concentrations for
a single experiment, increasing the protein consumption significantly [162]. It has been
suggested that a combination of DSF and ICD would be feasible to reduce the protein
amount required to assess the physical stability in various formulations but still provide a
sufficient prediction quality [180]. Indeed, assays performed with the FRET-Probe using a
single denaturant concentration supports this idea [162]. A comparison of the sensitivity of
DSF and ICD in detecting the ligand binding of reduced nicotinamide adenine dinucleotide
(NADH) with malate dehydrogenase not only validates ICD as a reliable method for
screening for ligands, but also indicates that, in some cases, ICD is more sensitive than DSF
at detecting binding at lower concentrations of ligands [181]. This same interaction was
also studied with the FRET-Probe, showing superior performance in comparison to both
ICD and DSF.

ICD also serves as an alternative and complementary technique to DSC and may
circumvent common issues that can arise with thermal unfolding (e.g., precipitation). With
the advent of new, automated tools that dramatically increase the throughput of chemical
denaturation studies, it is critical to pay special attention to the experimental details con-
cerning sample preparation, measurements, and data analysis in order to achieve accurate,
reproducible data via ICD [159]. Without performing CD or other control experiments,
even qualitative rankings of protein stability using ICD data alone may be incorrect.

As DSF is typically used for globular and soluble proteins, ICD expands the available
toolkit of biophysical techniques to characterize and study ligand binding to integral
membrane proteins. In the assessment of weak compound affinity through ICD, the
limitation often stems from their solubility. As a practical guideline, achieving optimal
results entails maintaining a ligand concentration at least two orders of magnitude higher
than the Kd [182]. mAb1 in different buffers with ICD and DSF showed that the Cm values
of mAb1 in histidine are similar to or higher than the Cm values in citrate or phosphate
formulations with the same pH, while the Tm values of mAb1 in histidine formulations
were lower compared to their citrate and phosphate counterparts. One reason for this
is that ICD is an isothermal technique, and any pH or temperature drift of excipients is
avoided [180].

4. Future Directions

The market of protein stability analysis is growing rapidly and it is already worth
approximately USD 2 billion, from which reagents and assay kits have the largest share.
Pharmaceutical and biotechnology companies are the main players in this field, especially
due to their drug discovery applications. But these assays are also very often used in
academic and research institutes, though the exact methods utilized are slightly different,
mainly due to regulations and assay scale. Although protein stability assays have been
performed for decades, new ways to utilize the data and new and improved methods and
instruments are still being constantly developed. Protein folding and stability are complex
processes related to multiple aspects of the protein environment, and we still have to gain
new information to learn how to reliably predict their stability [183]. Until that, stability
assays will hold their place as valuable research and screening tools.

Depending on the stability assay technique, the throughput and structural resolution
might significantly vary, as well as whether the stability is directly or indirectly mea-
sured [184]. Also, the precision and accuracy of measurements might vary depending on
each technology, but also the need. Technologies are developing in multiple directions and
their application number is increasing. Positive aspects of direct, small-scale and indirect,
large-scale measurements of protein stability have been one of the main focuses. This
relates to liquid handling automation and miniaturization, which can increase the through-
put [184]. On the other hand, mapping the effects collected from large screening campaigns,
like mass spectrometry-based thermal proteome profiling (TPP), can indirectly produce
stability data [19,20]. This can be further helped by novel machine learning architectures,
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at least to first classify proteins as thermostable and thermolabile, and later to even predict
more exact properties, like the protein Tm [183,185].

Behind these major trends, many researchers, especially in academic and research
institutes, will still rely on DSF- and ICD-type simple, cheap, and non-equipment-limited
assays in their research. DSF is a potent tool, especially in PLI studies, to validate and
optimize a ligand and its interaction [26]. However, it is quite prone to errors and often
can only give yes/no answers [180]. To improve the method, new external probes and
labeled-protein-based methods have been introduced to increase not only the robustness
but also the sensitivity [2,64,162]. Increased sensitivity can improve the DSF resolution
from the protein to the domain level, and in addition, improve the collection of true binding
affinity information with high-affinity ligands [64,162]. In addition, nDSF obviates the
need for dyes, allowing for membrane protein studies, as typically, DSF is used only for
soluble proteins. However, nDSF’s availability is currently still limited. DSF can also be
used for optimizing buffer ingredients, but ICD and combinatory methods are often more
reliable tools to predict the physical stability of a model protein [162,180]. Formulation
relates to protein stability along with aggregation properties. These factors are becoming
more important day by day as biologics become more common [186–188]. The advantage
of isothermal approaches is that proteins can be studied in more physiological conditions,
reducing the potential negative effects caused by heating the buffer components [123,180].
Thus, future external probes with high sensitivity and functionality in both DSF and ICD
settings could bring reliable and easy-to-use systems available for all [162].
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