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Abstract: In trees, the annual cycling of active and dormant states in buds is closely regulated by
environmental factors, which are of primary significance to their productivity and survival. It has
been found that the parallel or convergent evolution of molecular pathways that respond to day
length or temperature can lead to the establishment of conserved periodic gene expression patterns.
In recent years, it has been shown in many woody plants that change in annual rhythmic patterns of
gene expression may underpin the adaptive evolution in forest trees. In this review, we summarize the
progress on the molecular mechanisms of seasonal regulation on the processes of shoot growth, bud
dormancy, and bud break in response to day length and temperature factors. We focus on seasonal
expression patterns of genes involved in dormancy and their associated epigenetic modifications;
the seasonal changes in the extent of modifications, such as DNA methylation, histone acetylation,
and histone methylation, at dormancy-associated loci have been revealed for their actions on gene
regulation. In addition, we provide an outlook on the direction of research on the annual cycle of tree
growth under climate change.

Keywords: dormancy; annual gene expression; circadian clock; dormancy-associated MADS-box;
epigenetics; trees

1. Introduction

Over the course of an annual cycle, global environmental conditions can change
dramatically. Temperature and day length are probably the most important factors in
environmental change that undergo annual oscillatory changes. Plants have evolved
to adapt to these conditions for seasonal changes such as flowering, germination, leaf
growth and senescence, and physiological changes [1]. These annual rhythmic cycles may
be a forced oscillatory behavior centered on a process of plant regulation of exogenous
environmental factors; during the course of evolution, plants have arisen specific molecular
oscillators that contribute to the formation of annual cyclic rhythms (Figure 1A). The
endogenous molecular oscillators evolved from adaptation to the environment also play a
crucial role in the regulation of rhythmic growth activity [2,3].

The annual cycle activity of tree buds is an important avenue for understanding
molecular regulation, which requires the synergistic action of plant endogenous oscillators
with the regulation of environmental responses. A number of reviews have addressed this
issue in terms of molecular regulation, hormones, and dormancy [2,4–7]. Research in this
area is also receiving increasing attention in the context of global climate change [8–10].
Here, we aim to provide an overview for the molecular regulation of annual rhythms
by analyzing and summarizing endogenous oscillators, environmental signaling path-
ways, and epigenetics from the perspective of the establishment of annual cycle gene
expression. We believe that the establishment of the annual rhythmic pattern of gene
expression is a landmark event in the adaptive evolution of woody plants; understanding
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and dissecting the regulatory mechanism is of fundamental significance for both basic and
applied research.
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Figure 1. The annual rhythmic cycle of trees. (A) Temperature and day length show annual rhythmic 
variations due to the influence of the Earth’s rotation and revolution. For trees in subtropical and 
temperate regions, leaf flushing occurs in late spring and early summer. Some of these buds differ-
entiate into flower buds during the summer, which slowly develop and establish throughout the 
summer and autumn before going dormant in late autumn. When dormancy is released, a suitable 
spring environment promotes bud burst and flowering. (B) General pipeline for identifying and 
analyzing the gene expression profiles of annual rhythm. The year-round gene expression data of 
consecutive years are usually noisy and obscure; in order to obtain information about the rhythmic-
ity, some model-based analysis can provide details, including phase, amplitude, and statistical sig-
nificance. In addition, analyzing the correlation of gene expression in comparison with certain en-
vironmental changes can yield information about the shifts of gene expression and seasonality. Blue 
lines indicate simulated rhythm expression patterns based on model analysis; grey dashed lines 
indicate confidence intervals; and the red line indicates the expression curve that is altered to adapt 
to the changing environment. 

2. Seasonal Gene Expression Underlying the Annual Oscillation of Dormancy and 
Growth 

In order to study the signaling processes of the seasonal perception of temperature and 
day length, the establishment of annual patterns of gene expression are key to identify un-
derlying regulators [11]. Although rhythmic gene expression may be the result of multiple 
factors, its assessment can provide information on potential regulation. When studying cy-
clic expression data, it is often necessary to transform the raw gene expression data with the 
help of some models of cyclic functions because large-scale experiments are statistically dif-
ficult to analyze [12]. There are many methods available for estimating the phase, amplitude, 
and statistical significance of rhythms in time-series data [13,14]. Additionally, comparisons 
of the methods on the strength and sensitivity have been tested for diverse data sources; 
although each method may provide a p-value based the correlations of raw data and model, 
multiple methods are usually needed for the identification of rhythmic genes. 

How can we determine whether there are rhythms in gene expression data? We de-
scribe the general process of analyzing oscillation patterns to identify possible rhythmic 
genes (Figure 1B). Typically, statistical analyses of time-series datasets (e.g., gene expres-
sion throughout the year) require the collection of multiple years of data; in addition, the 
appropriate use of biologically replicated data in experimental designs for consistency 
analyses can be used as a way to identify rhythms. We further ask whether gene expres-
sion patterns are influenced by environmental changes. To answer this question, we can 
investigate the alterations by comparing peak amplitude, acrophase, and correlations in 
rhythmic expression models [15]. Unlike the intrinsic rhythms of the circadian clock, stud-
ying changes in annual rhythms often requires analyzing their relationship to changes in 
environmental factors in order to understand the effects of adaptive evolution on plant 
gene expression [16,17]. 

Figure 1. The annual rhythmic cycle of trees. (A) Temperature and day length show annual rhythmic
variations due to the influence of the Earth’s rotation and revolution. For trees in subtropical
and temperate regions, leaf flushing occurs in late spring and early summer. Some of these buds
differentiate into flower buds during the summer, which slowly develop and establish throughout
the summer and autumn before going dormant in late autumn. When dormancy is released, a
suitable spring environment promotes bud burst and flowering. (B) General pipeline for identifying
and analyzing the gene expression profiles of annual rhythm. The year-round gene expression
data of consecutive years are usually noisy and obscure; in order to obtain information about
the rhythmicity, some model-based analysis can provide details, including phase, amplitude, and
statistical significance. In addition, analyzing the correlation of gene expression in comparison
with certain environmental changes can yield information about the shifts of gene expression and
seasonality. Blue lines indicate simulated rhythm expression patterns based on model analysis; grey
dashed lines indicate confidence intervals; and the red line indicates the expression curve that is
altered to adapt to the changing environment.

2. Seasonal Gene Expression Underlying the Annual Oscillation of Dormancy
and Growth

In order to study the signaling processes of the seasonal perception of temperature
and day length, the establishment of annual patterns of gene expression are key to iden-
tify underlying regulators [11]. Although rhythmic gene expression may be the result of
multiple factors, its assessment can provide information on potential regulation. When
studying cyclic expression data, it is often necessary to transform the raw gene expression
data with the help of some models of cyclic functions because large-scale experiments
are statistically difficult to analyze [12]. There are many methods available for estimating
the phase, amplitude, and statistical significance of rhythms in time-series data [13,14].
Additionally, comparisons of the methods on the strength and sensitivity have been tested
for diverse data sources; although each method may provide a p-value based the correla-
tions of raw data and model, multiple methods are usually needed for the identification of
rhythmic genes.
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How can we determine whether there are rhythms in gene expression data? We de-
scribe the general process of analyzing oscillation patterns to identify possible rhythmic
genes (Figure 1B). Typically, statistical analyses of time-series datasets (e.g., gene expres-
sion throughout the year) require the collection of multiple years of data; in addition, the
appropriate use of biologically replicated data in experimental designs for consistency
analyses can be used as a way to identify rhythms. We further ask whether gene expres-
sion patterns are influenced by environmental changes. To answer this question, we can
investigate the alterations by comparing peak amplitude, acrophase, and correlations in
rhythmic expression models [15]. Unlike the intrinsic rhythms of the circadian clock, study-
ing changes in annual rhythms often requires analyzing their relationship to changes in
environmental factors in order to understand the effects of adaptive evolution on plant
gene expression [16,17].

3. Alterations in Circadian Rhythms Are Involved in Regulating Dormancy and Activity
of Seasonal Buds

The timing of daily and seasonal processes in plants is regulated by a circadian
clock [18]. The primary function of the circadian clock is to respond to changes in the
external environment to adjust endogenous oscillators, thereby enabling the regulation
of growth and developmental processes [19,20]. Numerous studies have shown that the
circadian clock has a significant impact on life processes such as seasonal development,
flowering, photosynthetic performance, leaf aging, leaf movement, biomass accumulation,
and responses to biotic and abiotic stresses [20–22]. Day length is a key environmental cue
and an important marker of seasonal change. In trees, circadian clocks are key factors in
anticipating seasonal changes and synchronizing their life activities with the environment
by regulating changes in gene expression. In temperate regions, when day length drops
below a critical value, known as the critical day length (CDL), perennial trees stop growing
and enter a dormant period [23]; by reducing expression of the circadian clock genes, the
CDL can be shortened, which delays the period of bud burst [24].

The Populus genus, a model species for the study of perennial woody plants, has
been the subject of a growing number of studies in recent years, which have demonstrated
that the circadian clock is closely related to the seasonal growth activities of trees, such
as growth cessation, bud set, cold hardiness, and bud burst [25]. Different from the core
components of the circadian clock in Arabidopsis, LHY (LATE ELONGATED HYPOCOTYL)
and CCA1 (CIRCADIAN CLOCK ASSOCIATED1), Populus tremula × Populus tremuloides
(Ptt) has two LHY genes that function similarly to LHY/CCA1 and may have overlapping
roles. Additionally, PttTOC1 (TIMING OF CAB EXPRESSION1) suppresses the expression
of both PttLHYs [26]. These circadian clock genes in poplar operate together to regulate
seasonal growth, wood formation, and biomass production levels [26]. As winter ap-
proaches, the circadian clock genes undergo dynamic stabilization. If the expression of
PttLHY1 and PttLHY2 is reduced using RNAi (RNA interference), the plant’s cold tolerance
decreases and CBF1 (C-REPEAT BINDING FACTOR1, a gene specifically implicated in cold
hardening) expression is also reduced, implying that LHYs play a part in winter dormancy
and protection against chilling injury [24]. After dormancy is released, the expression of
LHYs continues to promote bud emergence, and the down-regulation of expression results
in a significant delay in bud emergence [24]. Furthermore, LHYs regulate the growth rate
of trees by affecting cytokinin biosynthesis, thereby contributing to safe overwintering [27].
The circadian clock component of trees is typically as conserved as that of the model plant,
Arabidopsis thaliana. It can be reduced to three reciprocal feedback loops: the morning loop,
the central loop, and the evening loop (Figure 2). It can be hypothesized that during annual
growth, environmental factors (photoperiod, temperature, etc.) can regulate growth and
development by subtle or programmed entrainment of the circadian feedback loops in
order to establish annual rhythmic expression patterns (Figure 2).
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Figure 2. The circadian clock is involved in the establishment of the annual rhythm of gene expres-
sion. The simplified system of the circadian clock is presented based on studies of Populus and other 
tree species [25], which is categorized in three major loops, including morning loop, central loop, 
and evening loop. The core genes of the loops are indicated in the figure: PRRs (PSEUDO-RE-
SPONSE REGULATOR), LHY1/LHY2, TOC1, GI1/2 (GIGANTEA), EBI1a/b (EARLY BIRD), ELF3/4 
(EARLY FLOWERING), and LUX (LUX ARRHYTHMO). Temperature and day length are im-
portant factors for the entrainment of the parts of the circadian clock, which is thought be critical 
for establishing annual expression patterns, such as CO and SVL, and, in turn, regulates the entry 
and exit of bud dormancy. 

The circadian clock adjusts to changes in the environment, regulating the expression 
of a number of genes to ensure the successful timing of plant growth arrest, dormancy 
establishment, and release. For example, the CO/FT (CONSTANS/FL -OWERING LOCUS 
T) module is closely associated with seasonal growth cessation in poplar [28]. In Arabidop-
sis, the CO and FT are necessary for the day length regulation of flowering, inducing flow-
ering as a response to long days [29]. Research has shown that the regulatory mechanism 
of the CO/FT module is conserved between Arabidopsis and trees [23]. Unlike Arabidopsis, 
the poplar FT gene has two functionally diverged homologous genes, of which FT1 may 
have a reproductive initiation regulatory function and FT2 is a nutrient growth regulator 
that can maintain growth and prevent bud set [30]. In poplar, the circadian clock can cause 
the rhythmic expression of CO genes. The over-expression of poplar CO can directly acti-
vate the expression of FT2. On the other hand, the core circadian clock gene LHY2 can 
activate the nocturnal signaling pathway and directly inhibit the expression of FT2, 
thereby regulating tree growth [31]. At the same time, research into the regulation of pop-
lar dormancy has found that under short day conditions, SVL (SHORT VEGETATIVE 
PHASE-LIKE, Arabidopsis SVP (SHORT VEGET- ATIVE PHASE) homologue gene) is a dor-
mancy promoter. It can promote the deposition of callus at the intercellular junctions by 
activating CALLOSE SYNTHASE (CALS), which maintains the dormant state of the buds 
[32,33]. 

4. Annual Temperature Variations Determine the Seasonal Pattern of Tree Growth 
Temperature, another important cue for plants to respond to changes in the external 

environment, plays a critical role in regulating bud development, dormancy, and vernal-
ization in trees [2]. In a number of tree species, including European chestnuts, apples, 
pears, and other members of the Rosaceae family, temperature is the primary seasonal 

Figure 2. The circadian clock is involved in the establishment of the annual rhythm of gene expression.
The simplified system of the circadian clock is presented based on studies of Populus and other tree
species [25], which is categorized in three major loops, including morning loop, central loop, and
evening loop. The core genes of the loops are indicated in the figure: PRRs (PSEUDO-RESPONSE
REGULATOR), LHY1/LHY2, TOC1, GI1/2 (GIGANTEA), EBI1a/b (EARLY BIRD), ELF3/4 (EARLY
FLOWERING), and LUX (LUX ARRHYTHMO). Temperature and day length are important factors
for the entrainment of the parts of the circadian clock, which is thought be critical for establishing
annual expression patterns, such as CO and SVL, and, in turn, regulates the entry and exit of
bud dormancy.

The circadian clock adjusts to changes in the environment, regulating the expression
of a number of genes to ensure the successful timing of plant growth arrest, dormancy
establishment, and release. For example, the CO/FT (CONSTANS/FLOWERING LOCUS T)
module is closely associated with seasonal growth cessation in poplar [28]. In Arabidopsis,
the CO and FT are necessary for the day length regulation of flowering, inducing flowering
as a response to long days [29]. Research has shown that the regulatory mechanism of
the CO/FT module is conserved between Arabidopsis and trees [23]. Unlike Arabidopsis,
the poplar FT gene has two functionally diverged homologous genes, of which FT1 may
have a reproductive initiation regulatory function and FT2 is a nutrient growth regulator
that can maintain growth and prevent bud set [30]. In poplar, the circadian clock can
cause the rhythmic expression of CO genes. The over-expression of poplar CO can directly
activate the expression of FT2. On the other hand, the core circadian clock gene LHY2
can activate the nocturnal signaling pathway and directly inhibit the expression of FT2,
thereby regulating tree growth [31]. At the same time, research into the regulation of poplar
dormancy has found that under short day conditions, SVL (SHORT VEGETATIVE PHASE-
LIKE, Arabidopsis SVP (SHORT VEGETATIVE PHASE) homologue gene) is a dormancy
promoter. It can promote the deposition of callus at the intercellular junctions by activating
CALLOSE SYNTHASE (CALS), which maintains the dormant state of the buds [32,33].
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4. Annual Temperature Variations Determine the Seasonal Pattern of Tree Growth

Temperature, another important cue for plants to respond to changes in the external
environment, plays a critical role in regulating bud development, dormancy, and vernal-
ization in trees [2]. In a number of tree species, including European chestnuts, apples,
pears, and other members of the Rosaceae family, temperature is the primary seasonal
stimulus for regulating phenology, with low temperatures inducing bud set and dormancy
establishment [25,34]. Recent research indicates that dormancy induction based on day
length is only successful within an acceptable temperature range [35–37]. In poplar, for
example, if the buds are exposed to low temperatures before dormancy is completely
set, the dormancy-releasing element activates, leading to impaired bud development and
dormancy establishment, as well as inhibiting vernalization. Similarly, higher temperatures
also harm dormancy establishment and prompt bud flushing during the pre-dormancy
phase [38]. Unfavorable temperature conditions, whether excessively hot or cold, can
impede the establishment of dormancy and, ultimately, compromise reproductive success.

After entering dormancy, woody plants in both temperate and subtropical regions
are subject to a dual temperature regulation, requiring chilling in winter and forcing
in spring. These two factors are negatively correlated and affect the timing of spring
phenology [39,40]. In the majority of woody species, low temperature is acknowledged
as the primary factor restricting the release of dormancy. The accumulation of effec-
tive low temperature during dormancy is referred to as chilling accumulation and the
efficient low temperature for ending endodormancy differs among plants [39,41]. In
brief, plants can only successfully pass through endodormancy when the quantitative
requirement for the chilling requirement has been met. After the cessation of endodor-
mancy, plants require a specific level of accumulated forcing temperatures to initiate bud
break and plant expansion, thereby accomplishing growth processes like blossoming and
foliage dispersion [42–44].

5. DAM and SVP-like Genes Are Dormancy Related MADS-Box Genes in Trees

MADS-box is a crucial transcription factor in plants, primarily involved in regulating
flowering time, floral organ and seed development, and abiotic stress response [1]. In the
Arabidopsis MADS-box gene family, AGL24 and SVP, with highly similar sequences, are key
genes in the regulation of flower development and anthesis, and are able to influence the
flowering pathway by directly regulating the expression of FT [45]. However, their func-
tions in Arabidopsis flowering are reversed. svp mutant plants flower early, overexpressed
SVP transgenic plants flower late, and AGL24 is a typical flowering promoter [46,47]. Re-
cent studies on a large number of trees have shown that a number of MADS-box genes
are extensively involved in the regulation of bud dormancy and have been classified
as the AGL24/SVP subfamily based on phylogenetic and molecular evolutionary analy-
ses. These genes are referred to as DAM (DORMANCY-ASSOCIATED MADS-BOX) or
SVP-like [7,48,49].

DAM genes were initially identified from the evergreen mutants of peach, in which the
deletion of six DAM genes results in a lack of dormancy [50]. Subsequently, in Rosaceae
such as peach, Japanese apricot, and apple, the DAM genes have been found to form a
subclade close to the Arabidopsis AGL24 gene [51,52]. Additionally, tandem duplications
were found to form multiple closely related DAM genes (Figure 3). In peach and Japanese
apricot, six tandem repeats of the DAM gene were found [50,53]. In woody plants, DAM and
SVP-like genes have been identified in species other than Rosaceae; for example, four SVP-
like genes have been identified in kiwifruit and a gene called SVL (SHORT VEGETATIVE
PHASE-LIKE) was identified in hybrid aspen (Populus tremula L. × P. tremuloides Michx.)
and was related to the regulation of bud break [48,54].
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Figure 3. Evolution and function of DAM/SVP-like genes. (A) DAM/SVP genes are a subclade of the 
MADS-box. A number of analyses in diverse plant lineages suggest that this subclade can be divided 
into two major groups. The Roseacea DAM genes are evolved from the AGL24 group mainly 
through tandem gene duplication. (B) A high-order protein complex is evident for conveying the 
molecular functions of DAM/SVP genes. Members of the protein complex contain different types of 
DAM or SVP- or SOC1-like proteins, and epigenetic modifications of histone are proposed to be 
involved in the regulation of gene expression through recruiting other factors. 

An increasing number of studies on the function of DAM and two SVP-like genes in 
trees are being conducted to explore the regulatory relationship between such genes and 
tree dormancy. The expression profiles of many of these genes correlate significantly with 
the progression of the dormancy cycle, with generally high expression during the estab-
lishment and maintenance of dormancy and decreased expression during the bud dor-
mancy release phase [55–59]. Firstly, studies have shown that DAM and SVP-like genes 
play a role in repressing growth during dormancy and bud break after dormancy release. 
For example, the expression profiles of the four SVP-like genes in kiwifruit are associated 
with dormancy, except for the AcSVP3 transcript, which does not change significantly 
throughout the year. Results from heterologous overexpression studies in Arabidopsis in-
dicate that these four SVP-like genes are functionally similar to the Arabidopsis SVP genes 
[54]. They all caused abnormal inflorescence and flower structure in Arabidopsis, but only 
AcSVP1 and AcSVP3 were able to delay flowering and complement the loss of function of 
AtSVP. Additionally, none of the four genes can complement the agl24 mutant, which de-
lays flowering. In addition, the overexpression of AcSVP2 in kiwifruit inhibits the growth 
of meristematic tissue and delays bud break [52,60]. Similarly, there are two SVP-like genes 
in Japanese apricot, of which PmuSVP1 delays flowering in Arabidopsis [61]. In apple, 
MdDAM1 has a significantly cyclical expression profile, the silencing of the gene is re-
quired for dormancy release and bud break in spring, and RNA-silenced lines cause them 
to exhibit a persistent growth phenotype. Moreover, differences in the expression between 
varieties reinforce its role as a key genetic factor controlling dormancy release in apple 
buds [62]. 

Furthermore, DAM and SVP-like genes may repress FT-like genes. In Arabidopsis, the 
expression of FT is able to promote flowering, and it is a key factor in the integration of 

Figure 3. Evolution and function of DAM/SVP-like genes. (A) DAM/SVP genes are a subclade of the
MADS-box. A number of analyses in diverse plant lineages suggest that this subclade can be divided
into two major groups. The Roseacea DAM genes are evolved from the AGL24 group mainly through
tandem gene duplication. (B) A high-order protein complex is evident for conveying the molecular
functions of DAM/SVP genes. Members of the protein complex contain different types of DAM or
SVP- or SOC1-like proteins, and epigenetic modifications of histone are proposed to be involved in
the regulation of gene expression through recruiting other factors.

An increasing number of studies on the function of DAM and two SVP-like genes
in trees are being conducted to explore the regulatory relationship between such genes
and tree dormancy. The expression profiles of many of these genes correlate significantly
with the progression of the dormancy cycle, with generally high expression during the
establishment and maintenance of dormancy and decreased expression during the bud
dormancy release phase [55–59]. Firstly, studies have shown that DAM and SVP-like genes
play a role in repressing growth during dormancy and bud break after dormancy release.
For example, the expression profiles of the four SVP-like genes in kiwifruit are associated
with dormancy, except for the AcSVP3 transcript, which does not change significantly
throughout the year. Results from heterologous overexpression studies in Arabidopsis
indicate that these four SVP-like genes are functionally similar to the Arabidopsis SVP
genes [54]. They all caused abnormal inflorescence and flower structure in Arabidopsis,
but only AcSVP1 and AcSVP3 were able to delay flowering and complement the loss of
function of AtSVP. Additionally, none of the four genes can complement the agl24 mutant,
which delays flowering. In addition, the overexpression of AcSVP2 in kiwifruit inhibits
the growth of meristematic tissue and delays bud break [52,60]. Similarly, there are two
SVP-like genes in Japanese apricot, of which PmuSVP1 delays flowering in Arabidopsis [61].
In apple, MdDAM1 has a significantly cyclical expression profile, the silencing of the gene
is required for dormancy release and bud break in spring, and RNA-silenced lines cause
them to exhibit a persistent growth phenotype. Moreover, differences in the expression
between varieties reinforce its role as a key genetic factor controlling dormancy release in
apple buds [62].

Furthermore, DAM and SVP-like genes may repress FT-like genes. In Arabidopsis, the
expression of FT is able to promote flowering, and it is a key factor in the integration of
signals in the flowering pathway. Similarly, in trees, FT-like genes are functionally conserved
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and can induce phenotypes such as premature flowering [63–66]. In these species, DAM
and SVP-like genes may regulate bud dormancy by inhibiting the expression of FT-like
genes. For example, the Japanese pear PpDAM1 protein can bind to the promoter region of
the PpFT2 gene, inhibiting its expression. During dormancy, the expression level of PpFT2
is low, but it increases during dormancy release, which is the opposite of the PpDAMs
gene [67,68]. Similarly, in hybrid poplar, Myc-SVL binds to the CArG box on the FT1
promoter, directly inhibiting the mRNA expression of FT1 [48]. However, more research is
required on the regulatory mechanisms between DAM/SVP-like and FT-like genes.

DAM and SVP-like genes collaborate with plant hormones to regulate tree dormancy.
Plant hormones are closely associated with the dormancy process and there is sufficient
research to suggest that the establishment, maintenance, and release of dormancy is usually
accompanied by dynamic changes in ABA and GA levels, both of which have antagonistic
effects [25,69]. The SVL regulation model of hybrid poplar bud dormancy suggests that
SVL can activate the ABA synthesis rate-limiting enzyme coding gene NCED3 (9-cis epoxy-
carotenoid dioxygenase 3) by transcription to inhibit sprouting. Additionally, the exogenous
application of ABA can promote SVL expression. SVL can also negatively regulate GA by
inhibiting GA content and the expression of GA-related biosynthetic genes, ultimately reg-
ulating bud dormancy [32,48,70]. Similarly, PpDAM1 can bind to the PpNCED3 promoter
region, regulating ABA content. ABA can also regulate PpDAMs through feedback mecha-
nisms [71,72]. Additionally, in Pyrus pyrifolia buds, ABA content regulates the maintenance
of pear bud dormancy and the expression of PpyDAM3 [73]. The expression level of VvSVP
genes in grapes is high during the dormancy stage and decreases before bud break [74].
This suggests that VvSVP genes may play a role in regulating bud dormancy [59]. Poplar
that overexpress VvSVP3 stop growing prematurely under short days, resulting in delayed
bud break in early spring. VvSVP3 regulates the ABA and GA pathways, as well as callus
synthesis, to promote dormancy within its network. Furthermore, the exogenous appli-
cation of ABA has a positive effect on the expression of VvSVP3 [74]. In summary, many
reports have revealed a close correlation between DAM/SVP-like genes and hormones.

Different members of DAM and SVP were found to form homologous or heterologous
complexes. It is expected that a high-order protein complex is formed for the molecular
function of DAM-associated functions (Figure 3). In Arabidopsis, SOC1 (SUPPRESSOR OF
OVEREXPRESSION OF CONSTANS1) has been found to integrate multiple endogenous
and exogenous factors to regulate flowering time [75]; in the floral induction process, SOC1,
together with AGL24 and SVP, is required to regulate floral developmental genes [76,77].
In apricot, the expression profile of the SOC1 homolog has been found to be highly cor-
related with bud dormancy, as well as with DAM genes; studies of SOC-like genes in
tree peonies, kiwifruit, sweet cherries, and apple have also shown that their expression
increases during the period of internal dormancy, suggesting synergistic effects of SOC1
with DAM genes [78–81]. In addition, SOC1 can form protein complexes with DAM by
Yeast Two Hybrid analysis [81,82]. Although the bud dormancy–break cycle is tightly
linked to histone modification, it is not clear whether the DAM/SVP complex is able to
directly recruit histone modifications.

6. Epigenetic Mechanisms of Seasonal Gene Expression

Epigenetic regulation is a crucial mechanism for controlling gene expression in plants.
Recent research has demonstrated that modifications of histones, DNA methylation, and
non-coding RNAs are extensively involved in regulating the seasonal expression of piv-
otal genes associated with bud dormancy in woody plants (Table 1) [83–85]. H3K4me3
(trimethylation of histone H3 at lysine 4), H4ac (acetylation of H4), and H3ac (acetyla-
tion of H3) are recognized as histone marks that are active and likely to promote gene
expression, whereas H3K27me3 (trimethylation of histone H3 at lysine 27) and H3K9me3
(trimethylation of histone H3 at lysine 9) are marks that are inactive and often associated
with transcriptional repression (Figure 4). Except for H3K9me3, all four types of histone
modification have been studied extensively in woody plants (see Table 1 for details). In
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peach, H3K4me3, H3K27me3, and H3ac are involved in the regulation of DAMs genes,
which are important for controlling dormancy [86–88]. During dormancy release in pear
and kiwifruit, a reduced expression of PpMADS13-1 and AcSVP2 correlated strongly with
decreased H3K4me3 levels, but did not significantly change H3K27me3 or H3K9me3 mod-
ification levels [60,71]. MADS-box transcription factors are not the only known targets
of histone modification during bud dormancy. PpeS6PDH (SORBITOL-6-PHOSPHATE
DEHYDROGENASE), an important gene for sorbitol synthesis in peach buds, is repressed
for expression in dormant flower buds, and this change in expression is accompanied by
changes in H3K4me3 and H3K27me3 modifications in specific regulatory regions of the
gene [89]. The active histone marker H3K27me3 for PpEBB1 (EARLY BUD-BREAK1) in pear
was enriched before bud burst, and then the expression level of PpEBB1 peaked to promote
bud break [90]. The H3K27me3 modification EBB3 in poplar also plays an important regula-
tory role in the release of the dormant phase [91]. The expression of AcFLCL (FLOWERING
LOCUS C-LIKE) in kiwifruit is up-regulated with increased levels of H3K4me3 modifica-
tion, which promotes bud sprouting [92]. Histone modifications are closely linked to the
establishment, maintenance, and release of bud dormancy. In addition to those mentioned
above, a wide range of related genes are involved, such as phytohormone biosynthesis and
signaling, cell cycle, and cell wall modification pathways [84,93,94].

Table 1. The study of epigenetic modifications in woody plants.

Species Epigenetic Modification Mechanism of Gene
Expression Regulation References

Prunus persica DNA methylation bud early-ripening associates with changes
of DNA methylation. [95]

Populus,
Prunus avium DNA methylation global DNA methylation during

dormancy–growth cycle. [96,97]

Populus DNA methylation DNA methylation represses
GA3ox2 expression. [98]

Citrus DNA methylation DNA methylation represses CcMADS19. [99]
Malus domestica,

Prunus dulcis,
Paeonia sufruticosa

DNA methylation DNA methylation is linked to
chilling responses. [100–103]

Prunus avium DNA methylation DNA methylation and siRNA are involved in
the repression of PavMADS1. [104]

Castanea sativa Histone modifications H4ac is involved in bud set and bud burst. [105]

Prunus persica Histone modifications H3K4me3 and H3ac is related with
DAM6 activation. [86]

Prunus persica Histone modifications

The dormancy release induces
down-regulation of PpeS6PDH, which is

associated with a low level of H3K4me3 and
a high H3K27me3 level.

[89]

Prunus persica Histone modifications H3K27me3 is involved in the repression
DAM1 and DAM5. [87]

Prunus persica Histone modifications changes of H3K4me3 and H3K27me3 levels
are involved in the regulation of dormancy. [93]

Prunus persica Histone modifications H3K27me3 represses PpSVP1, PpDAM1,
and PpNCED1. [88]

Pyrus pyrifolia Histone modifications reduction of H3K4me3 and loss of H2A.Z are
associated with endodormancy. [106]

Pyrus pyrifolia Histone modifications H3K4me3 enhances the expression of PpEBB,
DAM, PpyGA2OX1, NAC88, and CYCJ18. [90,94,107]

Populus Histone modifications H3K27me3 represses EBB3 expression. [91]
Actinidia chinensis,

Citrus,
Malus domestica, Prunus avium

Histone modifications H3K4me3 and H3ac enhances the expression
of dormancy-related genes (e.g., DAMs). [60,84,92,99,108]
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Table 1. Cont.

Species Epigenetic Modification Mechanism of Gene
Expression Regulation References

Prunus persica non-coding RNAs small RNA accumulation pattern is
associated with DAMs expression. [87]

Prunus persica,
Pyrus pyrifolia non-coding RNAs global identification of noncoding RNAs

related to dormancy regulation. [108,109]

Pyrus pyrifolia non-coding RNAs miR6390 targets PpDAM and regulates
PpFT2 expression. [68]

Populus non-coding RNAs identification of dormancy-related
small RNAs. [110]

Prunus avium non-coding RNAs
miR156/SPL, miR172/AP2, and
miR166/ATBH15 are involved in

dormancy regulation.
[111]

Malus domestica non-coding RNAs identifcation miR159a-MYB involved in
dormancy regulation. [112]

Vitis vinifera non-coding RNAs miRNA156, 167, and 1863 are involved
in endodormancy [113]

Paeonia sufruticosa non-coding RNAs PsmiR172b represses PsTOE3 during bud
dormancy release. [114,115]
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Figure 4. Epigenetic regulation of dormancy-related gene expression. A simple diagram is summa-
rized to include the epigenetic regulation of genes required for dormancy, including DNA methylation
(black triangle), H4ac (green), H3ac (purple), H3K4me3 (yellow), H3K9me3 (blue), and H3K27me3
(magenta). The DNA locus of dormancy-related genes (such as DAMs and S6PDH) is indicated by
grey lines. Red arrows indicate the enhancement of gene expression; blue t-shape signs indicate the
suppression of gene expression.

In addition, many studies have shown that dynamic changes in genomic DNA methy-
lation levels are closely linked to the regulation of the dormancy–growth cycle of the bud. In
a number of woody plants, such as chestnut [105], apple [100], poplar [116], almond [101],
and sweet cherry [97], the dormant buds often have higher levels of DNA methylation than
actively growing buds. DMLs (DEMETER-LIKEs) are a DNA demethylase, and the overex-
pression of DMLs to reduce methylation levels accelerated dormant bud break in poplar,
whereas the down-regulated expression of the transgenic poplar significantly increased
DNA methylation levels and delayed bud break [96,116]. The exogenous application of
5-azacytidine (DNA methyltransferase inhibitor) to dormant peony buds was successful in
reducing methylation levels, thereby accelerating dormancy release and promoting bud
break [117]. Furthermore, the methylation of genes related to ABA or GA (GIBBERELLIN)
biosynthesis also affects the regulation of bud dormancy, such as in hybrid poplar, where
the repression of GA4 biosynthesis involved short-day induced DNA methylation events
within the GA3ox2 (GIBBERELLIN 3-oxidase 2) promoter [98].
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In recent years, there has been a gradual increase in research into the role of non-coding
RNAs (ncRNAs) in dormancy. It has been [68] found that microRNA6390 (miRNA6390)
may promote the release of endodormancy and bud sprouting by targeting and degrading
the transcript of PpDAM1, thereby promoting the expression of PpFT2. However, in a
parallel work, there was no significant difference in the expression of miRNAs after the
maintenance and release of endodormancy, nor was the presence of miR6390 detected [118].
This difference in results may be due to the different genetic backgrounds of the varieties. In
plants such as grape [113], sweet cherry [111], wintersweet [119], and peony [115], miRNAs
were found to be involved in regulating the release of dormancy from dormant buds.
Recent studies in peach have revealed that several 21-nt sRNAs (small RNAs) and ncRNAs
are induced in DAM3 and DAM4 loci, respectively, and this induction was inversely
correlated with the down-regulation of homologous DAMs. It was also found that the
hypermethylation occurring in peach DAMs was closely related to the production of 24-nt
sRNA [87]. The regulatory mechanisms involved in sRNAs are often directly linked to
the expression of dormancy-associated genes, thus providing an additional level of on/off
regulation for dormancy.

7. Conclusions and Outlook

The life cycle of trees undergoes periodic events over successive years. Genes with
annual rhythmic expression have been found to play an important role in the annual
regulation of growth. Acquiring an understanding of this basic information has important
implications for our understanding of the regulation of plant growth and development and
the evolution of environmental adaptations, and can also be significant for our application
to the development of agroforestry.

In recent years, the understanding of the molecular regulatory mechanisms of an-
nual gene expression have gradually been established. However, our information on the
regulation of annual rhythmic gene expression is still fragmentary, mainly in: (1) which
genes are truly rhythmic and endogenous in their annual phenotypic changes; and (2) our
understanding of the role of environmental factors involved in the regulation being far from
adequate, such as the superimposed effects of different environmental effects and their
corresponding plant response. We believe that the dormancy–activation cycle of buds in
forest trees is an important aspect of future research, which involves a number of essential
processes such as exogenous environment perception, endogenous hormone regulation,
plant signal transduction, meristem activity, organ development, and so on. Future studies,
such as in-depth cytological and gene function analyses, environmental adaptation studies,
etc., can be instrumental in unraveling the process of molecular regulatory mechanisms.
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