
Citation: Li, Y.; Chen, Y.; Li, C.; Wu,

G.; He, Y.; Tan, L.; Zhu, K.

Polysaccharide from Artocarpus

heterophyllus Lam. (Jackfruit) Pulp

Ameliorates Dextran Sodium

Sulfate-Induced Enteritis in Rats. Int.

J. Mol. Sci. 2024, 25, 1661. https://

doi.org/10.3390/ijms25031661

Academic Editor: Consolato M. Sergi

Received: 21 December 2023

Revised: 26 January 2024

Accepted: 27 January 2024

Published: 29 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Polysaccharide from Artocarpus heterophyllus Lam. (Jackfruit)
Pulp Ameliorates Dextran Sodium Sulfate-Induced Enteritis
in Rats
Yunlong Li 1,2, Yuzi Chen 2,3, Chuan Li 1,* , Gang Wu 2, Yanfu He 1 , Lehe Tan 2 and Kexue Zhu 2,4,5,*

1 School of Food Science and Engineering, Hainan University, Haikou 570228, China
2 Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences,

Wanning 571533, China
3 College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
4 Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan

Province, Wanning 571533, China
5 National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, China
* Correspondence: lichuan@hainanu.edu.cn (C.L.); zhukexue@catas.cn (K.Z.)

Abstract: A polysaccharide from Artocarpus heterophyllus Lam. (jackfruit) pulp (JFP-Ps) is known
for its excellent bioactivities. However, its impact on small intestinal barrier function is still largely
unexplored. The study aimed to examine the protection effect of JFP-Ps against dextran sodium
sulfate-induced enteritis and its underlying mechanism. This research revealed that JFP-Ps mitigated
small intestinal tissue damage by reducing the expression of pro-inflammatory cytokines and pro-
moting the expression of the anti-inflammatory cytokine interleukin-10 in the small intestine. JFP-Ps
diminished oxidative stress by bolstering the activity of antioxidant enzymes and reducing the con-
centration of malondialdehyde in the small intestine. In addition, JFP-Ps may restore the mechanical
barrier and inhibit intestinal structure damage by augmenting the expression of short-chain fatty acids
(SCFAs) receptors (GPR41/43) and up-regulating the expression of tight junction proteins (occludin).
In conclusion, JFP-Ps may positively influence intestinal health by relieving oxidative stress in the
small intestine, improving mechanical barrier function, activating the SCFA-GPR41/GPR43 axis,
and inhibiting TLR4/MAPK pathway activation. The results augment our comprehension of the
bioactivities of JFP-Ps, corroborating its great potential as a functional food.

Keywords: Artocarpus heterophyllus Lam.; polysaccharide; signaling pathway; inflammation; intesti-
nal barrier

1. Introduction

The alimentary canal, specifically the intestine, serves as the most extensive interface
between organisms and their surrounding environment, primarily functioning as the
principal site for the digestion and absorption of nutrients [1,2]. As the largest immune
organ in the body, the intestine provides a crucial barrier for maintaining overall systemic
health [3]. As a physical barrier, the intestine prevents the invasion of foreign antigens,
such as microorganisms and toxins [4,5]. The intestinal mucosal barrier plays an important
role in the maintenance of intestinal health [6]. Intestinal barrier dysfunction or immune
dysregulation can lead to increased intestinal mucosal permeability, which promotes the
translocation of intestinal pathogens, further exacerbates intestinal barrier damage, and
even induces systemic infection [7]. Therefore, searching for active substances that regulate
intestinal barrier function is crucial to human health.

Natural polysaccharides from animals, plants, algae, and microorganisms exhibit
favorable bioactivities and have received much attention from researchers due to their low
toxic side effects [8,9]. The protective effect of natural polysaccharides against inflammatory
bowel disease (IBD) is a hot research topic. Natural polysaccharides have been reported
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to enhance the integrity of the intestinal epithelial cell mainly through direct or indirect
effects, affecting the intestinal immune and biological barriers [4]. Previous studies have
shown that polysaccharides extracted from pacific abalone, alfalfa, astragalus, and ginseng
maintained intestinal health by regulating the expression of inflammatory cytokines and
activating the immune signaling pathway [10–12]. Zou et al. [13] found that seaweed-
derived polysaccharides improved immune status and intestinal morphology, inhibited
oxidative stress, and enhanced the expression of tight junction proteins. Feng et al. [14] dis-
covered that polysaccharides from yellow sweet potatoes exerted anti-inflammatory activity
by increasing the concentration of short-chain fatty acids (SCFAs) and upregulating the
expression of GPR41 receptors.

A polysaccharide purified from the Artocarpus heterophyllus Lam. pulp (JFP-Ps) was
composed of varied monosaccharides, including glucose, galactose, xylose, rhamnose,
arabinose, and galacturonic acid [15]. The immunoregulatory and antitumor properties
of JFP-Ps have been reported [16,17]. In our previous study, JFP-Ps was found to possess
antioxidant activity, modulate lipid metabolism, and improve the structure of intestinal
flora [15,18,19]. However, the protective effects of JFP-Ps on small intestinal injury induced
by dextran sodium sulfate (DSS) in rats and its underlying mechanisms need to be further
investigated.

2. Results
2.1. JFP-Ps Alleviated the Damage of Small Intestinal Mucosa

As depicted in Figure 1, the small intestines of rats from the control group showed
normal histology, characterized by an unbroken epithelium, properly structured villi and
crypts, minimal infiltration of leukocytes, and regular cup cells. In contrast, the DSS-
treated rats showed significant histological abnormalities with epithelial erosion, damaged
intestinal mucosa, intestinal villi atrophy, and loss of cupped cells. This indicated that
DSS disrupted the surface structure of small intestinal tissue. However, JFP-Ps at different
doses significantly ameliorated the abnormalities of small intestinal structures, with a
relatively tighter arrangement of intestinal villi and higher mucosal layer thickness in the
rats. The findings indicated that JFP-Ps effectively preserved the structural integrity of
small intestinal mucosa.
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Figure 1. The micromorphology of small intestine (original magnification 200×). 

  

Figure 1. The micromorphology of small intestine (original magnification 200×).

2.2. JFP-Ps Enhanced the Antioxidant Activities

The protective influence of JFP-Ps against oxidative stress damage in the small intestine
was evaluated. As shown in Figure 2, DSS decreased the activities of SOD, GSH-Px, and
CAT compared with the control group. However, JFP-Ps and mesalazine increased the
activities of antioxidant enzymes in the small intestine compared to the DSS treatment
group. Notably, treatments with JFP-Ps-M and JFP-Ps-H increased the activities of SOD
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and CAT significantly (p < 0.05). JFP-Ps treatment also decreased the content of MDA in
the small intestines of rats with DSS-induced enteritis.
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2.3. JFP-Ps Improved Inflammatory Cytokine Homeostasis in the Intestine

As shown in Table 1, the levels of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, and
IFN-γ) were significantly increased in the small intestines of the DSS-treated rats (p < 0.05).
However, JFP-Ps and mesalazine inhibited the DSS-induced increase in TNF-α, IL-1β,
IL-6, and IFN-γ contents. Compared to the control group, the level of anti-inflammatory
cytokine IL-10 was diminished in the small intestines of the DSS-treated rats, whereas
JFP-Ps and mesalazine significantly increased the concentration of IL-10 (p < 0.05). These
results suggested that JFP-Ps mitigated intestinal inflammation in the DSS-induced rats by
modulating the secretion of pro- and anti-inflammatory cytokines.

Table 1. Effect of JFP-Ps on the levels of inflammatory cytokines in the small intestine.

Group TNF-α
(pg/mL)

IL-1β
(pg/mL)

IL-6
(pg/mL)

IL-10
(pg/mL)

IFN-γ
(pg/mL)

Control 281.22 ± 12.33 99.95 ± 7.09 106.86 ± 7.54 50.27 ± 1.11 1364.65 ± 46.68
DSS 325.74 ± 10.71 # 120.88 ± 5.01 # 132.06 ± 3.11 # 46.75 ± 1.47 1605.46 ± 46.63 #

Mesalazine 306.69 ± 7.84 116.94 ± 2.41 # 119.99 ± 5.36 54.18 ± 1.81 * 1478.45 ± 58.66
JFP-Ps-L 319.32 ± 10.15 # 120.44 ± 3.80 # 130.57 ± 3.99 # 52.97 ± 2.05 * 1579.04 ± 46.11 #

JFP-Ps-M 308.73 ± 2.76 117.31 ± 2.97 # 121.06 ± 2.83 54.12 ± 2.04 * 1569.89 ± 26.93 #

JFP-Ps-H 306.99 ± 10.67 111.03 ± 1.84 # 118.63 ± 2.82 54.36 ± 0.51 * 1446.95 ± 55.45 *
# p < 0.05 vs. Control group; * p < 0.05 vs. DSS group.
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2.4. JFP-Ps Decreased the Expression of the Genes Associated with Inflammation

RT-qPCR results (Figure 3) showed that DSS induced a significant increase in the
mRNA expression of the pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) (p < 0.05).
However, the mRNA expression of pro-inflammatory cytokines was significantly attenu-
ated by JFP-Ps and mesalazine compared with the DSS group (p < 0.05). The IL-10 mRNA
expression was enhanced in the mesalazine and JFP-Ps-H groups. The TLR4 mRNA ex-
pression was elevated in the small intestines of the DSS-induced rats, but suppressed
by mesalazine and JFP-Ps. The mRNA expression levels of short-chain fatty acids (SC-
FAs) receptors GPR41 and GPR43 were diminished in the DSS-induced rats. However,
mesalazine and JFP-Ps significantly increased the GPR41 and GPR43 mRNA expression
(p < 0.05). These results suggested that JFP-Ps could modulate intestinal inflammatory
responses by regulating the expression of the genes related to inflammation in the intestine
and promoting the expression of SCFAs receptors.
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2.5. JFP-Ps Enhanced the Expression of the Tight Junction Protein in the Small Intestine

The impacts of JFP-Ps on the barrier function of the small intestine in the DSS-treated
rats were investigated by examining the expression of the tight junction protein. Western
blot analysis (Figure 4) showed a significant decrease in the protein expression level of
occludin in the small intestines of the DSS-treated rats (p < 0.05). JFP-Ps significantly
increased the protein expression of occludin (p < 0.05). These results indicated that JFP-Ps
could enhance the mechanical barrier function of the small intestine by up-regulating the
tight junction protein.
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2.6. JFP-Ps Modulated the TLR4/MAPK Signaling Pathway in the Rats’ Small Intestines

The anti-inflammatory mechanism of JFP-Ps in the small intestinal mucosal barrier is
shown in Figure 5. The phosphorylation levels of JNK and ERK, and the expression of TLR4
in the DSS-treated rats, were notably higher than those in normal rats (p < 0.05). Compared
to the DSS group, JFP-Ps substantially diminished the expression of TLR4 (p < 0.05) and
curtailed the hyperphosphorylation of JNK and ERK. These results suggest that JFP-Ps
could exert anti-inflammatory activity by inhibiting the TLR4/MAPK signaling pathway
and safeguarding the intestinal mucosal barrier.
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3. Discussion

Intestines are the largest organ for digestion and absorption in the body and possess
crucial roles in human health. They are primarily composed of mucous membranes, which
are involved in the digestion and assimilation of nutrients, and are the region with the most
exposure to environmental factors [20]. As the body’s largest immunological organ, the
intestines are pivotal in sustaining homeostasis and regulating immune function. However,
the gastrointestinal tract is frequently affected by diseases such as IBD or chronic infec-
tions caused by immune deficiencies [21]. It has been reported that phytochemicals in the
diet may protect the body from diseases by regulating intestinal epithelial barrier func-
tion [2]. This research suggested that JFP-Ps may safeguard intestinal function and health
by regulating the inflammatory response and bolstering the intestinal barrier function.

The height of the intestinal villi, unique to the small intestine, is correlated with the
contact area between the small intestine and nutrients. The crypt, a tubular gland formed
in the lamina propria, can partially reflect the renewal status of epithelial cells based on its
depth [6]. The current study established a model of DSS-induced intestinal inflammation
in rats. Notable histological abnormalities were observed in the inflamed small intestines
of the rats, characterized by atrophy of the intestinal villi and loss of epithelial cells. JFP-
Ps ameliorated the histological damage and increased the height of small intestinal villi,
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suggesting that JFP-Ps may repair intestinal structural damage and alleviate the intestinal
inflammatory response.

The intestinal mucosa serves as the body’s primary defense against the invasion of
bacterial toxins and other exogenous pathogens, primarily comprising intestinal epithelial
cells and tight junction proteins [22,23]. Occludin, an essential tight junction protein,
plays a crucial role in maintaining intestinal barrier function and is closely related to the
body’s antioxidant and anti-inflammatory capabilities [7,24]. Cui et al. [25] found that
Scutellaria baicalensis Georgi polysaccharide improved the intestinal barrier by enhancing
the expression of tight junction proteins, such as occludin. In this study, JFP-Ps notably
augmented the expression of occludin, implying that JFP-Ps may mitigate intestinal mucosal
damage and reinforce the mechanical barrier function of the small intestine.

Oxidative stress is closely associated with the inflammatory response, with episodes
of intestinal inflammation potentially leading to an increased release of pro-inflammatory
cytokines and chemokines. These can readily cause epithelial cell damage and result in
the destruction of the intestinal mechanical barrier [26,27]. The antioxidant enzymes, SOD,
GSH-Px, and CAT, are vital for the body to counteract oxidative stress damage and eliminate
harmful oxidative metabolites produced by oxidative stress [28,29]. The level of MDA, a
potent toxic product of lipid peroxidation, can serve as an indicator of cellular damage and
excessive oxidative stress, reflecting the extent of tissue damage [30]. Lu et al. [31] reported
that Iljinskaja polysaccharide and Chinese yam polysaccharide alleviated DSS-induced
oxidative damage by regulating the activity of antioxidant enzymes. Our previous study
found that JFP-Ps exhibited robust free radical scavenging ability [15]. In this study, JFP-Ps
increased the activities of small intestinal SOD, GSH-Px, and CAT, and decreased MDA
content. These results suggested that JFP-Ps may mitigate intestinal damage by enhancing
antioxidant enzyme activity and modulating oxidative stress.

GPR41 and GPR43 are SCFAs receptors, which can influence the body’s metabolic
and immune responses through various mechanisms, including regulating inflammatory
responses and peptide hormone secretion [32,33]. SCFAs can bolster the intestinal bar-
rier and inhibit pathogen invasion by activating the GPR41 and GPR43 receptors [34].
Lin et al. [35] reported that Tetrastigma hemsleyanum polysaccharides modulated immune
signaling via activation of the SCFAs-GPR41/43 pathway, thereby preserving intestinal
immune homeostasis. In the present study, JFP-Ps up-regulated the expression of GPR41
and GPR43 compared to the DSS-induced rats. These observations indicate that JFP-Ps may
mitigate inflammation in the small intestine and augment the intestinal barrier function in
rats through the SCFAs-GPR41/GPR43 pathway.

The immune system maintains homeostasis by regulating the secretion of inflam-
matory cytokines [36,37]. Overexpression of pro-inflammatory cytokines may cause in-
flammation in the intestinal mucosa [38]. TNF-α is a primary instigator of inflammatory
injury, which stimulates the expression of IL-1β and IL-6, and further exacerbates the
inflammatory response [28,39]. In addition, IFN-γ and anti-inflammatory cytokine IL-10
also play important roles in maintaining intestinal homeostasis. Guo et al. [40] reported that
hawthorn polysaccharide mitigated intestinal inflammation by inhibiting the secretion of in-
flammatory cytokines, such as IL-1β, IL-6, and TNF-α. Dictyophora indusiata polysaccharide
alleviated inflammatory injury by inhibiting the secretion of pro-inflammatory cytokines,
such as TNF-α, IL-1β, IL-6, and IFN-γ, and by increasing the level of the anti-inflammatory
factor IL-10 [41]. In this study, JFP-Ps reduced the expression of pro-inflammatory cy-
tokines (TNF-α, IL-1β, IL-6, and IFN-γ) and increased IL-10 secretion. This observation
implies that JFP-Ps may effectively mitigate the DSS-induced inflammatory response in the
small intestine.

NF-κB and MAPK are two important signaling factors that regulate the inflammatory
response. Activation of the NF-κB pathway can incite cytokine storms [42,43]. MAPKs are
one of the most important pathways of the NF-κB signaling pathway [44,45]. This pathway
is mainly activated by phosphorylated JNK and ERK. Moreover, polysaccharides have been
reported to modulate the MAPK signaling pathway through TLR4, subsequently inducing
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cytokine expression [46]. Consistent with the results of previous studies on other natural
plant polysaccharides [47], JFP-Ps significantly inhibited TLR4 expression and the phospho-
rylation of JNK and ERK. The findings indicated that JFP-Ps may mitigate inflammatory
responses and preserve small intestinal barrier integrity through the modulation of the
TLR4/MAPK signaling pathway.

4. Materials and Methods
4.1. Preparation of JFP-Ps

Jackfruits were obtained from the Xinglong Tropical Botanical Garden, Wanning,
Hainan, China. JFP-Ps were extracted according to our previously reported method [15].
Jackfruits were collected at full maturity (14–16 weeks after flowering) and processed by
dicing their flesh, followed by homogenization in a grinder. Subsequently, the homogenate
was treated with 80% ethanol for a 24-hour period to remove non-target components. The
dried material was dissolved in ultrapure water (material to liquid ratio, 1:30 mL/g) and
subjected to extraction at 90 ◦C for 2.5 h in a water bath. The resultant aqueous extract was
concentrated using a rotary evaporator at 55 ◦C under reduced pressure and subsequently
filtered. Ethanol was added to precipitate the mixture at 4 ◦C overnight. The precipitate
was redissolved in ultrapure water, and proteins were removed employing the Sevag
method. Following a 72-hour dialysis, the solution underwent chromatographic separation
and purification using a Sephacryl™ S-400 HR column (Sigma Chemical Co., St. Louis,
MO, USA).

4.2. Materials and Reagents

Dextran sodium sulfate (DSS) was purchased from MP Biomedicals (Irvine, CA, USA).
Assay kits for MDA, CAT, GSH-Px, and SOD were procured from Grace Biotechnology Co.
(Suzhou, China). All of the primers were purchased from Sangon Biotech (Shanghai) Co.,
Ltd. (Shanghai, China). IL-1β, IL-6, TNF-α, IL-10, and IFN-γ ELISA kits were purchased
from Shanghai Enzyme-linked Biotechnology Co., Ltd. (Shanghai, China). Polyclonal
antibodies and secondary antibodies for occludin, JNK, P-JNK, ERK, P-ERK, and TLR-4
were from Proteintech Group, Inc. (Wuhan, China).

4.3. Experimental Animal Model

All the animal experiments were approved by the Animal Care and Use Committee of
Hainan University, China. Forty-eight healthy male SD rats (180 ± 5 g) were purchased
from Hunan SJA Laboratory Animal Co. (Changsha, China). They were maintained in
individual cages under controlled temperatures (22–24 ◦C) and 12 h/12 h light/dark cycle
conditions, with water and food provided ad libitum. After 1 week of adaptive feeding, the
rats were randomly divided into 6 groups (8 rats per group): control group, DSS treatment
group (DSS), mesalazine group, low, medium, and high dose JFP-Ps groups (JFP-Ps-L,
JFP-Ps-M, and JFP-Ps-H). In the control group, rats were given distilled water, and rats in
the DSS-induced group were given 3% DSS (w/v) solution periodically for 7 days. During
the DSS treatment, the mesalazine group was given 10 mg/mL mesalazine solution by
gavage daily, and the JFP-Ps-L (50 mg/kg JFP-Ps), JFP-Ps-M (100 mg/kg JFP-Ps), and
JFP-Ps-H (200 mg/kg JFP-Ps) groups were orally treated with JFP-Ps daily.

4.4. Histological Analysis

The small intestine samples were preserved in neutral formalin for 24 h. Subsequently,
these tissues were embedded in paraffin and sectioned at a 4 µm thickness. The sections
were then mounted onto pre-treated slides and heated at 60 ◦C, then observed and analyzed
using a light microscope after hematoxylin and eosin (H&E) staining.

4.5. Cytokine Analysis

A volume of 1.0 mL pre-cooled phosphate buffer solution (PBS) (w/v, 1/10) was
added to the small intestinal tissue (100 mg) and then homogenized using a homogenizer.
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The supernatant was collected following centrifugation at 12,000× g, 4 ◦C for 20 min.
All cytokine concentrations were quantified using ELISA kits (Shanghai Enzyme-linked
Biotechnology Co., Ltd., Shanghai, China), adhering strictly to the instructions.

4.6. Antioxidant Activity Assays

A hundred milligrams of ileal tissue were mixed with 1 mL of the extract (w/v, 1:10),
followed by a homogenization procedure using a homogenizer. After centrifugation at
12,000× g, 4 ◦C for 15 min, the supernatant was segregated. All antioxidant enzyme
activities and MDA content were quantified by employing assay kits in strict adherence to
the manufacturer’s instructions.

4.7. mRNA Quantification

The TriQuick reagent (Beyotime, Beijing, China) was used to extract total RNA from
small intestinal tissue. The absorbance ratio at 260 and 280 nm was measured to quan-
tify the purity and concentration of the retrieved RNA, employing a Thermo ScientificTM

NanoDropTM 2000C spectrophotometer (Waltham, MA, USA). The BeyoRTTM III First-
Strand cDNA Synthesis Kit (Beyotime, Shanghai, China) was used to perform reverse
transcription on the obtained RNA. The relative gene expression was subsequently mea-
sured with the CFX Connect real-qPCR system (BioRad, Hercules, CA, USA) and the
SuperReal Preix Plus kit (SYBR Green) (Tiangen, Beijing, China). β-actin was used as a
housekeeping gene and the data are expressed as relative values determined using the
comparative threshold cycle (Cq) method (2−∆∆Cq). All primers utilized in this research
are detailed in Table 2.

Table 2. The primer sequences for amplification in RT-qPCR.

Primer Forward 5′-3′ Reverse 5′-3′

β-actin TGTCACCAACTGGGACGATA GGGGTGTTGAAGGTCTCAAA
TLR-4 GGTTGGCACTCTCACTTCCTCTTG GTAAATGGTGGCAGGGCAGAGTC
IL-1β AATCTCACAGCAGCATCTCGACAAG TCCACGGGCAAGACATAGGTAGC
IL-10 GGCAGTGGAGCAGGTGAAGAATG TGTCACGTAGGCTTCTATGCAGTTG
IL-6 ACTTCCAGCCAGTTGCCTTCTTG TGGTCTGTTGTGGGTGGTATCCTC

TNF-α AAAGGACACCATGAGCACGGAAAG CGCCACGAGCAGGAATGAGAAG
GPR41 TCTGCTCCTCTTCCTGCCATTCC CGTTCTATGCTCACCGTCATCAGG
GPR43 TGCACCATCGTCATCATCGTTCAG ACCAGGCACAGCTCCAGTCG

4.8. Protein Quantification and Western Blotting

Total proteins were extracted from the small intestine according to Kanwal et al. [48],
with slight modification. Briefly, 0.1 g of small intestine sample was mixed with RIPA lysate,
protease inhibitors, and phosphatase inhibitors (Beyotime, Shanghai, China), and then
homogenized and centrifuged (10,000× g, 4 ◦C, 15 min). The protein concentration in the
supernatant was quantified using a BCA protein assay kit (Solarbio, Beijing, China). The
protein sample (35 µg) was resuspended in a sample loading buffer (with DTT) and boiled
for 8 min, then separated by sodium dodecyl sulphate–polyacrylamide gel electrophoresis
(SDS-PAGE). Proteins in the gels were electrophoretically transferred to polyvinylidene
difluoride (PVDF) membranes using a transfer buffer containing ethanol at 120 V (constant
voltage). The membrane was then treated with a western blocking buffer containing 5%
bovine serum albumin (BSA) at room temperature for 1 h, then washed three times with
TBST for 5 min each. Subsequently, the membrane was incubated at 4 ◦C with specific
antibodies overnight. After washing with TBST, the membrane was incubated with HRP-
conjugated Affinipure Goat Anti-Rabbit IgG (H+L) at room temperature for 2 h. Proteins
were detected via chemiluminescence, employing a Tanon 5200 Multi-Chemiluminescence
Imaging System. The luminescence intensity was normalized to β-actin.
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4.9. Statistical Analysis

Results are expressed as mean ± standard deviation (SD). Data were statistically
analyzed with one-way ANOVA, followed by t-test using GraphPad Prism 9 and SPSS 26.0
software. p < 0.05 was considered statistically significant.

5. Conclusions

The current study demonstrated the potential of JFP-Ps to mitigate and prevent in-
flammation in the small intestines of DSS-induced rats. JFP-Ps may reduce inflammatory
damage in the small intestine by suppressing inflammatory responses, augmenting an-
tioxidant capacity, and strengthening intestinal barrier function. Specifically, JFP-Ps may
alleviate inflammatory injury in the small intestine and maintain cytokine homeostasis by
inhibiting the activation of the TLR4/MAPK pathway. The intervention of JFP-Ps increased
the activities of oxidative stress-related enzymes and reduced the content of MDA in the rats’
small intestines. JFP-Ps elevated the expression of GPR41/GPR43 mRNA and bolstered the
protein expression of occludin. The findings of our study offer a theoretical foundation for
the development of JFP-Ps as a natural immune regulator for intestinal health.
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