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Abstract: Catalases (CATs) play crucial roles in scavenging H2O2 from reactive oxygen species,
controlling the growth and development of plants. So far, genome-wide identification and charac-
terization of CAT genes in oil palm have not been reported. In the present study, five EgCAT genes
were obtained through a genome-wide identification approach. Phylogenetic analysis divided them
into two subfamilies, with closer genes sharing similar structures. Gene structure and conserved
motif analysis demonstrated the conserved nature of intron/exon organization and motifs among the
EgCAT genes. Several cis-acting elements related to hormone, stress, and defense responses were
identified in the promoter regions of EgCATs. Tissue-specific expression of EgCAT genes in five
different tissues of oil palm was also revealed by heatmap analysis using the available transcriptome
data. Stress-responsive expression analysis showed that five EgCAT genes were significantly ex-
pressed under cold, drought, and salinity stress conditions. Collectively, this study provided valuable
information on the oil palm CAT gene family and the validated EgCAT genes can be used as potential
candidates for improving abiotic stress tolerance in oil palm and other related crops.

Keywords: oil palm; CAT; genome-wide; abiotic stress; qPCR

1. Introduction

Abiotic stress causes the accumulation of reactive oxygen species (ROS) in plant
cells, and excessive ROS can lead to membrane lipid peroxidation and damage to the cell
membrane [1]. Catalase (CAT) is the main antioxidant enzyme in the reactive oxygen
species scavenging system produced by plants under abiotic stress. It can eliminate H2O2
produced in plants, alleviate the damage caused by oxidative stress to plants, and maintain
cell stability [2,3]. CAT is a tetrameric heme protein composed of four subunits, mainly
distributed in the peroxisome, glyoxylate cycle, and cytoplasm of plant cells, with a small
amount distributed in mitochondria and chloroplasts [4]. CAT plays an important role in
physiological processes, such as plant growth and development, stress response, defense
response, and delaying plant age [5,6]. It mainly clears photorespiration, mitochondrial
electron transfer, and β-hydrogen peroxide generated during fatty acid oxidation and other
processes to prevent damage caused by reactive oxygen species to plants [7]. Enhancing
CAT enzyme activity can reduce the accumulation of reactive oxygen species, thereby
improving plant antioxidant capacity, which is of great significance for plant resistance to
biotic and abiotic stresses. It provides a feasible approach for stress resistance breeding and
improving crop resistance, and it has been widely applied in agricultural production [8].
Overexpression of CAT genes in crops like rice, corn, and cotton can mitigate the effects of
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abiotic stresses like cold, drought, and salinity on plants [9,10]. Members of the CAT family
have been identified and analyzed in various crops, such as one CAT family member in
castor bean (Ricinus communis L.) [11], tomato (Solanum lycopersicum L.) [12], and sweet
potato (Ipomoea batatas L.) [13], three CAT members in tobacco (Nicotiana plumbaginifolia) [14]
and rice (Oryza sativa) [15], and four CAT genes in cucumber (Cucumis sativus L.) [16]. So
far, the rape (Brassica napus L.) has the most (ten) CAT family members [17].

CAT, a multi-gene family with diverse functions in plants, is influenced by both biotic
and abiotic factors, exhibiting unique expression patterns over time. For instance, in sweet
potato, SPCAT1 was an ethephon-inducible peroxisomal catalase, and its expression was
regulated by reduced glutathione, DPI, EGTA, and cycloheximide. SPCAT1 plays a phys-
iological role in maintaining H2O2 homeostasis in leaves, influenced by developmental
cues and environmental stimuli [13]. In another study, the overexpression of Ibcat2 in Es-
cherichia coli and Saccharomyces cerevisiae enhanced salt and drought tolerance, indicating
its significant role in stress responses [18]. Overexpression of ScCAT1 can enhance the biotic
and abiotic stress of sugarcane, and this gene is involved in the protection of sugarcane
against reactive oxidant-related environmental stimuli [19]. Mhamdi et al. [20] found that
AtCAT1 responded to abiotic stresses including cold, drought, and high salinity by clearing
H2O2. However, AtCAT2 and AtCAT3 participated in the elimination of H2O2 subsidized
by ROS homeostasis in light/dark conditions. Overexpression AtCAT2 improved cold and
drought resistance, while AtCAT3 was predominantly stimulated by ABA and oxidative
treatments [21]. Additionally, Contento and Bassham (2010) [22] observed chlorosis and
necrotic scratches in A. thaliana CAT2 mutants. The transcript level of CAT1 in Ipomoea
batatas was influenced by ethephon, condensed glutathione (GSH), nicotinamide adenine
dinucleotide phosphate (NADPH), oxidase inhibitor diphenylene iodonium (DPI), cal-
cium ion (Ca2+) chelator egtazic acid, and cycloheximide [13]. Furthermore, transgenic N.
tabacum plants with the maize CAT2 gene showed enhanced resistance to both oxidative
stress and pathogen contagion [23].

In a similar way, the expression patterns of CAT genes vary in different tissues. For
example, the expression of NnCAT genes in Nelumbo nucifera tissues was found to be highest
in the young leaf and lowest in the roots. The mRNA level of NnCAT was significantly
augmented in response to short-term mechanical wounding [24]. In cucumber, CsCAT1
and CsCAT2 showed a high expression in roots, leaves, and fruit, and CsCAT3 was highly
expressed in stems and leaves, while CsCAT4 had no expression in any of these tissues.
In addition, CsCAT1-CsCAT3 were significantly induced under cold, drought, salinity,
and ABA conditions [16]. In wheat, TaCAT-A/B/D were highly and exclusively expressed
in all stages of leaf development; TaCAT2 showed a low expression after anthesis; and
TaCAT3-A1/B/U showed constitutive expression patterns. In addition, the expression of
TaCAT1 and TaCAT2 decreased under fusarium treatment, while TaCAT2 was induced using
powdery mildew and septoria treatments [25].

In recent years, more and more studies have shown that under cold, drought, or salt
stress, finding the candidate genes and dissecting signaling mechanisms in abiotic stress
responses is a key determinant to developing abiotic stress-tolerant oil palm varieties.
Li et al. (2019) investigated the expression levels of various genes (including COR410,
COR413, CBF1, CBF2, CBF3, ICE1-1, ICE1-2, ICE1-4, SIZ1-1, SIZ1-2, ZAT10, ZAT12) and
the accumulation of osmolytes in oil palm under cold stress and provided necessary
information regarding the mechanism of the response and adaption of oil palm to cold
stress [26]. However, there is currently a lack of research on the CAT gene family of oil
palm. Oil palm (Elaeis guineensis) belongs to the palm family and is the most productive
oil crop in the world [5,27]. However, when subjected to abiotic stresses, such as cold,
drought, and high salt, palm oil production severely decreases. Therefore, a genome-
wide comprehensive investigation and identification have been studied to obtain the CAT
gene family in oil palm. Bioinformatics methods were used to predict and analyze their
phylogenetic relationships, gene structures, evolutionary relationships, conserved motif
domains, cis-acting elements, and tissue-specific expression. Fluorescence quantitative
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PCR was also used to analyze gene expression patterns under different stress conditions at
different times and in different tissues. Altogether, the study provides a theoretical basis
for in-depth research on the biological function of the EgCAT genes and the cultivation of
high-quality and cold-resistant oil palm varieties.

2. Results
2.1. Identification of EgCAT Genes

A total of five CAT genes (named EgCAT1-EgCAT5) were identified from the oil palm
genome via the bioinformatic method. Detailed information on these EgCAT genes is
shown in Table S1. Briefly, the length of genes ranges from 2158 bp (EgCAT5) to 6212 bp
(EgCAT2). EgCAT1-EgCAT4 comprises eight exons, while EgCAT5 contains four exons. The
coding DNA sequences (CDS) range from 2158 bp (EgCAT5) to 5925 bp (EgCAT2). The
protein length of EgCAT1-EgCAT4 is 492 amino acids, while the protein length of EgCAT5
is 719 amino acids. The predicted molecular weights (MW) of EgCAT1-EgCAT5 proteins
ranged from 56.84 kDa (EgCAT3) to 78.95 kDa (EgCAT5). The isoelectric points (pI) of
EgCAT1-EgCAT5 were 6.94, 6.47, 6.99, 6.93, and 5.38, respectively. Analysis results of the
subcellular localization showed that the EgCAT1 and EgCAT5 proteins were positioned on
the cytoskeleton, the EgCAT2 and EgCAT3 proteins were positioned in the cytoplasm, and
EgCAT4 was positioned on the chloroplast (Table S1). In addition, 3, 3, and 11 CAT genes
were identified from Arabidopsis thaliana (AtCAT1-AtCAT3), Oryza sativa (OsCATA, OsCATB
and OsCATC), Olea europaea subsp. Europaea (OeeCAT1-OeeCAT7), and Olea europaea var.
sylvestris (OesCAT1-OesCAT4) genome, respectively (Table S1).

2.2. Phylogenetic Relationship and Structure Analysis of EgCAT Genes

A phylogenetic tree was constructed via the deduced protein sequences of the CAT
genes of Arabidopsis thaliana, Oryza sativa, Olea europaea subsp. Europaea, and Olea europaea
var. sylvestris. As shown in Figure 1, the obtained phylogenetic tree classifies all the genes
into four groups. Group I contained nine CAT members (OeeCAT1-2, OeeCAT4-7, AtCAT1-2,
and OesCAT 4). Group II was comprised of seven CAT genes (OsCATA-C, EgCAT1-4),
which contained most of the CAT genes of oil palm. Group III was comprised of four CAT
genes (OeeCAT1-3 and OesCAT3). Group IV was comprised of two CAT genes (AtCAT3 and
EgCAT5). Our study revealed EgCAT genes’ closer phylogenetic relationship with OsCATs.
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2.3. Chromosomal Distribution of EgCAT Genes

Three of the five EgCAT genes were located on the chromosomes of oil palm. EgCAT1
was mapped on chromosome 4, EgCAT2 was mapped on chromosome 12, and EgCAT3
was mapped on chromosome 16 (Figure 2). EgCAT4 and EgCAT5 were distributed on two
scaffold regions (p5_sc00387 and p5_sc33453) and have not yet been incorporated into the
physical map of chromosomes (Table S1).
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2.4. Gene Structure and Conserved Motif Analysis of EgCAT Genes

The exon–intron number and distributions of all CAT genes from oil palm, Arabidopsis
thaliana, Oryza sativa, Olea europaea subsp. Europaea, and Olea europaea var. sylvestris., were
analyzed, and the structural information of CAT genes is shown in Figure 3. We found
that most of the CAT genes contained 7–8 exons, only EgCAT5 and OsCATA contained four
exons, OsCATC contained six exons, and OesCAT4 had nine exons.

Furthermore, the conserved motif composition was analyzed in each CAT gene from
oil palm, Arabidopsis thaliana, Oryza sativa, Olea europaea subsp. Europaea, and Olea europaea
var. sylvestris. via the online Multiple Expectation Maximizations for Motif Elicitation
(MEME) tool (Figure 4). Motif analysis showed the occurrence of five conserved motifs
(1–5) from the obtained CAT family members. The result indicated that all AtCATs, EgCATs,
OeeCATs, OesCATs, and OsCATs contained 1–5 motifs except EgCAT5. Motifs 1, 3, 4, and 5
existed in EgCAT5. The amino acid composition of all motifs is illustrated in Figure 4.

2.5. Duplication Analysis of EgCAT Genes

MCScanx (https://github.com/wyp1125/MCScanX, accessed on 18 September 2023)
and Circos 0.69-9 software were used to analyze the duplication events of EgCAT genes.
The substitution ratios (ka/ks) (ka/ks > 1, positive selection; ka/ks = 1, neutral selection;
ka/ks < 1, negative selection) were calculated to analyze the EgCATs duplication. The
calculated ka/ks ratio values of EgCAT1 and EgCAT3 were 0.241436 (<1) (Table S2). The
results indicated that the evolution of oil palm CAT genes happened via purifying selection
and the tandem duplications between chromosomes 4 and 16 during evolution (Figure 5).
Finally, the results demonstrated the prominent role of tandem duplication in the expansion
of CAT genes in the oil palm genome.

https://github.com/wyp1125/MCScanX
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2.6. Analysis of cis-Acting Elements in EgCAT Gene Promoter Regions

To understand the presence of cis-acting elements, a 2000 bp upstream region of the
EgCAT genes was downloaded and analyzed via the PlantCARE database. We obtained
a series of cis-regulatory elements, including ABRE (ABA-response element), TATA-box
(MeJA responsive element), and AC-rich (gibberellin responsive element) (Figure 6 and
Table S3), which existed in EgCAT1-4 genes. These cis-acting elements were the key compo-
nents of hormone-correlated stress responsiveness. The results indicated that EgCAT genes
may respond to hormone stimulations.

Furthermore, we found ARE (anaerobic responsive element), CAAT-box (abscisic
acid-responsive element), and DRE (Dehydration responsive element) in promoter regions
of EgCAT1-4 genes (Figure 6 and Table S3). In addition, a series of light-responsive elements
were identified, indicating the key role of EgCATs in response to light stress. Generally,
EgCAT1-4 genes containing hormone/stress-related elements may play a crucial role in
resisting hormonal and abiotic stresses.

2.7. Prediction of miRNA-Targeting Genes in Oil Palm Genome

MicroRNAs (miRNAs) are a class of non-coding endogenous small molecule RNAs
with 19–24 nt. Functional studies have shown that miRNAs are involved in the regulation
of all cellular processes, including growth and development, stress response, metabolism,
and signal transduction. Recent studies have found that plant miRNAs, as a class of widely
functional molecular regulatory factors, regulate the expression of plant genes. Therefore,
to clarify the relationship between microRNAs (miRNAs) and EgCAT genes, the CDS of
the EgCAT genes were used to search for putative target sites of miRNAs. As shown in
Figure 7, seven putative miRNAs targeting four EgCAT genes were identified. We found
that miR396x/y targeted the EgCAT1 exon, EgCAT2 was targeted by miR159x and miR156,
whereas miR159x targeted to exon and miR156 targeted the 3′ UTR region. miR172a/b
targeted to the exon of EgCAT3 and miR156 targeted to the 3′ UTR region of EgCAT3.
miR2118-y, miR535x, and miR168x targeted to exons of EgCAT4, while miR535x targeted to
the 3′ UTR of EgCAT4 (Figure 7, Table S5).
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2.8. Expression Profile Analysis of EgCAT Genes

To explore the transcript levels of EgCAT genes in root (SRR851071), shoot (SRR851103),
leaf (SRR851096), flower (SRR851108), fruit (SRR851067), and mesocarp from four develop-
mental stages (15 (SRR190698), 17 (SRR190699), 21 (SRR190701), and 23 (SRR190702) weeks
old) based on RNA-seq data from oil palm. Heatmap analysis showed that similar expres-
sion patterns for root, shoot, flower vs. leaf, fruit, and mesocarp were noticed for EgCAT
genes. EgCAT1 with the highest expression was observed in the leaf (Figure 8, Table S4).
EgCAT2 showed higher expression in mesocarp tissue of 15-, 17-, 21-, and 23-week-old oil
palms. EgCAT3 had the highest expression level in the mesocarp of 21- and 23-week-old,
and EgCAT4 expressed higher in the mesocarp of 15-week-old. However, EgCAT5 was not
expressed in all tissues of the oil palm. Overall, the result indicated that EgCAT family
members exhibited mixed tissue expression in oil palms (Figure 8).

2.9. Expression Analysis of EgCAT Genes of Oil Palm under Abiotic Stresses

To further identify the responses to abiotic stresses (cold, drought, salt) of EgCAT genes
we examined the mRNA expression profiles of the five EgCAT genes at the molecular level,
via qRT-PCR (Figure 9). Notably, except for EgCAT5, the EgCAT1-4 genes showed relatively
high expression levels under cold, drought, and salinity stress treatments at a certain time
(4 h, 24 h, and 48 h). Under the cold stress condition, EgCAT1-4 genes showed higher
expression patterns at 4 h, 24 h, and 48 h. The drought stress induced the up-regulation of
EgCAT1, EgCAT2, and EgCAT4. EgCAT1-3 genes had a higher expression at 4 h, 24 h, and
48 h under salt stress conditions (Figure 9). Accordingly, the results suggested that EgCAT
family members may be involved in regulating the response to cold, drought, and salinity
stresses in oil palm.
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ments at a certain time (4 h, 24 h, and 48 h). Under the cold stress condition, EgCAT1-4 
genes showed higher expression patterns at 4 h, 24 h, and 48 h. The drought stress induced 
the up-regulation of EgCAT1, EgCAT2, and EgCAT4. EgCAT1-3 genes had a higher expres-
sion at 4 h, 24 h, and 48 h under salt stress conditions (Figure 9). Accordingly, the results 
suggested that EgCAT family members may be involved in regulating the response to cold, 
drought, and salinity stresses in oil palm. 

Figure 8. Heatmap for oil palm CAT gene expression in tissues, such as root (SRR851071), shoot
(SRR851103), leaf (SRR851096), flower (SRR851108), fruit (SRR851067), and mesocarp, from four
developmental stages (15 (SRR190698), 17 (SRR190699), 21 (SRR190701), and 23 (SRR190702) weeks
old) of oil palm plants The color scale represents the expression levels (low or high) of EgCAT genes.



Int. J. Mol. Sci. 2024, 25, 1480 9 of 15

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 10 of 16 
 

 

 
Figure 9. Relative expression of five oil palm EgCAT genes under abiotic stress conditions (cold, salt, and drought stress) upon exposures of 0, 4, 24, and 48 h 
duration, respectively. Asterisks represent significant difference, at p ≤ 0.05 (*) and p ≤ 0.01 (**). 

Figure 9. Relative expression of five oil palm EgCAT genes under abiotic stress conditions (cold, salt, and drought stress) upon exposures of 0, 4, 24, and 48 h
duration, respectively. Asterisks represent significant difference, at p ≤ 0.05 (*) and p ≤ 0.01 (**).



Int. J. Mol. Sci. 2024, 25, 1480 10 of 15

3. Discussion

Catalase (CAT) is a crucial enzyme in eukaryotic antioxidant systems, it is primarily
found in peroxisomes and plays a vital role in the clearance of reactive oxygen species
(ROS) [28]. CAT genes have multiple functions in plants, including resisting adverse envi-
ronments and protecting plant cells from ROS toxicity [29]. High-throughput sequencing
technologies have rapidly advanced, providing insights into the latest research platform
for identifying and analyzing CAT family members [30]. Exploring the biological functions
of EgCAT genes and their abiotic stress regulation mechanisms can aid in the development
of new oil palm varieties with enhanced resistance. However, none of the genome-wide
studies have explored the structure and role of CAT family genes in oil palm. This is the
first report on the identification of CAT transcription factors in oil palm. Moreover, we
evaluated their function in response to diverse abiotic stimuli via real-time PCR analysis.

In the current study, five EgCAT genes were obtained via genome-wide analysis, which
was greater than the number of CAT genes identified in Arabidopsis (3) [31], rice (3) [32],
maize (3) [33], cucumber (3) [34], and Hordeum vulgare (2) [16] genomes, but less than
that in cotton (7) [31] and wheat (10) [35] genomes. The oil palm CAT gene structural
analysis revealed that EgCAT1-4, consisting of four EgCAT family members, has seven
introns, while EgCAT5 has only three introns. The oil palm CAT gene structure analysis
results were consistent with the other CAT structural organizations observed in various
plants [25,30]. Analysis of conserved motifs is essential to understanding transcription
factor DNA-binding activity, protein–protein interactions, and transcriptional activity [17].
The conserved motif analysis of all EgCAT family members revealed the occurrence of
five conserved motifs, which may be related to specific functions shared among EgCAT
family members. The phylogenetic analysis of oil palm CAT family members, including
Arabidopsis thaliana, Oryza sativa, Olea europaea subsp. europaea, and Olea europaea var.
sylvestris showed the conservation and diversification of CAT members. Our research
revealed that tandem duplications in the oil palm genome occur for the expansion of all
CAT family members during evolution, emphasizing the commonality of gene duplication
events in plants [36].

Numerous reports have demonstrated that CAT family members are widely expressed
in various tissues/organs for regulating the growth and development of plants [37]. The
tissue-specific expression profiling data of genes are vital for elucidating the functional roles
of genes. The analysis of heat maps revealed the expression of EgCAT members in various
parts of oil palm plants. The EgCAT family members have demonstrated their tissue-specific
expression, indicating their role in regulating growth and developmental processes in oil
palm plants. MiRNA (microRNA) is a non-coding small RNA found in organisms with
regulatory effects [38,39]. Research on miRNAs in woody plants primarily focuses on their
role in regulating biological activities like plant growth, development, signal transduction,
stress response, and secondary metabolite generation. [40,41]. There have been reports on
the relationship between miRNA and target genes in wheat [25] and cotton [30]. The study
shows that eight miRNAs regulate four EgCAT genes through potential miRNA-targeting
sites in the EgCAT genes. These miRNAs include miR396x/y targeting EgCAT1; miR159x and
miR156 targeting EgCAT2; miR172a/b and miR156 targeting EgCAT3; miR2118y, miR535x,
miR168x, and miR535x targeting EgCAT4. The results suggested that miRNAs may play
important roles in regulating the transcript level of CAT genes in oil palm.

Previous studies have shown the regulatory role of CAT members in response to
abiotic stress conditions [41–43]. In our study, we examined the expressions of five EgCAT
family members under cold, drought, and salinity stress conditions, revealing all tested
transcription factors’ expressions. In this study, we found that cold stress significantly
increased the expression of EgCAT1-4 genes, aligning with previous reports on cold-induced
CAT transcription factors [44]. Higher expression of EgCAT1-2 and EgCAT4 genes was
also observed under drought stress conditions. Our findings are consistent with earlier
research that has found drought-induced CAT family members [45]. The present study
showed a higher expression of EgCAT1-3 genes under salinity stress environments. Our
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results relate to the earlier reports on salt stress-induced CAT family members in various
plants [25,41,46]. These findings are helpful in choosing potential CAT family members for
producing abiotic stress-tolerant oil palm varieties.

4. Materials and Methods
4.1. Identification of EgCAT Genes

The genome sequences of oil palm (Elaeis guineensis, Jacq.) were obtained from the
National Center for Biotechnology Information (NCBI) database. The known CAT amino
acid sequences of Arabidopsis thaliana, Oryza sativa (ssp. Japonica and Indica), Olea eu-
ropaea subsp. europaea, and Olea europaea var. sylvestris were downloaded from the
Plntfdb (http://plntfdb.bio.uni-potsdam.de/v3.0/, accessed on 13 September 2023) and
PlantTFDB (http://planttfdb.gao-lab.org/, accessed on 13 September 2023) databases,
and used as the inquiry in the Basic Local Alignment Search Tool (BLAST) program to
search for CAT genes in the oil palm genome. The conserved catalase-related immune-
responsive domains (PF06628) corresponding to CAT gene family members were obtained
from the Pfam database (https://pfam.xfam.org/, accessed on 13 September 2023). The
conserved domains database (CDD) online tool (https://www.ncbi.nlm.nih.gov/cdd/,
accessed on 14 September 2023) was employed to verify the candidate gene sequences
obtained from PFAM. Finally, a total of five EgCAT genes were identified in the oil palm
genome. The ExPASy proteomic website (https://web.expasy.org/compute_pi/, accessed
on 14 September 2023) was employed to predict the molecular weight (MW) and isoelec-
tric points (pI) of oil palm CAT proteins. Subcellular localization of five EgCAT pro-
teins was predicted using the CELLO tool (http://cello.life.nctu.edu.tw/, accessed on
14 September 2023).

4.2. EgCAT Gene Structure and Conserved Motif Analysis

The intron–exon organization of EgCAT was constructed with TBtools 1.1.0 soft-
ware (https://github.com/CJ-Chen/TBtools, accessed on 16 September 2023). MEME
5.5.5 online software (https://meme-suite.org/meme/doc/meme.html, accessed on
16 September 2023) was used to identify the conserved motifs of the EgCATs.

4.3. Phylogenetic Relationship, Chromosomal Distribution, and cis-Acting Elements Prediction of
EgCAT Genes

A maximum likelihood (ML) phylogenetic tree of CATs from Elaeis guineensis, Arabidop-
sis thaliana, Oryza sativa, Olea europaea subsp. europaea, and Olea europaea var. sylvestris
was constructed via the neighbor-joining method, using the MEGA11.0 software based on
amino acid sequences of the conserved CAT domain and with 1000 bootstrap replicates for
reliability. The chromosomal distribution of CATs was investigated against the oil palm
genome using the TBtools software (https://github.com/CJ-Chen/TBtools, accessed on
20 September 2023). The potential cis-regulatory elements of oil palm CAT genes were
obtained by choosing 2000 bp upstream of the transcription start site in each CAT gene. The
PlantCARE online tool (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/,
accessed on 20 September 2023) was employed to predict the cis-acting regulatory elements.

4.4. Tissue-Specific Expression of EgCAT Genes Based on Available Transcriptome Datasets

The available transcriptome data of oil palm tissues, including shoot (SRR851103),
leaf (SRR851096), root (SRR851071), fruit (SRR851067), flower (SRR851108), and mesocarp
(15 weeks (SRR190698), 17 weeks (SRR190699), 21 weeks (SRR851067), and 23 weeks
(SRR190702)), were downloaded from the SRA (Sequence Read Archive) database of the
NCBI website. The transcript abundance of EgCATs in different tissues was calculated
with RPKM (reads per kilobase per million mapped values). TBtools 1.1.0 (https://github.
com/CJ-Chen/TBtools, accessed on 21 September 2023) was used to generate a heatmap of
the EgCATs.

http://plntfdb.bio.uni-potsdam.de/v3.0/
http://planttfdb.gao-lab.org/
https://pfam.xfam.org/
https://www.ncbi.nlm.nih.gov/cdd/
https://web.expasy.org/compute_pi/
http://cello.life.nctu.edu.tw/
https://github.com/CJ-Chen/TBtools
https://meme-suite.org/meme/doc/meme.html
https://github.com/CJ-Chen/TBtools
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
https://github.com/CJ-Chen/TBtools
https://github.com/CJ-Chen/TBtools
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4.5. Plant Material and Abiotic Stress Treatments

To analyze the expression profile of EgCAT genes under cold, drought, and salt stresses,
a total of 36 oil palm plantlets were grown in greenhouses (27 ◦C, 16 h/light, 8 h/darkness,
humidity of about 50–60%) at the Coconut Research Institute, Chinese Academy of Tropical
Agricultural Sciences, Wenchang, China. Healthy oil palm plantlets of the same age
(6 months old) were chosen for cold, salt, and drought treatments. Each abiotic stress
treatment (cold, drought, or salinity) was performed after 0 h (control), 4 h, 24 h, and
48 h, using different seedlings (nine for each treatment). For cold stress treatment, oil
palm seedlings were exposed to cold stress exposure at 8 ◦C. Drought stress conditions
for the oil palm seedlings were established after reaching 20% water content in the soil.
Salinity stress was induced by immersing the roots of oil palm seedlings in 300 mmol/L
concentration of NaCl solution. At different time intervals (0, 4, 24, and 48 h) of the above
stress exposures, the spear leaves were collected and immediately frozen in liquid nitrogen
for further RT-qPCR analysis. In addition, oil palm seedlings for control experiments were
maintained under light (16 h) and darkness (8 h) at 27 ◦C. All the stress experiments used
three biological replicates and were repeated three times.

4.6. RNA Isolation and Real-Time qPCR Assays

The real-time PCR expression analysis was performed to investigate the relative ex-
pression of CAT genes in leaf samples exposed to different abiotic stress conditions. Total
RNA was extracted from the leaves collected under normal and abiotic stress conditions us-
ing Trizol reagent (Invitrogen, Carlsbad, CA, USA). The RIN values of extracted RNA from
normal and stress-exposed samples ranging from 7 to 8 were used for further cDNA synthe-
sis. The isolated RNA (~2 µg) was then reverse transcribed to cDNA using a MightyScript
Plus first-strand cDNA synthesis kit (gDNA digester) (Sangon Biotech, Shanghai, China).
Quantitative real-time PCR reactions were carried out using a standard SYBR Premix
(TaKaRa, Dalian, China) with Mastercycler (Eppendorf, Hamburg, Germany). The oil palm
Actin1 gene was used as a housekeeping gene to check the relative expression of SPLs by
employing the 2−∆∆Ct method. The information on oil palm CAT gene-specific primers
used for qPCR experiments is listed in Table S6.

4.7. Statistical Analysis

Three biological and technical repeats were performed to determine the reliability
of the gene expression studies. One-way analysis of variance (ANOVA) was used to
determine the statistical significance at the p ≤ 0.05 and p ≤ 0.01 levels. Asterisks represent
a significant difference at p ≤ 0.05 (*) and p ≤ 0.01 (**).

5. Conclusions

To the best of our knowledge, this is the first report on the identification of EgCAT
transcription factors from the African oil palm genome through bioinformatic analysis. Our
bioinformatic approach revealed the CAT genes’ structural organization, their distribution
across 16 chromosomes, motif conservation among all the family members, and duplication
events among all CAT gene family members. Additionally, we predicted subcellular
localization and analyzed the cis-acting regulatory elements in promoter regions and the
tissue-specific expression of oil palm CAT family members. In addition, we identified the
interaction sites between miRNA and the target EgCAT genes. Furthermore, our real-time
expression analysis revealed their expression under cold, drought, and salinity conditions.
Overall, our bioinformatic, as well as expression analyses, provide valuable information on
oil palm CAT genes for extending their role in abiotic stress-tolerant studies of oil palm in
the near future.
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