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Abstract: Flavonoids have garnered attention because of their beneficial bioactivities. However, some
flavonoids reportedly interact with drugs via transporters and may induce adverse drug reactions.
This study investigated the effects of food ingredients on organic anion-transporting polypeptide
(OATP) 4C1, which handles uremic toxins and some drugs, to understand the safety profile of food in-
gredients in renal drug excretion. Twenty-eight food ingredients, including flavonoids, were screened.
We used ascorbic acid (AA) to prevent curcumin oxidative degradation in our method. Twelve com-
pounds, including apigenin, daidzein, fisetin, genistein, isorhamnetin, kaempferol, luteolin, morin,
quercetin, curcumin, resveratrol, and ellagic acid, altered OATP4C1-mediated transport. Kaempferol
and curcumin strongly inhibited OATP4C1, and the Ki values of kaempferol (AA(−)), curcumin
(AA(−)), and curcumin (AA(+)) were 25.1, 52.2, and 23.5 µM, respectively. The kinetic analysis
revealed that these compounds affected OATP4C1 transport in a competitive manner. Antioxidant
supplementation was determined to benefit transporter interaction studies investigating the effects of
curcumin because the concentration-dependent curve evidently shifted in the presence of AA. In this
study, we elucidated the food–drug interaction via OATP4C1 and indicated the utility of antioxidant
usage. Our findings will provide essential information regarding food–drug interactions for both
clinical practice and the commercial development of supplements.

Keywords: OATP4C1; renal transporter; food–drug interaction; flavonoids; curcumin; kaempferol;
ascorbic acid

1. Introduction

In recent years, polyphenols have received considerable attention owing to their an-
tioxidant, antiviral, anti-inflammatory, and anticarcinogenic activities [1–5]. Polyphenols
have been reported to prevent major chronic diseases, including cardiovascular diseases,
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cancer, and diabetes [6–8]. However, some flavonoids, a group of natural polyphenolic sub-
stances abundant in vegetables, fruits, grains, and tea, interact with drugs via transporters
and metabolic enzymes [9–14] (Supplementary Table S1).

Drug interactions via transporters and metabolic enzymes are considered the main
cause of adverse drug reactions [15,16]; thus, drug–drug and drug–endogenous metabolite
interaction studies have been widely conducted [17–21]. Quercetin, a flavonoid, has been
reported to increase the plasma concentration of pravastatin by inhibiting organic anion-
transporting polypeptide (OATP) 1B1 [22]. Consequently, drug transporters, such as
OATP, have been investigated, and information on food–drug interactions has increased
(Supplementary Table S1). For example, the flavonoid ellagic acid inhibits organic anion
transporter (OAT) 1 expressed in renal proximal tubular cells [23].

OATPs are Na+-independent transporters expressed in various tissues, such as the
liver, kidney, and small intestine, and contribute to the cellular membrane transport of
endogenous substances, such as bile acids and various drugs [17,24–27]. OATP4C1 is the
only member of the OATP family expressed in the kidney, is localized on the basolateral side
of proximal tubule cells, and has been reported to contribute to the renal excretion of uremic
toxins and some drugs [28,29]. Recently, OATP4C1 has been reported to interact with
human immunodeficiency virus protease inhibitors such as ritonavir and saquinavir [18],
and remdesivir, an antiviral drug used for the treatment of COVID-19 [19].

Although some flavonoids have been reported to inhibit OATP1B1, OATP1B3, and
OATP2B1 [30,31], the inhibition of OATP4C1 has not been studied extensively. The aim of
this study was to investigate the food–drug interactions via OATP4C1 to understand the
safety profile of food ingredients, including flavonoids, in renal drug excretion.

2. Results
2.1. Screening of the Effect of Food Ingredients on OATP4C1-Mediated Transport

To elucidate potential food–drug interactions via OATP4C1, we screened 28 food ingre-
dients (Figures 1 and 2) that are commonly used in drug interaction studies
(Supplementary Table S1). Some of these food ingredients are also reported to be the
substrates or inhibitors of organic ion transporters and ABC transporters. Inhibitor concen-
trations were set much higher (100 µM, except for theaflavin [50 µM] due to the solubility
upper limit) than those expected in human blood to avoid overlooking the interaction.
OATP4C1-mediated transport was strongly inhibited (by > 50%) by six compounds: api-
genin, kaempferol, luteolin, morin, quercetin, and curcumin (Figure 3). These compounds
exhibited 66%, 75%, 52%, 57%, 50%, and 72% inhibition, respectively. Six other compounds,
namely daidzein, fisetin, genistein, isorhamnetin, resveratrol, and ellagic acid, also altered
OATP4C1-mediated transport; however, the alteration by these compounds was moderate
(> 10% and < 50%) (Figure 3). These compounds exhibited 40%, 24%, 42%, 18%, and 46%
inhibition and 13% elevation, respectively. No significant alterations in OATP4C1-mediated
transport were observed for the other 16 food ingredients screened (Figure 3).

2.2. Using an Antioxidant to Evaluate the Inhibitory Effects of Food Ingredients

As curcumin is unstable in phosphate buffer at physiological pH [32], ascorbic acid
(AA) was used to prevent curcumin degradation during the transport study. We confirmed
that AA did not affect OATP4C1-mediated transport (Figure 4A). Next, we evaluated
the inhibitory effect of curcumin in the absence or presence of 10, 100, and 1000 µM
AA (Figure 4B). A significant increase in curcumin inhibition, from 33% to 63–67%, was
observed (Figure 4B). The addition of AA did not change the pH of the reaction solution
(control: pH = 7.44; AA 1000 µM: pH = 7.45 in Krebs–Henseleit (KH) buffer). Finally, 10 µM
AA was used in the subsequent experiments.

Additionally, we screened the effects of food ingredients on OATP4C1-mediated trans-
port using AA. The results showed that the overall interactions, especially the inhibitory
effects, of food ingredients were not significantly different (Supplementary Figure S1).
However, the inhibitory effects of some food ingredients, such as daidzein, fisetin, genis-
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tein, isorhamnetin, luteolin, morin, and quercetin, were weakened in the presence of AA
(Supplementary Figure S1).
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Figure 1. Chemical structures of the tested food ingredients that have strong and moderate alterations
in OATP4C1-mediated transport.
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significantly different from the control by one-way analysis of variance followed by Tukey’s test. 
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Figure 2. Chemical structures of the tested food ingredients that did not exhibit significant alterations
in OATP4C1-mediated transport.
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Figure 3. Screening of the effect of food ingredients on OATP4C1-mediated transport. Cells were
incubated with 1 µM T3 with or without food ingredients for 10 min at 37 ◦C. The concentration
of the compounds was 100 µM, except for theaflavin (50 µM). The amount of OATP4C1-mediated
uptake was calculated by subtracting the nonspecific uptake of T3 by mock cells from the total cellular
uptake by OATP4C1-expressing cells. Data are presented as the mean ± standard error (SE) (n = 3).
* p < 0.05, significantly different from the control by one-way analysis of variance followed by Tukey’s
test. Dashed line represents 100% (control uptake in the absence of food ingredient).
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Figure 4. Inhibitory effects of curcumin on OATP4C1-mediated transport under the presence of
AA. (A) Cells were incubated with 1 µM T3 with AA for 10 min at 37 ◦C. The AA concentrations
were 0, 10, 100, and 1000 µM. (B) Cells were incubated with 1 µM T3 and 50 µM curcumin with or
without 10, 100, and 1000 µM AA for 10 min at 37 ◦C. The amount of OATP4C1-mediated uptake was
calculated by subtracting the nonspecific uptake of T3 by mock cells from the total cellular uptake
by the OATP4C1-expressing cells. Data are shown as the mean ± SE (n = 3). N.S., not significantly
different. * p < 0.05, significantly different.

2.3. Concentration-Dependent Inhibition by Kaempferol and Curcumin

Next, we evaluated the half-maximum inhibitory concentrations (IC50) and abso-
lute inhibitory constant (Ki) values of kaempferol and curcumin that inhibited OATP4C1
strongly (Equation (1)). These compounds inhibited OATP4C1-mediated transport in a
concentration-dependent manner (Figure 5A–D). The IC50 values of kaempferol (AA(−)),
kaempferol (AA(+)), curcumin (AA(−)), and curcumin (AA(+)) for OATP4C1 were 29.3,
33.7, 61.1, and 27.5 µM, respectively. The Ki values of kaempferol (AA(−)), kaempferol
(AA(+)), curcumin (AA(−)), and curcumin (AA(+)) for OATP4C1 were 25.1, 28.8, 52.2,
and 23.5 µM, respectively. The individual parameters of curcumin are summarized in
Table 1. As shown in Figure 5C,D, an evident shift in the concentration-dependent curve
was observed for curcumin.
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Figure 5. Concentration-dependent inhibition of OATP4C1-mediated T3 transport by kaempferol
(AA(−)) (A), kaempferol (AA(+)) (B), curcumin (AA(−)) (C), and curcumin (AA(+)) (D). Cells were
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incubated with 1 µM T3 with kaempferol or curcumin with or without 10 µM AA for 10 min at 37 ◦C.
Their concentrations were 0, 1, 3, 10, 30, 50, and 100 µM. The amount of OATP4C1-mediated uptake
was calculated by subtracting the nonspecific uptake of T3 by mock cells from the total cellular uptake
by OATP4C1-expressing cells. Data are shown as the mean ± SE (n = 3). Dots and bars represent the
mean ± SE (n = 3). The dashed lines are the inhibition curves fitted by using the Rodbard model.
Double tilde indicates omission between 0 and 1.

Table 1. IC50 and Ki values of curcumin in the absence or presence of AA.

IC50
(µM)

Ki
(µM)

Average of Ki
(µM)

SE
(µM)

AA (−) 49.4 42.2
52.2 5.169.4 59.3

64.5 55.2
AA (+) 26.5 22.7

23.5 0.528.6 24.5
27.4 23.4

2.4. Kinetic Analysis of OATP4C1-Mediated T3 Uptake in The Presence or Absence of Kaempferol
and Curcumin

Further, we performed a kinetic analysis to clarify the mechanism of inhibition by
curcumin and kaempferol. Alteration in the kinetic curves was observed both in the
presence of curcumin and kaempferol (Figure 6). The obtained kinetic parameters (Km,
Vmax, and Vmax/Km values) are summarized in Table 2. Kinetic analysis revealed that
curcumin and kaempferol addition increased the Km values of OATP4C1-mediated T3
uptake (control, 6.06; curcumin, 20.8; kaempferol, 17.6 (µM)). Moreover, reductions in
Vmax/Km values were observed in the presence of those inhibitors (control, 88.8; curcumin,
39.7; kaempferol, 31.8 (µL/mg protein/10 min)).
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Figure 6. Concentration dependence of OATP4C1-mediated T3 uptake in the presence or absence of
kaempferol and curcumin. Cells were incubated with 0.3, 1, 3, 5, 10, and 30 µM T3 with or without
the inhibitors (kaempferol (30 µM) and curcumin (30 µM)) in the presence of 10 µM AA for 10 min
at 37 ◦C. The amount of OATP4C1-mediated uptake was calculated by subtracting the nonspecific
uptake of T3 by mock cells from the total cellular uptake by OATP4C1-expressing cells. Data are shown
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as the mean ± SE (n = 6). The kinetic curves were fitted to the Michaelis–Menten equation. The
black, gray, and white circles were the control, curcumin, and kaempferol, respectively. Each curve
represents the fitted line obtained by the kinetic analysis by JMP Pro 16.

Table 2. Km, Vmax, and Vmax/Km values of OATP4C1-mediated T3 uptake in the absence or presence
of kaempferol and curcumin.

Km
(µM)

Vmax
(pmol/mg Protein/10 min)

Vmax/Km
(µL/mg Protein/10 min)

Control 6.06 ± 0.83 524 ± 18.2 88.8 ± 8.90
Curcumin 20.8 ± 4.89 757 ± 76.0 39.7 ± 6.79

Kaempferol 17.6 ± 5.01 517 ± 92.6 31.8 ± 4.16

3. Discussion

In this study, we aimed to understand the effect of food ingredients on the renal
excretion of drugs by investigating their interactions via OATP4C1, which is expressed in
renal proximal tubular cells. First, we examined whether 28 types of food ingredients, for
which transport inhibition was previously analyzed, inhibited OATP4C1-mediated trans-
port. Twelve compounds, including apigenin, daidzein, fisetin, genistein, isorhamnetin,
kaempferol, luteolin, morin, quercetin, curcumin, resveratrol, and ellagic acid, were found
to significantly alter OATP4C1-mediated transport. Apigenin, kaempferol, luteolin, morin,
quercetin, and curcumin inhibited OATP4C1 transport by ≥50% (Figure 3). Six other com-
pounds also moderately altered OATP4C1-mediated transport: daidzein, fisetin, genistein,
isorhamnetin, resveratrol, and ellagic acid (Figure 3). Notably, ellagic acid accelerated
OATP4C1-mediated transport by 13% instead of inhibiting it. To date, the structure of
OATP4C1 has not been clarified; therefore, the binding sites and intermolecular interactions
are unknown. Since the possible existence of multiple binding sites has been reported [18],
the differences in the binding sites of each compound might affect the strength of the
interactions. Although apigenin, daidzein, genistein, quercetin, gallic acid, resveratrol,
and ellagic acid have been reported to inhibit other drug transporters, such as hepatic and
intestinal OATPs, renal OATs, and P-glycoprotein (P-gp) (Supplementary Figure S1), these
compounds showed relatively moderate inhibition of OATP4C1 (Figure 3). Theaflavin,
epigallocatechin-3-gallate, caffeic acid, ferulic acid, gallic acid, and ellagic acid, which have
been reported to inhibit OATP1B1, OATP1B3, OATP2B1, and renal OATs, did not inhibit
OATP4C1-mediated transport (Supplementary Table S1 and Figure 3). Thus, the degree
of transport inhibition by food ingredients differed between OATP4C1 and other drug
transporters, such as OATPs; however, their details are yet to be elucidated. Moreover, we
used much higher concentrations than those expected in human blood to avoid overlooking
the interaction. However, the concentrations of the compounds may not reach those used
in the inhibition study. Thus, the individual compound may not inhibit OATP4C1 transport
by itself in clinical settings.

Next, we performed the transport study using AA to prevent curcumin degradation
in the KH buffer. Curcumin can be stabilized by adding antioxidants, such as AA [32].
However, no reports have been made on the use of antioxidants to examine food–drug
interactions via transporters. Therefore, we examined the effect of AA on OATP4C1-
mediated transport. We found that AA did not affect OATP4C1 transport (Figure 4A). With
a reproducibility test, we then confirmed that a significant increase in curcumin inhibition
from 33% to 63–67% was observed by preventing curcumin degradation without altering the
KH buffer pH (Figure 4B). Notably, curcumin inhibition is not consistent between Figure 3A
(72%) and Figure 3B (33%), which may be due to the instability of curcumin in the absence
of antioxidants. Furthermore, despite increasing the AA concentration to 100 and 1000 µM,
the inhibitory effect of curcumin on transport did not increase compared to the 10-µM AA
reaction solution. Thus, 10 µM AA was used in the subsequent experiments. Additionally,
we screened the effects of food ingredients on OATP4C1-mediated transport using AA. The
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results showed that the inhibitory effects of some food ingredients, such as daidzein, fisetin,
genistein, isorhamnetin, luteolin, morin, and quercetin, were weakened in the presence of
AA (Supplementary Figure S1). The oxidized metabolites of these compounds may have
exerted inhibitory effects on OATP4C1-mediated transport, and the inhibitory effects were
weakened as a result of stopping the generation of these metabolites in the presence of AA.
Further studies are required to elucidate the mechanisms underlying this phenomenon.

Then, we performed a concentration-dependent study using 10 µM AA. The re-
sults showed that kaempferol and curcumin inhibited OATP4C1-mediated transport
in a concentration-dependent manner both in the absence and presence of 10 µM AA
(Figure 5A–D). The individual parameters of curcumin are summarized in Table 1. An ob-
vious shift was observed in the concentration-dependent curve for curcumin (Figure 5C,D).

Curcumin degradation is inhibited by binding to plasma proteins, such as albumin,
and over 80% of curcumin reportedly remains in the presence of plasma proteins for up
to 1 h [33,34]. Curcumin rapidly degrades in phosphate buffer at pH 7.4, with 80–90%
decomposition occurring within 12 min, mainly generating bicyclopentadione derivatives
through auto-oxidative transformation [32]. Curcumin has also been reported to inhibit
OATP1B1 and OATP1B3 transport, with IC50 values of 3.8 and 34 µM, respectively [35].
That study did not use antioxidants such as AA, suggesting that oxidative degradation
of curcumin might have occurred in the experiments. Based on previous evidence, we
successfully evaluated curcumin inhibition of OATP4C1-mediated transport and accurately
calculated the IC50 and Ki values using AA. Here, we concluded that the utilization of an
antioxidant that does not affect the transporter activity for food–drug interaction studies is
desirable to accurately calculate parameters such as IC50 and Ki values.

Finally, we performed a kinetic analysis to clarify the mechanism of inhibition by
curcumin and kaempferol. The Km value of 6.06 µM in the control was similar to those
reported in [18,28]. Alterations in the kinetic curves (Figure 6), increases in the Km val-
ues, and reductions in the Vmax/Km values (Table 2) of OATP4C1-mediated T3 uptake
were observed in the presence of those inhibitors. The result suggested that these com-
pounds affected OATP4C1-mediated T3 uptake in a competitive manner. Moreover, we
confirmed that those inhibitors reduced OATP4C1-mediated clearance of T3 mainly due to
the alteration of Km values.

Currently, there is limited information regarding the blood concentrations of food
ingredients such as flavonoids. The plasma concentration of flavonoids may not exceed
1 µM with a single flavonoid intake within the range of 10–100 mg [36]. In a normal diet in
several countries, the intake of a single flavonoid is reported to be < 100 mg [37–39]. There-
fore, the blood concentrations of the six food ingredients: apigenin, kaempferol, luteolin,
morin, quercetin, and curcumin, identified in this study as OATP4C1 inhibitors, may not
be sufficient to inhibit OATP4C1 during normal dietary intake. However, a combination
of multiple flavonoids that inhibit P-glycoprotein strengthens its inhibitory effects on the
transporter [40]. Therefore, it is possible that additive and/or synergistic inhibitory effects
could occur on OATP4C1 when patients consume multiple food ingredients simultane-
ously. In particular, it is advisable to avoid concurrent intake of kaempferol, curcumin, and
substrate drugs of OATP4C1. Furthermore, researchers are developing novel supplements
to improve the bioavailability of some flavonoids. Their reports indicated that the blood
concentration may exceed 1 µM even when taking a single flavonoid within the range of
10–100 mg [41,42]. When taking such novel supplements, the food–drug interactions via
OATP4C1 may occur. However, because information on the pharmacokinetic parameters
of food ingredients, such as elimination half-life, is limited, it is challenging to propose
specific dosing intervals.

4. Materials and Methods
4.1. Materials

Ferulic acid (99%) was purchased from Sigma Aldrich (St. Louis, MO, USA). Ascorbic
acid and quercetin (≤100%) were purchased from FUJIFILM Wako Pure Chemical Cor-
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poration (Osaka, Japan). Caffeic acid (≥98%), curcumin (100%), hesperidin (90%), rutin
(95.0–101.5%), and triiodothyronine (T3) were purchased from Nacalai Tesque, Inc. (Kyoto,
Japan). Gallic acid (≥98%), chlorogenic acid (≥95%), ellagic acid (≥95%), sesamin (≥95%),
epigallocatechin-3-gallate (≥96%), genistein (≥98%), daidzein (≥95%), luteolin (≥98%),
theaflavin (≥98%), isoquercetin (98%), and morin (100%) were purchased from Cayman
Chemical Company (Ann Arbor, MI, USA). Resveratrol (>99.0%), fisetin (>96.0%), isorham-
netin (>95.0%), and troxerutin (90%) were purchased from Tokyo Chemical Industry Co.,
Ltd. (Tokyo, Japan). Cyanidin chloride (99%) was purchased from Nagara Science Co. Ltd.
(Gifu, Japan). Apigenin (≥98%) was purchased from LKT Laboratories, Inc. (St. Paul, MN,
USA). Kaempferol (98%), myricetin (98%), and naringin (98%) were purchased from BDL
Pharmatech Ltd. (Shanghai, China). Hyperoside (90–100%) was purchased from Toronto
Research Chemicals Inc. (Toronto, ON, Canada). Neohesperidin (≥98%) was purchased
from Chem-Impex International, Inc. (Wood Dale, IL, USA). All other chemicals were
commercially available and had the highest possible purity.

4.2. Cell Culture

The MDCKII cells transfected with OATP4C1 or an empty vector were established
in our laboratory [18]. OATP4C1/MDCKII and mock cells were cultured in Dulbecco’s
modified Eagle’s medium supplemented with 10% fetal bovine serum (Gibco, Thermo
Fisher Scientific Inc., Waltham, MA, USA) and G418 (0.5 mg/mL; Nacalai Tesque, Inc.) at
37 ◦C under 5% CO2 and 95% humidified air.

4.3. Transport Study

The cellular uptake of T3 was measured in monolayer cell cultures grown in 24-well
plates. Cells were seeded at a density of 2.0 × 105 cells/well. Thereafter, the cells were
incubated in a culture medium containing 5 mM sodium butyrate for 24 h before the uptake
study. The cells were washed once with KH buffer (118 mM NaCl, 23.8 mM NaHCO3,
4.83 mM KCl, 0.96 mM KH2PO4, 1.20 mM MgSO4, 12.5 mM N-(2-hydroxyethyl) piperazine-
N’-2-ethanesulfonic acid, 5.0 mM D-glucose, and 1.53 mM CaCl2; pH 7.4), followed by
preincubation in KH buffer. Cellular uptake was initiated by adding T3-containing KH
buffer with or without each flavonoid. Uptake was terminated after 10 min by replacing
the incubation buffer with ice-cold KH buffer. The cells were washed twice with ice-cold
KH buffer. The concentration of T3 was measured using liquid chromatography/tandem
mass spectrometry (LC/MS/MS). Cellular uptake was presented as the uptake amount
divided by the amount of cellular protein quantified using the Bradford protein assay. The
experiment was performed in triplicate (n = 3) and repeated three times. Flavonoids, except
ellagic acid, were dissolved in dimethyl sulfoxide (DMSO) at a final concentration of less
than 0.5%. A stock solution of ellagic acid (20 mM) was obtained by dissolving it in 0.05 M
NaOH and was further diluted to 100 µM in KH buffer (the pH was adjusted to 7.4).

4.4. Using an Antioxidant to Evaluate the Inhibitory Effects of Food Ingredients

Curcumin is unstable in phosphate buffers at physiological pH [32]. Therefore, AA
was used to prevent curcumin degradation during the transport study. Appropriate AA
concentrations were determined as follows:

(1) The effect of 10, 100, and 1000 µM AA on OATP4C1-mediated transport was evaluated.
(2) The inhibitory effect of curcumin was evaluated in the absence or presence of 10, 100,

and 1000 µM AA.

Finally, 10 µM AA was determined to be the appropriate concentration of AA and was
used in the subsequent transport studies.

4.5. Concentration-Dependent Inhibition by Kaempferol and Curcumin

We investigated the concentration-dependent inhibition by kaempferol and curcumin,
which resulted in more than 70% inhibition of OATP4C1-mediated T3 uptake. The inhibition
curve was fitted to the Rodbard model. The half-maximum inhibitory concentration (IC50)
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values of the food ingredients were calculated using JMP Pro 16 (SAS Institute Inc., Cary,
NC, USA). The absolute inhibitory constant (Ki) was then derived using the following
equation (Equation (1)) [21,43]: where [S] is the substrate concentration and Km is the
Michaelis–Menten constant. The experiment was performed in triplicate (n = 3) and
repeated three times.

Ki =
IC50

1 + [S]
Km

(1)

4.6. Kinetic Analysis of OATP4C1-Mediated T3 Uptake in the Presence or Absence of Kaempferol
and Curcumin

We performed the kinetic analysis to clarify the mechanism of inhibition by curcumin
and kaempferol, which showed strong inhibition on OATP4C1-mediated T3 uptake. The
kinetic curves were fitted to the Michaelis–Menten equation. The kinetic parameters (Km,
Vmax, and Vmax/Km values) of the food ingredients were calculated using JMP Pro 16. The
experiment was performed in duplicate (n = 2) and repeated three times.

4.7. Sample Preparation

The cells were scraped and homogenized in 200 µL water after uptake termination.
Deproteinization was performed by adding equal volumes of pravastatin-containing ace-
tonitrile as an internal standard. After vortexing, the mixture was centrifuged at 15,000× g
for 5 min at 20 ◦C, and the supernatant was collected.

4.8. Liquid Chromatography/Tandem Mass Spectrometry Conditions

LC/MS/MS was used to measure the T3 concentrations. A Shimadzu Nexera HPLC
System (Shimadzu Corporation, Kyoto, Japan) equipped with a Cosmosil 5C18-MS-II
column (Nacalai Tesque, Inc.) was used for chromatographic separation. The mobile phase
was water/acetonitrile (70:30, v/v) containing 0.1% acetic acid at a flow rate of 0.2 mL/min.
The column temperature was maintained at 40 ◦C and the sample injection volume was
5 µL.

Mass spectrometry was performed using an API 5000 tandem mass spectrometer
(Sciex LLC, Framingham, MA, USA). The T3 concentration was measured in negative
ion mode. Selected reaction monitoring (SRM) was performed and the SRM transitions
monitored were m/z 650 > 127 for T3 and m/z 423 > 101 for pravastatin. The collected data
were analyzed using the Analyst software (version 1.5; SCIEX LLC).

4.9. Statistical Analysis

Data are expressed as the mean ± SE. Multiple statistical comparisons were made
using one-way analysis of variance (ANOVA), followed by Tukey’s test. The data were ana-
lyzed using JMP Pro 16 (SAS Institute Inc.). Statistical significance was set at p-values < 0.05.

5. Conclusions

We clarified food–drug interactions via the renal drug transporter OATP4C1 and
discussed the differences between other drug transporters and OATP4C1. This is the
first report to propose the utilization of an antioxidant for the evaluation of food–drug
interactions via transporters. Our findings demonstrated that the addition of ascorbic
acid was beneficial in evaluating the effect of curcumin on OATP4C1-mediated transport.
Our results suggest the usefulness of an antioxidant such as ascorbic acid when assessing
the interaction of easily oxidized compounds on transporters or metabolic enzymes. We
believe that this study provides novel information for food–drug interaction studies of
drug transporters.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms25020991/s1. References [44–79] are cited in the Supplementary
Materials.
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