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Abstract: The ageing phenotype is strongly driven by the exhaustion of adult stem cells (ASCs)
and the accumulation of senescent cells. Cardiovascular diseases (CVDs) and heart failure (HF) are
strongly linked to the ageing phenotype and are the leading cause of death. As the human heart
is considered as an organ with low regenerative capacity, treatments targeting the rejuvenation of
human cardiac stem cells (hCSCs) are of great interest. In this study, the beneficial effects of human
blood serum on proliferation and senescence of hCSCs have been investigated at the molecular level.
We show the induction of a proliferation-related gene expression response by human blood serum
at the mRNA level. The concurrent differential expression of the TGFβ target and inhibitor genes
indicates the participation of TGFβ signalling in this context. Surprisingly, the application of TGFβ1
as well as the inhibition of TGFβ type I and type II receptor (TGFβRI/II) signalling strongly increased
the proliferation of hCSCs. Likewise, both human blood serum and TGFβ1 reduced the senescence
in hCSCs. The protective effect of serum on senescence in hCSCs was enhanced by simultaneous
TGFβRI/II inhibition. These results strongly indicate a dual role of TGFβ signalling in terms of the
serum-mediated effects on hCSCs. Further analysis via RNA sequencing (RNA-Seq) revealed the
participation of Ras-inactivating genes wherefore a prevention of hyperproliferation upon serum-
treatment in hCSCs via TGFβ signalling and Ras-induced senescence is suggested. These insights
may improve treatments of heart failure in the future.

Keywords: human cardiac stem cells; human blood serum; proliferation; senescence; ageing;
RNA-Seq; TGFβ1

1. Introduction

During life the adult body requires mechanisms to renew organs and tissues as well
as for damage repair after injury [1]. These regenerative processes are driven by ASCs
which remain quiescent in their niche until the need for proliferation or differentiation
due to injury, disease, or normal turnover of the cells [2–4]. These regenerative and
homeostatic capacities of the body decline during the ageing process, which is defined
as a progressive loss of physiological integrity leading to an increased vulnerability to
age-related diseases [1,5]. In 2013, López-Otín and colleagues defined eight hallmarks of
ageing including the exhaustion of stem cells and the increase of senescent cells, which
both strongly contribute to the decline of the regenerative potential of the body [1]. The
exhaustion of stem cells is mainly characterized by the accumulation of DNA-damage,
expression of cell cycle inhibitory proteins and an overall decrease of cell cycle activity
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leading to reduced proliferation [1]. Accordingly, the investigation of stem cell proliferation
at the molecular level is of great interest to counteract age-related diseases and increase
the relative health span during life. Hence, the development of new cell-based methods
and stem cell application is a fast-growing field in regenerative medicine. To this day, the
treatments of bone marrow failure, muscular dystrophy or neurogenerative diseases as well
as the support of myocardial regeneration have been reported in this context so far [6–8].

Notably, CVDs are the leading cause of death worldwide and are strongly linked
to the ageing phenotype. CVDs occur along with decreased proliferation of resident car-
diomyocytes and decreased regeneration potential of cardiac stem cells (CSCs) [9,10] which
makes the development of rejuvenating stem cell-based strategies a promising approach
to enhance the clinical outcome of CVD treatments. In terms of regeneration, particularly
the adult human heart was long considered as an organ with low regenerative capacity
until clonogenic and multipotent cardiac stem cells with the ability to self-renew were
identified [6,11–13]. In previous studies we successfully isolated a Nestin+/S100+/c-kit−

cell population from human left atrial appendages (LAA) which expresses the cardiac
progenitor markers CD105, CD31 and Sca-1. This stem cell population, namely human
cardiac stem cells (hCSCs), was able to form cardiospheres after clonal growth and was
shown to successfully differentiate into cardiomyocytes in vitro. In general, the transplan-
tation of CSCs has already been shown to enhance the functional outcome for cardiac
regeneration after heart failure in animals [14], which underlines the high medical applica-
bility of stem-cell-based approaches for treatment of CVDs. However, studies targeting
the activation of endogenous cardiac stem cells in order to overcome the need for surgical
intervention were only carried out at a very basal level so far. Interestingly, young blood
and plasma have been reported to have rejuvenating effects by several studies. For instance,
the exposure of old mice to the blood of young mice by heterochronic parabiosis led to
elevated regeneration of the muscle, the liver, the brain, the spinal cord, the olfactory
system, and the heart [15–17]. Additionally, beneficial effects of young blood, plasma
or serum in old tissues and organs as well as in various stem cell populations were de-
scribed [16,18]. We could successfully underline these effects by showing serum-mediated
proliferation and senescence reduction in hCSCs after application of human blood serum
in vitro [11,19]. However, for the evaluation of a potential clinical application of young
blood or its components, a deeper understanding of the molecular signalling networks is
crucial. At a molecular level, the p38-MAPK/HSP27 axis was identified as a mediator of
the reported serum effects in terms of hCSC migration, proliferation and senescence [19].
To fully elucidate the molecular mechanisms of these effects, further analysis of upstream
or downstream pathways is necessary. In this association, the investigation of the TGFβ
signalling pathway as a potential upstream mediator of the serum-induced effects is of
great interest as it is known to be involved in proliferation and senescence [20–25].

TGFβ family members include several cytokines such as bone morphogenic molecules
(BMPs), growth differentiation factors (GDFs), activins, Nodal and TGFβs occurring in
three isoforms (TGFβ 1-3) [26]. All isoforms are translated with a large amino-terminal
prodomain, which is necessary for correct folding and dimerization [27]. The latent form of
TGFβ with furin cleaved but associated with the prodomain is also found in serum [28].
Activation of latent TGFβ1 can occur through interaction with extracellular matrix and
α(v)β(6) integrin [29]. These ligands bind to the serine and threonine kinase receptors type
II (TβRII) and type I (TβRI) on the outer cell membrane by building a receptor heterocom-
plex. Binding of a ligand to the homodimeric TβRII initiates conformational adaptation
of the ligand and TβRII creates a new binding site with high affinity for TβRI. After
recruitment of two TβRI units, the receptor heterocomplex is formed and the TβRII phos-
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phorylates the serine residues of TβRI. During canonical SMAD signalling, the receptor-
activated (R-) SMADs are subsequently phosphorylated by TβRI leading to downstream
signal transmission [26]. Besides, induction of the TGFβ pathway also happens to activate
non-SMAD signalling which comprises context-dependent induction of several pathways
such as ERK-MAPK, p39/JNK, NF-κB, PI3K/AKT/mTOR, Rho-GTPase, JAK/STAT and
p38-MAPK signalling [26]. In the heart in particular, the TGFβ signalling pathway plays an
important role, as it is known to contribute significantly to cardiac development and vascu-
larization [30–36]. Moreover, TGFβ1 is secreted by cardiac fibroblasts and cardiomyocytes
thereby inducing myofibroblast differentiation [37,38]. Overall, these studies show that the
investigation of this pathway is important in the context of cardiac regeneration.

In the present study, a proliferation-related response of hCSCs to serum treatment at
the gene expression level was revealed by Gene Ontology. Additionally, the involvement
of the TGFβ signalling pathway was indicated by differential gene expression analysis.
Within this study, we demonstrate a dual role of the TGFβ signalling pathway in terms of
proliferation and senescence in hCSCs. Differential gene expression analysis showed sig-
nificant upregulation of proliferation-related and Ras-inactivating genes in hCSCs treated
with serum and the TGFβRI/II inhibitor, compared to cells treated with serum alone. Our
data suggest a prevention of hyperproliferation upon serum treatment in hCSCs via TGFβ
signalling and Ras-induced senescence.

2. Results
2.1. RNA-Seq Analysis Reveals the Enrichment of Proliferation-Related Processes after Serum
Treatment in hCSCs

To clarify the molecular mechanism underlying human blood serum-mediated prolif-
eration in hCSCs, RNA sequencing (RNA-Seq) was performed. We previously published
a proliferative and senescence reducing effect of human blood serum and compared dif-
ferential gene expression after induction with human blood serum from old and young
donors, revealing the p38-MAPK signalling pathway to be crucial for serum-mediated
proliferation in hCSCs [11]. Here, the application of human blood serum resulted in the
significant upregulation of 213 differential expressed genes and downregulation of 31 genes
which underline the inductive effect of human blood serum on gene expression in hCSCs
(Figure 1). Interestingly, the TGFβ signalling target gene ATF3 [39] and the endogenous
TGFβ inhibitor NR4A1 [40] were differentially expressed after serum-treatment. The here
observed upregulation of both targets and inhibitors of the TGFβ pathway indicate a crucial
role of TGFβ in regulating the serum-mediated effects on hCSCs at the molecular level. GO
term analysis between untreated and serum-treated hCSCs likewise showed a significant
enrichment of several biological processes (BP) which are strongly related to proliferation.
These comprise terms like ‘M phase of mitotic cell cycle’, ‘nuclear division’, ‘mitosis’, ‘cell
division’, ‘microtubule-based process’, ‘microtubule cytoskeleton organization’, ‘regula-
tion of microtubule-based process’, ‘mitotic prometaphase’ and ‘regulation of microtubule
cytoskeleton organization’ (Figure 2A). With respect to cellular components (CC), GO
terms including ‘microtubule organizing center’, ‘organelle inner membrane’, ‘spindle’,
‘microtubule’, ’chromosome centromeric region’, ’intermediate filament cytoskeleton’ and
’centrosome’ were significantly enriched (Figure 2B). Accordingly, the molecular functions
(MF) ‘microtubule binding’ and ‘tubulin binding’ were enriched (Figure 2C). The enriched
GO terms revealed here with respect to BP, CC and MF emphasize the inductive effect of
blood serum and strongly correlate with the reported proliferative effect of human blood
serum on hCSCs.
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Figure 1. Human blood serum induces differential gene expression. Volcano plot shows upregula-
tion of 213 differentially expressed genes after serum treatment and downregulation of 31 genes. Figure 1. Human blood serum induces differential gene expression. Volcano plot shows upregulation

of 213 differentially expressed genes after serum treatment and downregulation of 31 genes.
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2.2. Inhibition of TGFβRI/II Enhances Proliferation While TGFβ Possesses a Dual Role in Regard
to Proliferation and Senescence in hCSCs

RNA-Seq revealed the differential gene expression of targets and inhibitors of the
TGFβ1 pathway and the enrichment of proliferation-related GO terms after serum treat-
ment in hCSCs. In addition, the downstream p38-MAPK signalling pathway was shown
in previous studies to be significant for serum-mediated proliferation and migration of
hCSCs [11,19], further underlining the potential role of TGFβ1 signalling in this regard.
Consequently, the TGFβ1 signalling pathway was investigated to further clarify the molec-
ular mechanisms of the beneficial effects of serum. Supplementation with increasing
concentrations of TGFβ1 led to reduced proliferation of hCSCs compared to untreated cells,
which indicates a suppressive role of TGFβ1 in this context. To gain deeper insights of
the involvement of TGFβ in the observed suppressive effect on proliferation, the selective
TGFβRI/II inhibitor LY2109761 [41] was applied upon serum treatment, leading to en-
hanced proliferation, further highlighting the central role of TGFβ signalling in this context.
The proliferation assay showed increased proliferation of hCSCs correlating with increased
concentration of inhibitor, with a maximum effect of a 6.2-fold induction of proliferation at
50 µM LY2109761 and an IC50 of 6.252 µM (Figure 3A–C).

In order to determine the role of TGFβ-signalling in serum-treated hCSCs, we per-
formed proliferation and senescence assays using 50 µM of the TGFβRI/II inhibitor
LY2109761. A strong and significant increase in hCSC proliferation was observed upon
inhibition of TGFβRI/II and serum treatment. Notably, the application of the TGFβRI/II
inhibitor LY2109761 also increased the proliferation of cells which were cultured in serum-
deprived medium to a higher extent than in serum-treated cells (Figure 4D).

Besides the induction of proliferation, application of LY2109761resulted in morpho-
logical changes. Untreated hCSCs appeared as long spindle shaped cells with thin long
processes and single granular cells. In contrast, serum-treated hCSCs were formed as single
granular and spindle shaped cells with y-shaped cytoplasm. Supplementation with serum
and LY2109761 also induced a spindle shaped morphology while here no single granular
cells were visible. Particularly, a strong increase in cell–cell interactions were visible after
TGFβRI/II inhibition as here each cell showed connections to other cells (Figure 4A–C).
We investigated the amount of total TGFβ1 in several serum samples (Table 1) and found
TGFβ1 levels ranging from 0.39 ng/mL to 1.10 ng/mL. Taken together, pooled serum
induced proliferation of hCSCs in the same manner as application of 1 ng/mL TGFβ1
(see below).
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We tested after inhibition with LY2109761, the effects of TGFβ1 on proliferation. They
were investigated via supplementation of increasing TGFβ1 concentrations of 1 ng/mL,
5 ng/mL or 10 ng/mL, revealing a highly inductive effect. The application of low concen-
trations of TGFβ1 (1 ng/mL) could significantly increase proliferation whereas application
of 10 ng/mL TGFβ1 had the same inductive effect as serum (Figure 4E). Strikingly, si-
multaneous application of the TGFβRI/II inhibitor and TGFβ1 highly increased the cell
proliferation of hCSCs regardless of the applied concentration of TGFβ1 (Figure 4F–H),
indicating a potential dual role of TGFβ signalling in hCSCs. Regarding senescence, serum
significantly reduced the senescence-associated β-galactosidase (SA-β-Gal) activity in
hCSCs, and this effect was further enhanced after addition of the inhibitor LY2109761.
Application of TGFβ1 reduced senescence in hCSCs compared to untreated cells while
the protective effect of TGFβ1 was smaller compared to serum-treated cells (Figure 4I).
Here, a dual role of TGFβ1-signalling in regard to senescence in serum-treated hCSCs is
likewise suggested.

Table 1. TGFβ1 levels in the human blood serum samples. Quantification of the TGFβ1 levels in the
serum range from 0.39 ng/mL to 1.10 ng/mL.

Sample TGFβ1
[ng/mL]

Serum 1 0.39

Serum 2 0.84

Serum 3 1.10

Serum 4 1.17

Serum 5 0.93

Serum 6 1.10
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Figure 3. 50 µM LY2109761 is effective for induction of proliferation in hCSCs. (A) After starvation,
hCSCs were treated with human blood serum and TGFβR/II inhibitor. (B) Increasing concentrations
of the selective TGFβRI/II inhibitor LY2109761 upon serum treatment indicate a proliferation enhanc-
ing effect in hCSCs with an effective concentration at 50 µM. (C) The IC50 value of the TGFβ RI/II
inhibitor LY2109761 is 6.252 µM.
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Figure 4. The dual role of TGFβ signalling in serum-mediated effects in hCSCs. (A–C) Upon serum
treatment, the supplementation with LY2109761 leads to morphological changes of hCSCs. (D) The
application of LY2109761 alone increases the proliferation higher than treatment with serum alone,
while the proliferative effect of the serum is enhanced by LY210976. (E) TGFβ1 mediates proliferation
in concentrations from 1 ng/mL to 10 ng/mL. (F–H) Simultaneous application of LY2109761 and
TGFβ1 highly increases the cell proliferation of hCSCs regardless of the applied concentration of
TGFβ1. (I) Serum reduces the SA-β-Gal activity in hCSCs, and this effect is further enhanced after
addition of LY2109761. Application of TGFβ1 reduces senescence in hCSCs compared to untreated
cells while it is significantly increased compared to serum-treated cells. (Mann–Whitney U two-tailed,
** p < 0.01; * p < 0.05).

2.3. Human Blood Serum Strongly Induces the Phosphorylation of SMAD2/3 in the Nucleus
Which Is Significantly Reduced by the Application of the Selective Inhibitor LY2109761

To investigate the effect of human blood serum on TGFβ1 signalling and the func-
tion of LY2109761, phosphorylated SMAD2/3 (pSMAD2/3) was immunocytochemically
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determined in the nucleus of hCSCs. Serum treatment induced a three-fold increase of
nuclear pSMAD2/3 compared to untreated hCSCs. Addition of the TGFβRI/II inhibitor
LY2109761r significantly decreased this effect while the amount of nuclear phosphorylated
SMAD2/3 was higher than in untreated cells. Supplementation with TGFβ1 resulted in
an eight-fold increase of phosphorylated SMAD2/3 while this effect was reduced after
the addition of LY2109761 (Figure 5A,B). These data underline the inductive effect of hu-
man blood serum on TGFβ1 signalling via SMAD2/3 phosphorylation and the successful
reduction of this effect via the selective inhibitor LY2109761.

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 10 of 22 
 

 

 
 

 
Figure 5. Phosphorylation of SMAD2/3 after serum treatment and inhibition of TGFβRI/II in hCSCs. 
(A) Immunocytochemical staining of hCSCs shows enriched amounts of pSMAD2/3 in the nucleus Figure 5. Phosphorylation of SMAD2/3 after serum treatment and inhibition of TGFβRI/II in hCSCs.

(A) Immunocytochemical staining of hCSCs shows enriched amounts of pSMAD2/3 in the nucleus
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after treatment with serum or TGFβ1 which further increases after inhibition of TGFβRI/II, magni-
fication ×63. (B) Quantification of the fluorescence signal reveals a significant decrease of nuclear
pSMAD2/3 after application of TGFβRI/II inhibitor. (Kruskal–Wallis, *** p < 0.001; **** p < 0.0001).

2.4. TGFβ RI Inhibition Reduces Serum-Mediated hCSC Proliferation

Following the striking observations of TGFβ1 and TGFβRI/II inhibition which both
increased hCSC proliferation, a more detailed analysis was performed. The selective TGFβ
type I receptor inhibitor, SB431542, was applied to serum-treated hCSCs. Contrary to the
proliferative effect of TGFβRI/II inhibition, application of the TGFβRI inhibitor SB431542
resulted in a strong and significant reduction in the serum-mediated hCSC proliferation
with an IC50 of 0.553 µM (Figure 6A,B).
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Figure 6. TGFβRI inhibition reduces serum-induced hCSC proliferation. (A) Application of TGFβRI
inhibitor SB431542 reduces serum-mediated hCSC proliferation with an (B) IC50 of 0.5339 µM.
(Ordinary one-way ANOVA, **** p < 0.0001; *** p < 0.001).

2.5. Differential Global Gene Expression Indicates Upregulation of Proliferation-Related and
Ras-Inactivating Genes after TGFβ RI/II Inhibition and Serum Treatment in hCSCs

To further clarify the underlying molecular basis of the observed effects, RNA-Seq was
performed with serum- and LY2109761-treated hCSCs. The differential gene expression
analysis revealed significant upregulation of proliferation-related genes, such as WEE1
(WEE1 Checkpoint Kinase), CETN2 (Centrin2) and MLF1 (Myeloid Leukemia Factor 1)
in cells treated with serum and LY2109761 compared to serum treatment (Figure 7A).
Additionally, Ras-inactivating genes such as RIN1 (Ras and Rab interactor 1, Ras inhibitor 1)
and SYNGAP1 (Synaptic Ras GTPase Activating Protein 1) were differentially expressed
(Figure 6A). Interestingly, the previously identified genes FOS, FOSB, NR4A and EGR were
similarly upregulated in hCSCs treated with serum or serum with LY2109761 compared to
untreated hCSCs (Figure 7B).
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Figure 7. Gene expression analysis of serum- and LY2109761-treated hCSCs. (A) Volcano plot of
differentially expressed genes in serum-treated hCSCs after TGFβ RI/II inhibition shows upregulation
of ten genes and downregulation of two genes. Proliferation-related and Ras-inactivating genes are
significantly upregulated after serum and inhibitor treatment in hCSCs. (B) The genes FOS, FOSB,
NR4A and EGR are similarly upregulated in hCSCs treated with serum or serum with LY2109761
compared to untreated hCSCs.
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3. Discussion

The characteristics of adult human stem cells, such as the ability to self-renew and
the high differentiation potential, make their presence crucial for the regeneration and
homeostasis of the human organism [2]. Hence, the application of adult stem cells is a fast-
growing field in regenerative medicine. This includes treatment of bone marrow failure,
muscular dystrophy or neurogenerative diseases as well as the support of myocardial
regeneration [6–8,42]. The exhaustion of stem cells and the increase of senescent cells both
are hallmarks of ageing and contribute to the decline of the regenerative potential of the
body [1,5]. Accordingly, the investigation of stem cell proliferation as a marker for stem cell
fitness is necessary for developing new cell-based applications in regenerative medicine to
counteract age-related diseases. Especially the human heart which was long considered as
an organ with low regenerative capacity until self-renewing, clonogenic and multipotent
cardiac stem cells were identified [6,11,12]. We previously isolated a Nestin+/S100+ cell
population from human left atrial appendages which expresses the cardiac progenitor
markers CD105, CD31 and Sca-1. This human cardiac stem cell population was able to
form cardiospheres after clonal growth and differentiated into cardiomyocytes in vitro [11].
In terms of rejuvenation, several studies showed a beneficial effect of young blood, plasma
or serum on old tissues and organs as well as on various stem cell populations [16,18].
We could successfully underline these effects by showing serum-mediated proliferation
and senescence-reduction in hCSCs after application of human blood serum in previous
studies [11,19].

Within this study, we showed that human blood serum induces enrichment of prolife
ration-related GO terms in hCSCs which is consistent with our previously observed serum-
mediated proliferative effects [11]. Here, the upregulation of the biological processes
associated with mitosis strongly indicate an immediate response to serum at a global gene
expression level coherent to the observed proliferative phenotype. We previously identified
the p38-MAPK/HSP27 axis as a partial mediator of serum-induced proliferation in hC-
SCs [19]. Consequently, making examinations of upstream signalling pathways is of great
interest to further unravel the underlying molecular mechanisms of the serum-mediated
proliferative effects in hCSCs. In this study we show the upregulation of 213 differentially
expressed genes induced by serum. These comprise the TGFβ signalling target activating
transcription factor 3 (ATF3) [39] and the endogenous TGFβ inhibitor nuclear receptor
subfamily 4 group A member 1 (NR4A1) [40], which strongly implies the involvement
of TGFβ-signalling in the serum-mediated response in hCSCs. ATF3, a known stress
response gene belonging to the ATF/CREB family, has been reported to be induced by
TGFβ-activated SMAD3 signalling in human epithelial cells [39]. Additionally, the tran-
scription factor has not only been shown to be a target of TGFβ1 but also as a mediator of
TGFβ signalling. In detail, it has previously been found that ATF3 induces proliferation and
invasion and inhibits apoptosis via TGFβ1/SMAD2/3 signalling in keloid fibroblasts [43].
In contrast, the NR4A1 receptor has been shown to be an endogenous inhibitor of TGFβ
signalling which mediates the repression of TGFβ target genes. The receptor therefore
has been focused on in other studies to counter TGFβ-mediated signalling in several dis-
eases [44,45]. The here observed involvement of both targets and inhibitors of the TGFβ
pathway, makes further investigation to unravel the molecular mechanisms in hCSCs
crucial to gain deeper insights on the serum-mediated effects in relation to proliferation.
Especially focusing on cardiac development, the TGFβ signalling pathway has already been
reported to be involved by several studies. Interestingly, the cardiac progenitor marker
endoglin (CD105) is also known to be an ancillary TGFβ receptor and has been shown
to be required for extraembryonic angiogenesis and heart development [46]. In several
species, bone morphogenic proteins (BMPs), members of the TGFβ superfamily, have also
been found to mediate cardiac development. This comprises the participation of BMPs and
SMADs during heart development in terms of endocardial cushion formation, septation and
specification of the left/right axis [30–35]. Further, the TGFβ signalling pathway has been
reported to be crucial during vascular development [36]. Additionally, previous studies
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showed the secretion of TGFβ1 by cardiac fibroblasts and cardiomyocytes resulting in the
induction of myofibroblast transdifferentiation [37,38,47]. Based on the here-demonstrated
induction of TGFβ-related genes after serum treatment in hCSCs and the reported in-
volvement of TGFβ signalling in several cardiac processes, we analysed proliferation. We
analysed six different samples of human serum with a TGFβ1-specific ELISA and detected
amounts of about 1 ng/mL TGFβ1, which is in accordance with the current literature [48].
In line with these concentrations, we observed a similar induction of proliferation (2-fold)
with either pooled sera or recombinant TGFß1 (1 ng/mL). A selective TGFβRI/II inhibitor
LY2109761 which negatively affects the phosphorylation of SMAD2/3 was utilized. The
serum-mediated proliferative effects of human blood serum on hCSCs were significantly
increased by LY2109761. A strong proliferation inducing effect of TGFβ1 on hCSCs was
measured. Strikingly, within this study, the application of TGFβRI/II inhibitor significantly
increased the proliferation of serum-deprived cultivated hCSCs whereby the effect was
higher than in serum-treated cells. Coherently, a strong and significant increase in hCSC
proliferation was also observed after serum treatment and inhibition of the TGFβRI/II.
As the application of different concentrations of TGFβ1 and simultaneous application of
the TGFβRI/II inhibitor LY2109761 increased proliferation, while application of TGFβ1
alone also induced proliferation, a dual role of TGFβ-signalling in hCSCs is strongly sug-
gested. Furthermore, human blood serum significantly reduced senescence as measured by
SA-β-Gal activity, while supplementation with LY2109761 further increased this beneficial
serum effect. Application of TGFβ likewise reduced senescence in hCSCs; however, this
effect was to a lesser extent than in serum or serum- and LY210971-treated hCSCs. Our
results again indicate a dual role of TGFβ1 signalling regarding senescence in hCSCs and
a prevention of serum-induced hyperproliferation in hCSCs via TGFβ1 signalling. In
this context it has been previously reported that the loss of TGFβ1 expression resulted in
hyperproliferation of skin and skin tumours of mice [49]. Further, a senescence-inducing
effect of TGFβ has been shown in human diploid fibroblasts, bronchial epithelial cells and
cancer cells [25,50–52]. Additionally, an inductive effect of human blood serum on TGFβ1
signalling via SMAD2/3 phosphorylation and the successful reduction of this effect via
LY2109761 was demonstrated by analysing phosphorylation of nuclear SMAD2/3 in hCSCs.
The observed higher inductive effect of TGFβ1 compared to the effect of the serum may be
due to lower amounts of TGFβ1 in the serum or TGFβ inhibitors present in the serum.

To extend our understanding of the proliferative effects of TGFβRI/II inhibition, the
selective TGFβRI inhibitor SB431542 was applied, and it significantly reduced proliferation
in serum-treated hCSCs. This proliferation-reducing effect after selective inhibition of
TGFβRI has also been seen in human tenon’s fibroblast [53]. Moreover, prevention of
SMAD2/3 phosphorylation via TGFβRI inhibition potentially induced the upregulation of
the TGFβ-non-SMAD pathway, which comprises the activation of Ras and Rho signalling,
which have been strongly linked to cell proliferation [11,54–58]. While LY2109761 inhibits
the kinase domains of both, TGFβ receptor type I and II [41], SB431542 selectively inhibits
ALK5 TGFβ receptor type I [59]. We therefore conclude that the proliferative effect of
LY2109761 could be a result of TGFβ receptor type II inhibition. This hypothesis could be
strengthened by the fact that TGFβ receptor type II is constitutively active by autophospho-
rylation and this autophosphorylation is blocked by LY2109761 [41]. In turn, we suggest
that TGFβRII potentially prevents hyperproliferation by activating pathways or signal cas-
cades negatively regulating proliferation. In this regard, an increased TGFβRII expression
has already been shown to directly correlate with a higher CDKN1A/p21 expression which
is associated with senescence induction [60,61]. Further, the mutational inactivation of
TGFβRII has been discussed to increase G1/S transition kinase activity of CDK4 leading
to colon cancer cell proliferation [62]. Additionally, the type II receptor has been shown
to act as a G-protein-coupled receptor kinase (GRK), thereby showing that activity of the
receptor alone can independently induce other signalling pathways [63]. Besides, previous
studies have been demonstrating a direct regulatory function of TGFβRII on non-canonical
Rho-associated protein kinase (Rho-ROCK) pathway [64]. Interestingly, likewise to our
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observations after LY2109761 treatment of hCSCs, the inhibition of ROCK via Y-27632 has
been shown to promote cell viability and proliferation of ESCs, ESC-derived endothelial
cells and primary keratinocytes while it also has been shown to reduce senescence [65].
Notably, ROCK inhibition by utilizing Y-27632 has been previously reported to reduce
Ras-induced senescence in skin keratinocytes [66]. Within our study, RNA-Seq revealed the
upregulation of Ras-inactivating genes after serum and TGFβRI/II inhibition via LY2109761
which strongly indicates the involvement of the ROCK-signalling pathway in this context.
Based on these results, we conclude that TGFβRII potentially regulates Ras-mediated
prevention of hyperproliferation in hCSCs.

We used RNA-Seq to investigate the effects of TGFβRI/II inhibition in contrast to the
proliferation reducing effects of TGFβRI inhibition in hCSCs. Interestingly, in accordance
with our observed proliferative effects of TGFβ RI/II inhibition upon serum treatment,
proliferation related genes were significantly upregulated. These comprise WEE1 (WEE1
Checkpoint Kinase), CETN2 (Centrin2) and MLF1 (Myeloid Leukemia Factor 1). In previous
studies we showed that human blood serum induces proliferation and Ras signalling in
hCSCs via Gene Ontology (GO) Term Analysis [11]. The Ras signalling pathway is known
to be involved in proliferation, differentiation, morphology and apoptosis [67,68]. A direct
target of Ras signalling is the induction of the cell cycle via expression of D cyclins which
subsequently activate Cdk4 and Cdk6 through phosphorylation allowing them to inactive
the pocket proteins resulting in cell cycle progression from G1 to S phase [57,69–71]. The
activation of Ras signalling, therefore, has been shown to lead to proliferation and migration
in several cell types, such as mouse embryonic fibroblasts [72]. Ras has also been reported
to act as a proto-oncogene with mutations of the Ras genes highly occurring in pancreatic,
lung and colorectal carcinomas [67,73,74]. On the other hand, Ras has been shown to
play a role in senescence in primary human or rodent cells, resulting in a permanent G1
arrest [75]. Here, differential gene expression analysis revealed a significant upregulation of
Ras-inactivating genes such as RIN1, and SYNGAP1 after serum treatment and TGFβRI/II
inhibition. RIN1 (Ras and Rab interactor 1, Ras inhibitor 1) is a known Ras inhibitor while
SYNGAP1 (Synaptic Ras GTPase Activating Protein 1) is known to negatively regulate
Ras [76,77]. Best to our knowledge the presence of SYNGAP1 has not been reported in
the context of cardiac regeneration so far. Considering the here observed selective effects
of TGFβRI/II inhibition in the context of proliferation and senescence in hCSCs, it is
suggested that TGFβRII-mediated regulation of non-SMAD signalling prevents serum-
mediated hyperproliferation of hCSCs via TGFβRII-mediated Ras-induced senescence.
Further comparison of the differential gene expression of hCSCs treated with either serum
or serum with LY2109761 and untreated hCSCs, revealed the upregulation of the previously
identified genes FOS, FOSB, NR4A and EGR as mediators of hCSC proliferation. In
accordance, the FOS protein family has been reported to modulate proliferation in several
cell types, such as osteosarcoma cells, osteoblasts and human lung cancer cell lines [78–81].
Further, the NR4A nuclear receptor family is known to induce endothelial cell proliferation,
smooth muscle cells and cancer cells [82–86]. Likewise, the transcription factor EGR1 has
been demonstrated to modulate the proliferation of astrocytes, smooth muscle cells and
gastric cancer cells [87–90]. Overall, our results underline the upregulation of these genes
in the context of serum-induced proliferation of hCSCs.

In conclusion, we demonstrate proliferation-related responses of hCSCs to serum treat-
ment at a gene expression level which were revealed by Gene Ontology while involvement
of the TGFβ signalling pathway was indicated. Subsequent inhibition of the TGFβRI/II and
simultaneous serum treatment significantly increased proliferation and reduced senescence.
Both, human blood serum and TGFβ1, strongly induced the phosphorylation of nuclear
SMAD2/3. Altogether, a dual role of TGFβ1 signalling in hCSCs is suggested. Contrary to
inhibition of TGFβRI and II, inhibition of TGFβRI resulted in reduced proliferation after
serum treatment. RNA-Seq revealed the significant upregulation of proliferation-related
and Ras-inactivating genes of hCSCs treated with serum and TGFβRI/II. As observed
here, the induction of proliferation is potentially based on the TGFβRII inhibition; we
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conclude that TGFβRII regulates (non-canonical) pathways which mediate the prevention
of hyperproliferation in hCSCs. In detail, we suggest that the observed proliferation is
mediated by repression of Ras signalling. This dual role of TGFβ may help to explain the
characteristics of molecular regulation in tissues with low turnover such as the heart and
lead to new therapeutic approaches in the future.

4. Materials and Methods
4.1. Isolation and Cultivation of Human Cardiac Stem Cells

Adult human cardiac cells (hCSCs) have been isolated and cultivated via explant
cultures from human atrial left appendages which have been routinely removed during
surgery in accordance with local and international guidelines (declaration of Helsinki).
Ethical approval for isolation and experimental procedures was conducted by the ethics
commission of the Ruhr-University Bochum (Faculty of Medicine, located in Bad Oeyn-
hausen, with the approval number eP-2016-148). Isolation and cultivation were performed
as described previously [11].

4.2. Proliferation Assay

For the proliferation assays, hCSCs were pre-cultivated in TC25 flasks (Sarstedt AG
and Co., Nürmbrecht, Germany). After detachment using Trypsin-EDTA (Sigma Aldrich,
St Louis, MO, USA), 1 × 103 cells per well were seeded in a 0.1% gelatin-type-B (Sigma
Aldrich, Taufkirchen, Germany)-coated 96-TC plate (Sarstedt AG and Co., Nürmbrecht,
Germany) in hCSC medium which consisted of DMEM-F12 (Life Technologies, Darmstadt,
Germany), 10% foetal calf serum, L-glutamine (2 mmol/L), bFGF (5 ng/mL) (Miltenyi
Biotech, Bergisch Gladbach, Germany), EGF (10 ng/mL) (Preprotech, Hamburg, Germany)
and Penicillin/Streptomycin (10 mg/mL) (Sigma Aldrich, Taufkirchen, Germany). Trip-
licates were performed for each condition. After 24 h, the medium was changed to the
starvation medium which contained DMEM-F12 (Life Technologies, Darmstadt, Germany),
L-glutamine (2 mmol/L), bFGF (5 ng/mL) (Miltenyi Biotech, Bergisch Gladbach, Ger-
many), EGF (10 ng/mL) (Preprotech, Hamburg, Germany) and Penicillin/Streptomycin
(10 mg/mL) (Sigma Aldrich, Taufkirchen, Germany) for 72 h. To calculate the IC50 value,
10% pooled blood serum and concentrations from 0 to 50 µM of selective TGFβRI/II
inhibitor LY2109761 (Selleckchem) or 0 to 10 µM TGFβRI inhibitor SB431542 (abcam, Cam-
bridge, UK) dissolved in DMSO (Sigma Aldrich, Taufkirchen, Germany) was applied. The
amounts of DMSO in each well were equal to the maximum concentration of DMSO, re-
spectively. For determination of the role of TGFβRI/II in the serum-mediated proliferative
effects on hCSCs human blood serum, 50 µM LY2109761 was applied. After 72 h at 37 ◦C
under hypoxic conditions with 5% CO2 and 5% O2 at 37 ◦C, 10 µL Orangu Cell Counting
Solution (Cell Guidance Systems, Cambridge, UK) was added to each well for 2 h at 37 ◦C.
Absorbance was measured at 450 nm and the cell count was calculated by the formula
derived from a previously determined calibration straight line. For calibration, hCSCs from
the same suspension were seeded in a 0.1% gelatin-type-B-coated TC-96 plate with 0, 250,
500, 750, 1000, 1500, 2000, 2500 and 3000 cells per well. After allowing the cells to attach
to the surface for 1.5 h, 10 µL Orangu Cell Counting Solution (Cell Guidance Systems,
Cambridge, UK) was added for 2 h and the absorbance was measured at 450 nm. Clinically
accredited therapeutic human blood plasma samples were collected from six healthy young
(age < 20 years) male donors via a routine blood donation service (Institute for Laboratory-
and Transfusionmedicine, Bad Oenhausen, Germany). Serum was isolated as described
previously [11]. Levels of TGFβ1 were quantified using an ELISA Kit (88-8350-22, Invit-
rogen, Thermo Fisher, Waltham, MA, USA) according to the manufacturer’s guidelines.
Values within the linear range of the serum dilution series were used for calculation of the
TGFβ1 amount.
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4.3. Senescence-Associated Quantitative β-Galactosidase Assay

A total of 1 × 105 human cardiac stem cells were seeded in 0.1% gelatin-type-B-coated
TC100 dishes. Cultivation and treatment were equal to the conditions described for the
proliferation assay. Triplicates were performed. After washing six times with PBS, 300 µL
1× lysis buffer containing 5 mM CHAPS, 40 mM citric acid, 40 mM sodium phosphate,
0.5 mM benzamidine and 0.25 mM PMSF was added. The cells were detached by scraping
and transferred to a 1.5 mL reaction tube and froze at −80 ◦C. Subsequent to thawing, the
samples were centrifuged at 12,000× g for 5 min and 100 µL of the lysate was mixed with
100 µL 2× reaction buffer containing 40 mM citric acid, 40 mM sodium phosphate, 300 mM
NaCl, 300 mM β-mercaptoethanol, 4 mM MgCl2 and 1.7 mM MUG. After incubation at
37 ◦C for one hour, 50 µL of the reaction mix was added to 150 µL 400 mM sodium carbonate
stop solution. Then, 150 µL was transferred to a black 96-well plate and quantification was
performed via a TECAN reader with excitation 360 nm, emission 465 nm and integration
40 µs. The senescence-associated β-galactosidase activity was normalized to the amount of
the total isolated protein.

4.4. RNA Sequencing and Analysis

In total, 5 × 105 hCSCs from three male donors were seeded in 0.1% gelatin-type-
B (Sigma Aldrich, Taufkirchen, Germany)-coated TC100 dishes (Sarstedt AG and Co.,
Nürmbrecht, Germany) in hCSC medium (described previously) and cultivated for 24 h.
Subsequently, the medium was changed to the starvation medium (described previously)
for a further 24 h. An amount of 50 µM of LY2109761 or the equivalent amount of DMSO
was then applied for one hour for pre-treatment, followed by one-hour treatment with
either 10% pooled human blood serum from six young males or 10% pooled human
blood serum from six young males and 50 µM LY2109761. RNA was isolated using the
NucleoSpin RNA Kit (Macherey-Nagel GmbH & Co. KG, Düren, Germany) according
to the manufacturer’s guidelines. For determination of the amount of isolated RNA, a
nanodrop (Peqlab, Erlangen, Germany) was used. The samples were stored at −80 ◦C.
mRNA library preparation and sequencing were conducted by Novogene (Cambridge,
UK) with NovaSeq 6000 30 M reads PE150. Using HISAT2 (version 2.1.0-4), the reads
were aligned to the reference genome GRCh38.p14. Feature Counts (version 2.0.0) was
used to quantify the read number after mapping. For differential gene expression analysis,
the DESeq2 R package was used. Gene Ontology (GO) term enrichment and the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analysis was performed by using
the gage package in R (version1.3.1093). For KEGG analysis, the Pathview R package and
for GO-Term analysis, the org.Hs.eg.db R package provided databases.

4.5. Immunocytochemical Staining

For immunocytochemical staining, cells were cultivated in 8-well slides (ibidi, cells in
focus, Gräfelfing, Germany) as described for the RNA sequencing analysis. The medium
was discarded, and the cells were washed one time with PBS followed by fixation at room
temperature with 4% PFA for 15 min. After washing three times with PBS, the cells were
permeabilized and blocked with 0.02% PBT containing 5% goat serum for 30 min. Subse-
quently, cells were washed one time with PBS. The primary antibody phosphoSMAD2/3
(Carlsbad, CA, USA) was applied overnight at 4 ◦C, diluted 1:300, in blocking solution.
The second antibody goat anti rabbit alexa 555 (Life Technologies, Thermo Fisher Scientific,
Waltham, MA, USA) was diluted 1:300 in blocking solution and applied for one hour in the
dark at room temperature. After washing three times with PBS, nuclei were stained via
49,6-diamino-2-phenylindole (DAPI, 1 µg/mL) (Sigma-Aldrich, Taufkirchen, Germany) for
15 min, followed by two washing steps with PBS and one time with H2O. Mowiol-4-88 was
mounted to cover the cells. Fluorescence imaging was performed by confocal laser scanning
microscopy (LSM780; Carl Zeiss; Jena, Germany). For analysis, ZEN software (version 2011
SP7) and ImageJ (https://imagej.net/ij/, accessed on 8 January 2024) were used.

https://imagej.net/ij/
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5. Patents

Parts of this research article were filed for a patent application entitled “Method and
medium for cultivating animal cells”.
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